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ABSTRACT 

 

Tumors comprise a complex microenvironment of interacting malignant and stromal cell types. Much of our un-

derstanding of the tumor microenvironment comes from in vitro studies isolating the interactions between malignant 

cells and a single stromal cell type, often along a single pathway. To develop a deeper understanding of the inter-

actions between cells within human lung tumors we performed RNA-seq profiling of flow-sorted malignant cells, 

endothelial cells, immune cells, fibroblasts, and bulk cells from freshly resected human primary non-small-cell lung 

tumors. We mapped the cell-specific differential expression of prognostically-associated secreted factors and cell 

surface genes, and computationally reconstructed cross-talk between these cell types to generate a novel resource 

we call the Lung Tumor Microenvironment Interactome (LTMI). Using this resource, we identified and validated 

a prognostically unfavorable influence of Gremlin-1 production by fibroblasts on proliferation of malignant lung 

adenocarcinoma cells. We also found a prognostically favorable association between infiltration of mast cells and 

less aggressive tumor cell behavior. These results illustrate the utility of the LTMI as a resource for generating 

hypotheses concerning tumor-microenvironment interactions that may have prognostic and therapeutic relevance. 
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INTRODUCTION 

Non-small cell lung carcinoma (NSCLC) accounts for ~80% of all lung tumors and is comprised of two major 

histologic subtypes: adenocarcinoma (~60%) and squamous cell carcinoma (~40%). Despite significant therapeutic 

efforts, overall 5-year survival for NSCLC remains a dismal 18%(1). While therapies that target malignant cells, 

such as cisplatinum-based chemotherapy and EGFR inhibitors, have led to improvements in outcomes, new thera-

peutic strategies are urgently needed in order to significantly improve survival of most lung cancer patients.  Recent 

advances in tumor immunotherapy highlight the importance of targeting interactions between malignant and im-

mune cells, with much effort focusing on the T-cell suppressive PD1/CTLA4 axes (2). Significant evidence points 

to additional complex interactions between malignant cells and other cell types comprising the tumor microenvi-

ronment. Experimental and clinical studies suggest that immune cells as well as endothelial cells and tumor-infil-

trating fibroblasts play significant roles in lung cancer development and progression (3-7). The molecular mecha-

nisms underlying these observations are only beginning to be understood. Rapid progress has been hindered by the 

reality that these cell subtypes interact in a complex network (i.e. interactome) consisting of intra- and intercellular 

communication via juxtacrine, autocrine and paracrine signaling. Elucidating the nature of interactions between 

lung cancer cells and cells comprising the tumor microenvironment could guide the development of novel thera-

peutic interventions. 

Examples of important stromal players in NSCLC include tumor-associated macrophages (TAMs) which are a 

major component of the immune cell infiltrate seen in solid tumors (8). Macrophage-tumor cell interactions lead to 

release of macrophage-derived cytokines, chemokines, and growth/motility factors which in turn recruit additional 

inflammatory cells to the microenvironment (9, 10). Other immune cells commonly infiltrating lung tumors that 

play important roles in tumor biology include T-, B-, and NK-cells (11-13). Cancer associated fibroblasts (CAFs) 

represent another class of stromal cells that interact with the malignant cell compartment in lung cancers (14-17). 

Although several studies have found functionally important interactions between CAFs and lung cancer cells, a 

comprehensive understanding of their precise role in lung tumorigenesis remains lacking. These specialized fibro-

blasts can enhance tumor progression via multiple pathways, including synthesis of support matrices, production of 
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promalignancy growth factors, promotion of angiogenesis, secretion of ECM proteases and pro-invasion factors 

such as hepatocyte growth factor, and production of immune suppressive cytokines (15-17). 

The most common approach to studying tumor microenvironment gene expression has been to profile bulk 

tumors and look for cell-type-specific gene expression “clusters” in the resulting data. Interpretation becomes dif-

ficult when genes are expressed in multiple cell types. Co-expression of genes in multiple cell types within tumors 

occurs frequently. For example, subsets of malignant cells have been found to express genes such as vimentin and 

fibronectin-1 that are also expressed by fibroblasts (18). More recently it has become possible to perform single-

cell RNAseq (scRNAseq) for hundreds to thousands of cells from a tumour sample (19). However the cost is still 

prohibitive for large cohorts, and transcriptome coverage is not complete.  

Here, we dissociated primary human lung tumor samples directly after surgery, sorted individual cell subtypes 

based on the expression of surface markers, and performed RNA-seq analysis. We computationally identified cross-

talk between different cell types in the lung tumor microenvironment, with a specific focus on prognostically-rele-

vant associations. Through the combination of cell purification from primary tumors and gene expression profiling 

we have constructed a novel resource for identifying functional interactions between human lung cancer cells and 

their stroma: The Lung Tumor Microenvironment Interactome (LTMI; https://lungtmi.stanford.edu). 
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RESULTS 

Forty human primary NSCLC tumors  were acquired directly from the operating room, dissociated and sorted based 

on CD45+EPCAM- (pan-immune), CD31+CD45-EPCAM- (endothelial cells), EPCAM+CD45-CD31- (malignant 

cells), and CD10+EPCAM-CD45-CD31- (fibroblasts), via our previously published flow cytometry strategy (Figure 

1a) (20). We performed RNA-seq profiling on 185 samples from 36 tumors for which good quality RNA could be 

obtained (Supplementary Table 1), including unsorted bulk RNA from the majority of cases, along with six ref-

erence samples distributed between experimental batches (Stratagene Universal Reference Human RNA). This 

yielded an average of 48.6x106 fragments per sample (range 3.8-85.4x106), with mean effective mapping rate of 

87.2% (range 26.6-97.1%). Out of a total of 28034 expressed protein-coding genes across all cell types, 5790 (21%) 

were expressed in all four and 9918 (35%) were expressed in only one (Supplementary Figure 1), indicating that 

a large fraction of genes are expressed in specific TMI subpopulations. All patients were treatment-naïve, and clin-

ical characteristics of the cohort are shown in Supplementary Table 2. Sample SNP profiles were compared to 

verify identities (Supplementary Figure 2) (21). After data normalization and summarization of expression at the 

gene level, we performed batch correction to remove differences between flow cells and observed that this generally 

improved concordance between transcriptomes from replicates (n=11; Supplementary Figure 3). Multidimen-

sional scaling (MDS) analysis of the 1000 most variable genes across sorted populations showed separation of the 

malignant, fibroblast, immune, and endothelial cells (Figure 1b). There was no separation between individual pop-

ulations isolated from adenocarcinoma versus squamous cell carcinoma by MDS. We next performed unsupervised 

hierarchical clustering analysis on the same 1000 genes and again observed clear separation of profiles from the 

different sorted cell types (Figure 1c). With one exception (T29 CD31+), replicates were immediately adjacent to 

each other in the sample-wise dendrogram. 

 Within the malignant population, adenocarcinomas clustered apart from SCC as expected. The one tumor 

in our cohort that was called NSCLC NOS (Not Otherwise Specified) based on histopathology clustered with ade-

nocarcinoma, whereas three other tumors T9 (adeno-squamous), T23 (fetal), and T37 (invasive mucinous adeno-
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carcinoma) clustered with SCC. In supervised analysis, 1168 genes were differentially expression between malig-

nant cells from adenocarcinoma versus SCC tumors (local FDR <1%) with 931 being more highly expressed in 

adenocarcinoma, and 237 being lower (Supplementary Table 3). Distinguishing genes included classic basal 

keratins (KRT5, KRT6A, KRT6B, KRT13, KRT14) that along with TP63 were more highly expressed in SCC 

(Figure 1d). Conversely, NKX2-1, and mucins (MUC1, MUC5B) were more highly expressed in adenocarcinoma, 

as were ROS1 and CLDN3.  

 One potential limitation of experimental strategies that involve dissociation and sorting of cells is that these 

procedures could distort their transcriptomes prior to RNA-seq profiling. To permit analysis of this phenomenon, 

we also performed RNA-seq on bulk tissues that were frozen immediately after surgical dissection (Supplementary 

Table 1). We then compared the “ground truth” bulk transcriptional profile of each sample to the computationally 

reconstructed one defined by combining the profiles of individual populations weighted according to their relative 

abundance in the tumor. The latter was defined by deconvolving the bulk transcriptomes using CIBERSORT (22), 

with the sorted sample transcriptomes used to construct a signature matrix (Supplementary Figure 4 and Supple-

mentary Tables 4 and 5). Reconstructed profiles largely recapitulated bulk profiles (R=0.97, Figure 1e, and Sup-

plementary Table 6). We further explored these differences by ranking all genes by their difference between bulk 

and reconstructed profiles, and compared these to an atlas of body tissues using the Nextbio Correlation Engine(23). 

Off-diagonal genes higher in bulk were ones archetypally expressed on cell populations that were not isolated by 

sorting, including muscle- and nerve-related genes (Figure 1e, Supplementary Table 6). To further isolate the 

effects of dissociation and sorting, we applied CIBERSORT to the bulk tumors and the sorted immune samples 

using our previously validated signature matrix of 22 immune cell types (LM22; (22)) and compared deconvolution 

results. Relative proportions of infiltrating leukocytes were similar across adenocarcinoma and SCC in both our 

RNA-seq data and previously published microarray studies (Supplementary Figure 5). Direct comparison of de-

convolution results based on bulk vs sorted immune cells showed that some immune subtypes had higher or lower 

inferred proportions in sorted immune cells, suggesting that they were more sensitive to dissociation and/or sorting 

(Figure 1f,g). These included lower than expected levels of plasma cells in immune sorted populations; and higher 

levels of activated mast cells and eosinophils. Plasma cells are systematically lost during flow sorting, whereas 
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activation/degranulation of mast cells might be triggered by sorting. Taken together, these results suggest that our 

experimental strategy left the transcriptomes of most populations largely intact, but identify specific populations 

that are sensitive to flow sorting. These findings are likely also relevant for scRNA-seq analyses.  

 

The LTMI reveals a complex transcriptional landscape of secreted ligands and their receptors across NSCLC 

tumor sub-populations 

To identify avenues for cross-talk between cell types in adenocarcinoma and SCC, we integrated the LTMI 

data with the FANTOM5 resource of ligand-receptor interactions, and the PRECOG resource of prognostic associ-

ations between bulk gene expression and overall survival (Figure 2a) (24, 25). We examined the potential com-

plexity of cell-cell interactions by comparing the number of populations in which a ligand was expressed with the 

number of populations in which its cognate receptor was expressed, using TPM>10 as a threshold, to be consistent 

with the criteria used by FANTOM5 (Figure 2b and Supplementary Table 7). In both NSCLC histologies, the 

most frequent pattern was many-to-one, where all four sorted populations expressed a ligand, but only one popula-

tion expressed its receptor; however, this pattern was not statistically significantly more prevalent than others 

(p=0.11 and p=0.18 respectively in adenocarcinoma and SCC by chi-squared test). In general, both ligands and 

receptors could be seen to be uniquely or ubiquitously expressed, suggesting that transcriptional regulation of cel-

lular crosstalk is occurring at the level of both ligand and receptor activity.  

We identified genes that were significantly differentially expressed in specific cell types relative to others, 

separately in adenocarcinoma and SCC, focusing on those that were over-expressed in a single cell type relative to 

all others i.e. uniquely differentially expressed genes (uDEGs), at FDR <1% with a minimum 2-fold difference in 

expression (Methods). We intersected these with genes coding for putative secreted factors and cell surface proteins. 

Expression levels of these genes are frequently associated with survival outcomes in lung cancer, however the cell 

type producing these factors is often unknown (Supplementary Table 8). In both adenocarcinoma and SCC, the 

most prolific expressors of uDEG ligands were fibroblasts (Figure 2c,d and Supplementary Table 9). Their cor-

responding uDEG receptors were most commonly expressed by endothelial and malignant cells (Figure 2c,d).  

Malignant cells also highly expressed many ligands, but their receptors were most frequently also expressed in 
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malignant cells, suggesting autocrine signaling. In adenocarcinoma, receptor uDEGs for ligands differentially ex-

pressed in immune cells were most often also on immune cells; with a similar pattern seen in endothelial cells. In 

contrast, in SCC we did not observe a bias towards expression of both ligand and receptor within immune and 

endothelial populations.  

We noted that the vascular growth signaling angiopoietin genes ANGPT1 and ANGPT2 were expressed by 

fibroblasts and endothelial cells respectively whereas the cognate receptors encoded by TEK and TIE1 were only 

expressed on endothelial cells. In bulk tumors, high ANGPT1 expression is associated with good overall survival 

while high ANGPT2 is associated with poor survival. Their products function as a rheostat competing for receptor 

binding, and the LTMI suggests that this occurs in an intra-cell type fashion (Figure 2e). We further examined the 

pattern of expression of ligand-receptor pairs where each was highly expressed in a single cell type (Figure 2f). 

One major group (Group 3) showed a pattern where fibroblasts were prolific expressors of ligands whose receptors 

were expressed on every possible cell type, suggesting autocrine and paracrine signaling. This included BMP (bone 

morphogenic protein) signaling pathways involving BMP3 and BMP2 which promote cell growth. Group 2 dis-

played a prominent enrichment for NOTCH-related signaling within the endothelial compartments of both adeno-

carcinoma and SCC. An enrichment for immune compartment expression of ligands/receptors dominated Group 1, 

with potential autocrine and paracrine cross-talk potential. The latter was mainly with endothelial cells (in both 

adenocarcinoma and SCC), or malignant cells (in adenocarcinoma only). 

Overall, our results indicated potential for highly complex inter-population communication via ligand-re-

ceptor signaling, particularly initiating from fibroblasts to endothelial or malignant cells, and autocrine influences 

within the malignant compartment.   

 

Identification of clinically-relevant cell type cross-talk using the LTMI 

 We sought to identify and validate cross-talk between cell types in the LTMI that had potential clinical 

relevance (Figure 2a). To this end, we focused on genes that were associated with patient survival and that were 

expressed in a specific cell type as assessed by RNA-seq. Among the resulting potential interactions, we selected 
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two (GREM1 and TPSAB1, encoding mast cell tryptase MCT) for experimental validation. These represented 

cross-talk between fibroblasts and malignant cells (GREM1); and between immune and malignant cells (TPSAB1). 

  

High expression of Gremlin-1 by fibroblasts stimulates proliferation of lung adenocarcinoma tumor cells 

High expression of GREM1, encoding for the secreted factor Gremlin-1, is associated with poor overall 

survival in lung adenocarcinoma but not squamous cell carcinoma (PRECOG meta-Z: +4.11 in adenocarcinoma vs 

-0.75 in SCC). Our data showed it to be expressed strongly in fibroblasts from both histologies, but not in other 

cell-types (Figure 3a). GREM1 inhibits bone morphogenetic protein (BMP) signaling by binding BMP ligands and 

preventing their interaction with their receptors(26). Additionally, GREM1 has been shown to bind and activate the 

vascular endothelial growth factor (VEGF) receptor Kinase Insert Domain Receptor (KDR, also known as 

VEGFR2, one of two receptors for VEGF), which is expressed in endothelial cells of both adenocarcinoma and 

SCC. Interestingly, KDR is also expressed in the malignant compartment in adenocarcinoma at 3-fold higher levels 

than in SCC (p=1x10-5, t-test; see also Figure 2f).  

We next sought evidence for a role for GREM1 in cross-talk between fibroblasts and malignant cells by 

using the LTMI to correlate gene expression levels in malignant cells from adenocarcinoma with the level of 

GREM1 in fibroblasts from the same tumors. Expression levels of genes involved in translation initiation, ribosomal 

biogenesis and invasiveness in malignant cells were positively correlated with GREM1 expression in fibroblasts 

from the same patient in adenocarcinoma  but not in SCC (Figure 3b; see also Supplementary Table 10). Genes 

related to cellular transformation and hypoxia were also higher when GREM1 was higher in adenocarcinoma, but 

not SCC. Additionally, higher adenocarcinoma fibroblast GREM1 correlated with lower malignant cell glucocorti-

coid metabolism gene expression. Together, these observations suggested that GREM1 production by fibroblasts 

might induce a more aggressive malignant cell behavior in adenocarcinoma but not squamous cell carcinoma. To 

further test this, we evaluated the relationship between fibroblast content and overall survival in TCGA adenocar-

cinoma and SCC tumors with CIBERSORT using the signature matrix defined by our purified cell populations 

(Supplementary Table 5). Patients with a higher inferred proportion of fibroblasts had worse overall survival in 

adenocarcinoma (p=0.01 as a continuous variable, likelihood ratio test) but not in SCC (p=0.83, not shown). An 
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optimal dichotomization of adenocarcinoma into patients with fibroblast proportion higher or lower than 17% ro-

bustly separated survival curves (p=0.0004, log-rank test; Figure 3c).  

Based on the results from the LTMI, we sought to functionally test if GREM1 can alter behavior of lung 

cancer cells. Lung cancer cell lines express GREM1 at varying levels, with ~5500-fold range across SCC lines and 

nearly 13,000-fold across adenocarcinomas as measured in the Cancer Cell Line Encyclopedia (Supplementary 

Table 11) (27). To test a positive causal association of GREM1 with malignant cell behavior we treated adenocar-

cinoma cell lines with low intrinsic expression of the gene (HCC78 and SW1573) with recombinant GREM1. Treat-

ment with GREM1 increased both 2D colony and 3D tumorsphere formation by approximately 2 fold (Figure 3d,e). 

Additionally, GREM1 treatment resulted in significantly higher migratory potential using in vitro trans-well migra-

tion assays (Figure 3f). Thus, exogenous GREM1 increases aggressiveness of lung cancer cells in vitro.  

As noted above, some lung cancer cell lines express high levels of GREM1, suggesting a potential tumor-

promoting autocrine role in a subset of lung cancers. Consistent with this we observed a range of GREM1 expression 

in the malignant cells from human tumors with a small number of outliers expressing significant levels of GREM1 

(Figure 3a). To test if GREM1 may have an autocrine function in these cells, we knocked down the transcript in 

high GREM1 expressing H1755 (which does not express the KDR receptor) and H1792 (which does express KDR) 

adenocarcinoma cells using siRNA. Knock-down reduced GREM1 transcript levels by 85% in H1755 and 54% in 

H1792 (Figure 3g), and reduced survival of both cell lines by up to 50% after 8 days (Figure 3h).  

 

GREM1-expressing fibroblasts are preferentially spatially located adjacent to malignant cells 

 

We further verified that GREM1 expression was confined to fibroblasts using In-Situ RNA hybridization 

on tumor tissues (Figure 3i). Interestingly, visual inspection indicated that fibroblasts expressing GREM1 clustered 

around nests of cancer cells, suggesting a potential juxtacrine interaction between these cell types mediated by this 

pathway. In order to assess the spatial distribution of GREM1 positive cells we stained and digitally imaged four 

tissue samples from tumors corresponding to very low, low, medium or high GREM1 expression. We developed 
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an automated image processing pipeline (Methods) to detect nuclei and classify cells as GREM1 positive vs. nega-

tive. We used this pipeline to quantitatively evaluate our qualitative observation that GREM1+ cells tend to be 

physically closer to tumor cells than other stromal cells. We manually annotated tumor regions in the four images 

and calculated the distance to the nearest tumor cell for every stromal cell, both GREM1+ and GREM1-. We then 

compared the distribution of these distances for GREM1+ vs. GREM1- using a Mann-Whitney U test for difference 

in the mean. For all three samples with GREM1 expression the GREM1+ cells were significantly closer on average 

to malignant cells than GREM1- cells (p=3x10-16, 1x10-7 and 1x10-10 for the low, medium and high tissue samples 

respectively – no GREM1+ cells were detected in the very low GREM1 expression image). To further confirm this 

result we performed a simulation study, repeatedly resampling the stroma nuclei as being GREM1+ vs. GREM1- 

while maintaining the same number of GREM1+ cells. We used the median distance of the GREM1+ cells to the 

nearest tumor cells as a test statistic, T. For all three samples with GREM1 expression, out of 105 simulations, T 

was never as small as for the observed configuration, implying a p-value of <1x10-5 in each case.  

 

Levels of infiltrating mast cells negatively correlate with tumor proliferation in adenocarcinoma and SCC 

To further demonstrate of the utility of the LTMI, we investigated potential associations between the im-

mune and malignant compartments. We noted that TPSAB1 (Tryptase Alpha/Beta 1) was highly expressed in sorted 

immune cells from both adenocarcinoma and SCC (p<2.2x10-16 by ANOVA; Figure 4a), and is favorably prognos-

tic in both histologies across multiple datasets in PRECOG(24). Among a panel of 22 different immune cell types 

TPSAB1 expression was nearly 30-fold more highly expressed on mast cells (Supplementary Figure 6). We per-

formed cross-population enrichment analysis by ranking genes in malignant cells by their correlation to TPSAB1 

expression in immune cells across the cohort (Supplementary Table 12). In adenocarcinoma, high TPSAB1 ex-

pression in immune cells correlated with reduced malignant cell expression of proliferation and cell cycle genes as 

well as of genes related to metastasis (Figure 4b). Few gene sets positively correlated with TPSAB1 expression, 

but included olfactory receptor genes and genes down-regulated in gefitinib-resistant NSCLC. In SCC, we again 

observed negative association of immune TPSAB1 expression with metastasis and extracellular matrix genes in 
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malignant cells, as well as VEGF and EGF signaling pathway genes (Figure 4c). However, interestingly prolifera-

tion genes in SCC malignant cells positively correlated with immune TPSAB1, in contrast to adenocarcinoma.  

We validated the prognostic relevance of mast cells in NSCLC by immunohistochemical (IHC) staining of 

a lung tumor tissue microarray (TMA) for MCT (mast cell tryptase, encoded by TPSAB1). The lung TMA (n=389 

samples) was stained for MCT, and each core was scored for the number of mast cells by a pathologist. Mast cell 

infiltration was similar across NSCLC histologies, but higher in adenocarcinoma in situ relative to other types 

(Supplementary Figure 7). Within adenocarcinoma, mast cell counts were significantly higher in Stage 1 vs Stage 

3 (p=0.006 by t-test) but not in Stage 1 vs Stage 2 or Stage 2 vs Stage 3 (Supplementary Figure 7). There was no 

difference in mast cell levels across stages of SCC, though the modest sample size (n=66) limited the statistical 

power of this analysis.  

Mast cell counts were converted to levels of “High”, “Intermediate”, “Low”, and “Negative” (Methods). In 

order to validate the relationship of mast cell levels to tumor proliferation the same TMA was stained for the pro-

liferation marker KI67 (Figure 4d, see also Supplementary Figures 8 and 9). The proportion of KI67-positive 

malignant adenocarcinoma cells was lower in tumors with high vs low/intermediate numbers of mast cells (Figure 

4e; p=0.003, ANOVA F-test), consistent with the gene set based analysis of our sorted RNA-seq data. Negative-, 

low-, and intermediate-levels of mast cells all conferred worse overall survival than high mast-cell levels whether 

considered across only non-squamous NSCLC (n=214, Figure 4f) or SCC (n=66, Figure 4g). Multivariable anal-

ysis indicated that mast cell levels carried prognostic information independent of stage (Supplementary Table 13), 

and Kaplan-Meier analysis within stages I, II and III separately confirmed that the level of mast cell infiltration was 

prognostic across NSCLC and within adenocarcinoma (Supplementary Figure 10).  

 

The LTMI: a resource for exploring lung tumor microenvironment interactions  

To facilitate investigation of relationships between transcriptional profiles within the lung TMI we devel-

oped an online resource, the Lung Tumor Microenvironment Interactome (https://lungtmi.stanford.edu). Users can 

select from sets of genes that are prognostic, expressed in a specific population, and/or encode for secreted or surface 
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factors. Alternatively, a list of genes of specific interest can be entered manually. Given this set of genes, the LTMI 

interface can display differential expression between different sub-populations in adenocarcinoma and SCC. Cor-

relations can be extracted between expression levels of these genes in a cell type of interest compared to other cell 

types. Gene set enrichment analysis, as performed in this study, can be applied to the resulting correlative output. 

A tutorial in the resource is available to recapitulate the results described here relating GREM1 in fibroblasts to 

malignant cell transcriptional programs. 

 

DISCUSSION 

As with other malignancies, most research efforts on lung cancer have focused on the transformed cells 

themselves. This has led to the identification of important pathways and individual genes involved in oncogenesis 

such as EGFR, KRAS, and ALK (28-31). Significantly less attention has been directed at investigating possible 

contributions of the tumor microenvironment to cancer formation, progression and treatment response, although 

this is a burgeoning area of interest. Here we developed a unique resource by profiling human primary lung tumors 

that were dissociated and sorted directly after surgical resection. 

Prior applications of computationally-derived regulatory networks have used whole tumor high-throughput 

data to gain insight into mechanisms underlying hematological cancers (32-36). More recently, such computational 

approaches have been extended to solid tumors (37-39). Previous work on profiling the tumor microenvironment 

has often been accomplished through the use of laser capture microdissection (LCM) in a variety of tumors, includ-

ing those of the breast and lung (40, 41). However, it is difficult to separate endothelial cells, fibroblasts, and infil-

trating immune cells using LCM and these are therefore usually lumped as one stromal sample in such studies. Our 

approach for gene expression profiling malignant and stromal cells within primary tumors involves dissociating the 

tumor tissues and then purifying individual cell subtypes based on the expression of surface markers.  

By RNA-seq profiling of cell types from lung tumors we found that GREM1, high levels of which are 

associated with worse patient outcomes, is specifically expressed on fibroblasts in the adenocarcinoma microenvi-

ronment.  The LTMI identified a positive association between fibroblast GREM1 expression and malignant cell 

proliferation genes. Gremlin-1 has been shown previously to induce proliferation of normal lung cells, and to be 
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over-expressed in adenocarcinoma, but not SCC, compared to normal lung. However to the best of our knowledge 

neither its fibroblast origin, nor a specific role in stimulating proliferation of lung cancer lines has been noted. 

Cancer associated fibroblasts (CAFs) represent a major class of stromal cells that interact with the malignant cell 

compartment in lung cancers (14). CAFs appear biologically distinct from fibroblasts present in benign microenvi-

ronments (42). Although several studies have found functionally important interactions between CAFs and lung 

cancer cells (43-45), the role of Gremlin-1 identified using the LTMI appears to be novel. Adenocarcinoma cell 

lines express GREM1 variably. Si-RNA knockdown in high-expressing cell lines resulted in reduced proliferation 

independent of KDR receptor expression. However, our data suggest that in primary tumors, receptor expression is 

required. Interfering with this TME interaction may therefore represent a novel therapeutic opportunity. 

Interactions between malignant cells and infiltrating immune cells are another major class of microenvi-

ronmental interactions within lung tumors. There have been conflicting reports concerning a role for mast cells in 

cancer, and specifically in lung tumors, with some finding them to be a favorable prognostic factor, and others an 

adverse factor [refs]. Using the LTMI we identified and validated a favorable prognostic association of mast cell 

infiltration in lung tumors. This finding was consistent with a novel inverse correlation between mast cell infiltration 

and numbers of KI67 positive malignant cells. The mechanistic influence of mast cells on NSCLC malignant cells 

requires further investigation, however they have been proposed to have cytolytic activity in breast cancer(46) 

Limitations of our study include the focus on four pre-defined sub-populations, the potential impact of cell 

dissociation and sorting on transcriptional profiles, and the restriction to expression data. Nonetheless, we were able 

to identify and validate associations between malignant and stromal cell types. In the future, single-cell RNA-seq 

will increasingly be used to dissect the tumor microenvironment and will allow further resolution of transcriptional 

properties of malignant and stromal sub-populations within the TMI. However it is not yet practical for large co-

horts, and still has technical limitations that preclude full coverage of the transcriptome.  

In conclusion, we have developed a publicly available resource called the Lung Tumor Microenvironment 

Interactome that allows interrogation of potential interactions between cell subpopulations within human lung tu-

mors. We anticipate that this resource will complement scRNA-seq analyses, and facilitate future studies of lung 
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cancer biology that will allow identification of novel drug targets for improving treatment outcomes for this devas-

tating disease. 

 

 

MATERIALS AND METHODS 

All patient samples in this study were collected with informed consent for research use, and approved by Stanford 

Institutional Review Board in accordance with the Declaration of Helsinki. Freshly resected surgical tumor sam-

ples from patients with NSCLC were dissociated and sorted as described (20) using A700 anti-human CD45 clone 

HI30 (pan-leukocyte cell marker), PE anti-human CD31 clone XWM59 (endothelial cell marker), APC anti-hu-

man EpCAM clone X9C4 (epithelial cell marker), and PE-Cy7 anti-human CD10 clone XHI10a (fibroblast 

marker). All antibodies were obtained from BioLegend (San Diego, CA). Library preparation and sequencing 

were performed as described previously. 

 

Cell lines and reagents 

The human lung cancer cell lines were obtained from American Type Culture Collection. All cell lines were 

cultured in RPMI-1640, supplemented with 10% FBS and 100 mg/L penicillin/streptomycin, and maintained at 37C 

with 5% CO2. 

 

Effect of gremlin-1 in lung adenocarcinoma cells.  

Recombinant Grem-1 protein (500ng/ml) was added to lung adenocarcinoma cell lines (HCC78, SW1573) 

with low intrinsic GREM1 expression in 2D or 3D culture. The clones were stained with crystal violet and enumer-

ated at 10-14 days after seeding the cells. Effect of Grem-1 on lung adenocarcinoma cell migration and invasion 

were evaluated using in vitro trans-well migration assays. Recombinant Grem-1 protein (500ng/ml) was added to 

lung HCC78 and SW1573 cell lines in 3D culture.  Numbers of spheres were counted 8-10 days after seeding the 

cells on matrigel.  
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si-RNA knockdown of GREM1, viability and clonogenic assays 

siRNA (30M) targeted against Grem-1 (siGrem-1) was used to decrease GREM1 mRNA expression in lung 

adenocarcinoma cell lines with high GREM1 expression (H1755 and H1792). Viability of si-Grem-1 transfected 

cells was examined using the CellTiter 96 Non-Radioactive Cell Proliferation Assay (MTS), according to the man-

ufacturer’s protocol (Promega BioSciences). For clonogenic assays (2D), identical number of cells with or without 

treatment were reseeded at low density in 6-well plates in triplicate and incubated at 37C under 5%CO2. After 10 

to 12 days, plates were washed, fixed in 50% methanol, and stained with 0.1% crystal violet and then the number 

of colonies was counted. Evaluation of colony formation was also conducted in 3D cell culture using matrigel 

(Corning) and cell culture inserts for 24-well plates (Corning). After 10 to 12 days, the number of spheres were 

enumerated under a light microscope. 

 

In vitro migration and invasion assays 

Effect of Grem-1 in the invasion of cells were assayed using the BD BioCoat Matrigel Invasion Chambers 

(BD Bioscience). Each well of a 24-well plate contained an insert with an 8-mm pore size PET (polyethylene ter-

ephthalate) membrane. Inserts coated with a thin layer of Matrigel basement membrane matrix were used to measure 

the ability of the cells to invade through the reconstituted basement membrane. 1X105 cells were seeded inside the 

insert with medium containing 1% serum. High serum (10%) medium was then added to the bottom chamber of 24-

well plates to serve as a chemoattractant. After 24 hours, the membranes were washed, stained, then separated with 

a sterile scalpel and mounted on a glass slide. The number of migrating cells were counted under a light microscope. 

 

Western blot analysis 

Total protein extracts were harvested from cell lines and prepared for immunoblotting. Membranes were 

probed with rabbit monoclonal antibodies (Cell Signaling Technology) including anti-Phospho-

Smad1(Ser463/465)/Smad5 (Ser Ser463/465)/Smad9 (Ser465/467) (D5B10), anti-c-Myc (D84C12) and anti–β-ac-

tin (D6A8),  followed by secondary antibodies conjugated to horseradish peroxidase. β-actin protein levels were 
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used as loading controls. Western blots were quantified with the Adobe Photoshop Pixel Quantification Plug-In 

(Richard Rosenman Advertising & Design). 

 

Quantitative PCR 

qRT-PCR analysis was utilized to analyze expression changes of gremlin-1, c-myc, p21 and GAPDH. Total RNA 

was isolated from cells using the Paris Kit (Ambion). One microgram of total RNA was reverse transcribed The 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) as specified by the manufacturer. qRT-PCR 

was done using SYBRGreen PCR Master Mix (Applied Biosystems) and an ABI PRISM 7900 Sequence Detection 

System (Applied Bio-systems). Primers for PCR amplifications (Supplementary Table S1) were designed using 

Primer 3 Input (version 0.4.0). Relative mRNA levels were calculated using the 2 ΔΔ Ct method. 

 

Gene Primers 

GAPDH GAPDH-hFw 5’- GAAGGCTGGGGCTCATTT -3’ 

 GAPDH-hRv 5’- GGAGGCATTGCTGATGATCT -3’ 

Gremlin-1 GREM-hFw 5’- ACTCTCGGTCCCGCTGAC -3’ 

 GREM-hRv 5’- GCTGTGCGGCTCATACTGTC -3’ 

p21 p21-hFw 5’- CAGGCGCCATGTCAGAAC -3’ 

 p21-hRv 5’- GCTCAGCTGCTCGCTGTC -3’ 

c-Myc c-Myc -hFw 5’- TACAACACCCGAGCAAGGAC -3’ 

 c-Myc -hRv 5’- GAGGCTGCTGGTTTTCCACT -3’ 

 

Tissue Microarray staining and analysis 

The tissue microarray (TMA) was cut into 4µm thick sections, deparaffinized and hydrated. For the Ki-67 

staining, the TMA slide was subjected to Epitope Retrieval Solution 2 (ER2, Leica) antigen retrieval and stained 

with a prediluted anti-Ki-67 antibody (Mouse, Clone MIB-1, Dako #M7240) using an automated immunostainer. 
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For the MCT (mast cell tryptase; corresponding to TPSAB1 gene) staining, the TMA slide was subjected to Cell 

Conditioning 1 (CC1, Ventana) antigen retrieval and stained with a prediluted anti-MCT antibody (Mouse, Clone 

G3, Millipore #MAB1222) using an automated immunostainer. Mast cell counts were assigned to pre-defined cat-

egories by pathologists as follows: “none” when 0 mast cells, “low” when 1-9 mast cells, “medium” when 10-30 

mast cells, and “high” when greater than 31 mast cells were present in each entire 0.6 mm core. 

 

Computational Analysis 

Briefly, paired-end reads were aligned to the human genome (GRCh38) using STAR version 2.5.0 (47), with Gen-

code v23 transcriptome annotation (48) using a 2-pass approach. Alignment files were de-duplicated, and further 

processed using the Genome Analysis Toolkit (GATK). Expression levels were also quantified using Salmon v0.4.2 

(49). Individual Salmon runs were integrated into a single expression matrix using the tximport package in R, using 

TPM (transcripts per million) to summarize to the gene level (50). Despite the use of the Nugen kit for eliminating 

ribosomal rRNA, in common with previous studies (51), we found that a large and variable proportion of reads 

derived from mitochondrial rRNA, specifically MT-RNR1 (Mitochondrially Encoded 12S RNA) and MT-RNR2 

(Mitochondrially Encoded 16S RNA). Accordingly, we renormalized the data matrix by removing these transcripts 

and rescaling each sample to have TPM sum to 106. This preserved the relative ranking within each sample but 

rescales between samples, eliminating the distorting effect of the two mitochondrial rRNAs without changing the 

relative ranking on genes in TPM space. For subsequent analysis, we eliminated genes that had mean TPM<1 in all 

sample subtypes (Bulk, fibroblast, endothelial, immune, malignant) in all histologies (adenocarcinoma, SCC, or 

“other”). For clustering, visualization and subsequent analyses we used the moderated log of TPM i.e. log2(1+TPM). 

 We observed that there were significant batch effects between sequencing lanes based on Salmon quantifi-

cation of RNA levels, with the majority of transcripts being significantly associated with sequencing lane. We 

applied batch correction at the level of flowcell identity using ComBat (52), with histology/sub-population as a 

model matrix, to avoid eradicating biologically meaningful signals. After this step, the lane-level batch effect was 

largely eliminated. RNA-seq data are available in the Gene Expression Omnibus under accession number 
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GSE111907. The lung-TMI website interface (http://lungtmi.stanford.edu) was built using R/Shiny. In order to 

assess the spatial distribution of GREM1 positive cells we immuno-stained and digitally imaged four tissue samples 

corresponding to very low, low, medium or high GREM1 expression. We developed an automated image processing 

pipeline using the Pillow 2.7.0 fork of the Python Imaging Library to detect nuclei and classify GREM1 positive 

vs. negative. This pipeline involved: 

1. Non-negative Matrix Factorization (using the NMF function from scikit-learn) to separate the GREM1 

and hematoxylin channels.  

2. Applying a Laplacian filter with radius 6 to the hematoxylin channel followed by non-maximum sup-

pression to detect nuclei centers.  

3. Applying a Gaussian filter with radius 6 to the GREM1 channel and evaluating at the nuclei centers, 

followed by thresholding at 0.1 to detect positive vs. negative GREM1 expression.  

 

Verification of sample identities 

In order to verify that there were no sample swaps during preparation or sequencing, we performed pairwise 

comparison of all BAM files using bam-matcher (21). This tool uses a set of known common SNPs and computes 

the overlap between genotypes of samples. We used the Freebayes genotyping option, a depth threshold of 10 for 

considering a position, and the largest available set of common SNPs (n=7550). 

 

Secreted and surface factors 

 We compiled lists of genes encoding potential secreted and surface factors from several sources. For se-

creted factors we included: known chemokines and cytokines obtained by searching Entrez gene; genes whose 

SwissPROT function or localization included “secreted” as a keyword; and an additional list of WNT- and Sonic 

Hedgehog genes that we noted were not included among the previous groups. For surface factor genes, we took the 

computationally inferred list previously described as the “Surfaceome” (53). We also incorporated information on 

ligand-receptor pairs defined by the FANTOM5 consortium. 
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FIGURE CAPTIONS 

Figure 1. (a) Schema for dissociation, flow-sorting, and RNA-seq profiling. (b) Multidimensional scaling analysis 

of transcriptomes of cell types sorted from surgically resected primary human NSCLC tumors. Axis units are arbi-

trary. Cell types are depicted by colors as in 1a. (c) Unbiased hierarchical clustering of sorted samples. (d) Top 25 

most differentially expressed genes between malignant cells from adenocarcinoma and SCC. (e) Comparison of 

bulk vs reconstituted transcriptomic profiles. Shown are average values across all samples for each gene measured 

by RNA-seq. Panel below shows functional enrichment of genes higher in bulk for tissues that were not sorted for 

profiling. (f) Average percentage difference in immune cell types deconvolved in bulk vs sorted CD45+ populations 

showing enrichment of activated mast cell profiles by sorting, and conversely loss of plasma cells. (g) CIBERSORT 

deconvolution of immune populations in adenocarcinoma (pink) and SCC (light blue) identifies similarities and 

differences immune cell types that are relatively depleted (below diagonal) or enriched (above diagonal) by disso-

ciation and sorting. MC+ = activated mast cells; PC = plasma cells; M2 = M2-polarized macrophages; MemB = 

memory B-cells; CD8 = CD8 T-cells; Eos = Eosinophils. 

Figure 2. (a) The Lung Tumor Microenvironment Interactome (LTMI) integrates data generated in this study, the 

FANTOM5 resource of ligand-receptor pairs, and PRECOG for prognostic associations of genes in bulk tumor 

samples. (b) Potential complexity of inter-cell-type signaling via secreted factors. Ligands or receptors were defined 

as significantly expressed in a cell type if they had TPM>10, as in the FANTOM5 study. (c, d) Potential cross-talk 
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between cell types in adenocarcinoma (c) and squamous cell carcinoma (d). Shown are the number of ligand-recep-

tor pairs where each is a uniquely differentially expressed gene (uDEG) in the indicated cell-type. Arrows X->Y 

indicate that the ligand is a uDEG in cell type X, while the corresponding receptor is a uDEG in cell type Y. (e) 

Expression patterns of ligands and receptors pair that are highly expressed (TPM>10) in single cell types (corre-

sponding to the 1-1 entries for adenocarcinoma and SCC in panel (b). Pink indicates ligand whereas blue indicates 

receptor. (f) Expanded view of the three groups shown in panel (e). (g) ANGPT1 and ANGPT2 compete antago-

nistically for receptor binding and have opposite prognostic associations in NSCLC. They are expressed on fibro-

blasts and endothelial cells respectively, with expression of their known receptors being predominantly in endothe-

lial cells.  

Figure 3. (a) GREM1 (encoding the secreted factor Gremlin-1) is highly expressed on fibroblasts in adenocarci-

noma and SCC. Its receptor KDR is highly expressed in endothelial cells of both adenocarcinoma and SCC, and 

also in malignant cells from adenocarcinoma but not SCC. (b) Expression of GREM1 in fibroblasts is positively 

correlated with expression of proliferation and invasiveness related genes in malignant cells in adenocarcinoma (all 

adjusted p-values <0.05), but not in SCC. (c) High levels of fibroblasts inferred in adenocarcinoma from TCGA are 

associated with less favorable overall survival. (d,e,f) Treatment of low GREM1-expressing adenocarcinoma cell 

lines HCC78 and SW1573 with recombinant Gremlin-1 protein resulted in increased number of clones (red), sphere 

formation in 3-D culture (yellow), and invasion as evaluated by in vitro trans-well migration assays (magenta). (g) 

si-RNA knockdown resulted in decreased GREM1 expression in both H1755 and H1792 adenocarcinoma cell lines, 

which normally express it highly. (h) Knockdown of GREM1 expression reduced survival in both cell lines that 

highly express it. (i) Representative stain for GREM1 RNA (ref) shows expression confined to fibroblasts, that 

spatially colocate preferentially with leading edge of malignant cell nests. Malignant cells are highlighted in green. 

Black bars show closest malignant cell to each GREM1+ fibroblast. 

Figure 4. (a) TPSAB1 (encoding Tryptase a/b 1) is highly expressed in immune cells in both adenocarcinoma and 

SCC. (b,c) TPSAB1 expression in immune cells was negatively associated with proliferation and metastasis-related 

genes in adenocarcinoma (b); while in SCC there was a negative association with invasiveness and angiogenesis 
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but a positive association with proliferation. (d) Representative stains for cellular proliferation marker KI67, and 

MCT in samples that had high (top) and low (bottom) expression of TPSAB1. Shown are 20X magnification image; 

see Supplementary Figures 8 and 9 for 40X and 60X. (e) Primary adenocarcinomas with higher numbers of infil-

trating mast cells had a lower proportion of KI67-positive (proliferating) malignant cells (p=0.003; F-test). (f, g) 

High numbers of mast cells in both primary adenocarcinomas (f) and SCC (g), assessed by tissue microarray stain-

ing for mast cell tryptase (MCT), were associated with better overall survival. Mast cell counts were assigned to 

pre-defined “none”, “low”, “medium”, and “high” categories by pathologist.  
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Body System Name -log10(p)
Cardiovascular System Coronary artery 50.3
Cardiovascular System Heart 30.0
Endocrine System Adipose tissue subcutaneous 33.9
Nervous System Superior cervical ganglion 30.7
Urogenital System Placenta 29.9
Respiratory System Lung 27.1
Immune System Lymph nodes 27.0
Musculoskeletal System Skeletal muscle psoas 22.8

Cell type
Mast cells activated -10.38
T cells CD8 -3.24
Neutrophils -2.36
T cells CD4 memory resting -1.41
T cells follicular helper -1.41
NK cells activated -1.30
Monocytes -1.24
Eosinophils -0.60
T cells CD4 memory activated -0.55
B cells memory -0.22
T cells regulatory (Tregs) -0.08
Dendritic cells resting 0.12
NK cells resting 0.28
Mast cells resting 0.46
B cells naive 0.76
Macrophages M1 1.00
Dendritic cells activated 1.15
T cells CD4 naive 1.21
Macrophages M0 1.26
T cells gamma delta 1.63
Macrophages M2 6.00
Plasma cells 8.93
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ADENO ρ=0.58, p=0.004
SCC ρ=0.63, p=0.002
Combined ρ=0.61, p<0.001
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uDEGs (uniquely highly 
expressed in one cell type)

FANTOM 5 receptor-
ligand pairings

PRECOG genes that are 
prognostic in bulk tumors

Prognostic factors F secreted by 
cell type X whose receptor is 

expression in cell type Y
Genes in cell type Y correlated 

with expression of F in cell type X

Potential cross-talk between 
X and Y mediated by F and its 

receptor

Processes/pathways 
modulated in cell type Y by 

cell type X

1 2 3 4
1 92 62 56 97
2 46 47 38 46
3 46 48 45 69
4 129 83 64 105

1 81 61 79 55
2 62 38 49 42
3 51 49 67 39
4 118 68 73 62
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FIGURE 3  

HCC78 SW1573
0.0

0.5

1.0

1.5

2.0

2.5

C
ha

ng
e 

re
la

tiv
e 

to
 c

on
tro

l

Control

Clones

Spheres

HCC78 SW1573
0.0

0.5

1.0

1.5

2.0

2.5

C
ha

ng
e 

re
la

tiv
e 

to
 c

on
tro

l

Control

Invasion

H1755 H1792
0.0

0.5

1.0

1.5

G
R

E
M

1 
ex

pr
es

si
on

 re
la

tiv
e 

to
 c

on
tro

l

Control

GREM1 siRNA

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Days

P
ro

po
rti

on
 s

ur
vi

vi
ng

H1755

H1792

H1755

H1792

0

2

4

6

8

10
GREM1

0

2

4

6

8

Fib
End Im

m Mal
A S A S A S A S A S A S A S A S

! "#$%!#&&!#'% ! !#&&"#"" !#'%
!

!?@

&

&?@

"

"?@

A-8BC-, A,-8DE :8F<E6-8 >GHDCDE

5-
,9

+6
8I

C
D

<E
D

+-
F

D
C

+8
-C

;<
,6

JD
9+

I-
8B

C
-,

())*% +,!-*.

! $#!- ! $#/'
!

!?@

&

! $#-* $#.'

!?#

!?$

!?%

&

4<K+! 4<K+& 4<K+L 4<K+$ 4<K+%

A-8BC-, ;(M= A-8BC-, A,-8DE >GHDCDE

!

!?@

&

(!*--
(!*&"

p=0.0004

0

0.25

0.50

0.75

1.0

0 50 100 150
!,&'53

O
ve

ra
ll 

su
rv

iv
al

Fibroblast proportion
(Adenocarcinoma only)

Low High

473 (100) 68 (14) 15 (3) 6 (1)

58 (100) 4 (7) 1 (2) 0 (0)

0 50 100 150
MonthsFi

br
ob

la
st

  p
ro

po
rti

on

Number at risk: n (%)

A)

D) E) F)

G)

H)

I)

B)

C)

KDR

lo
g2

(T
P

M
)

Enrichment of gene sets in

ADENO SCC

Low

High

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/637306doi: bioRxiv preprint 

https://doi.org/10.1101/637306
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  

A) B)

C) D)

E) F) G)

Adenocarcinoma

SCC

FIGURE 4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/637306doi: bioRxiv preprint 

https://doi.org/10.1101/637306
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

REFERENCES 

 

1. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J Clin 69, 7-34 (2019). 
2. S. Quezada, K. Peggs, Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response 

against cancer. British journal of cancer 108, 1560 (2013). 
3. J. Folkman, Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg 42, 1-11 

(2007). 
4. M. Bockhorn, R. K. Jain, L. L. Munn, Active versus passive mechanisms in metastasis: do cancer cells 

crawl into vessels, or are they pushed? Lancet Oncol 8, 444-448 (2007). 
5. P. Carmeliet, R. K. Jain, Angiogenesis in cancer and other diseases. Nature 407, 249-257 (2000). 
6. N. Ferrara, R. S. Kerbel, Angiogenesis as a therapeutic target. Nature 438, 967-974 (2005). 
7. D. M. Noonan, A. De Lerma Barbaro, N. Vannini, L. Mortara, A. Albini, Inflammation, inflammatory 

cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 27, 31-40 (2008). 
8. P. Allavena, A. Sica, G. Solinas, C. Porta, A. Mantovani, The inflammatory micro-environment in tumor 

progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66, 1-9 (2008). 
9. F. Balkwill, Cancer and the chemokine network. Nat Rev Cancer 4, 540-550 (2004). 
10. T. Chanmee, P. Ontong, K. Konno, N. Itano, Tumor-associated macrophages as major players in the 

tumor microenvironment. Cancers 6, 1670-1690 (2014). 
11. K. Hiraoka et al., Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic 

factor in non-small-cell lung carcinoma. Br J Cancer 94, 275-280 (2006). 
12. K. Al-Shibli et al., The prognostic value of intraepithelial and stromal innate immune system cells in non-

small cell lung carcinoma. Histopathology 55, 301-312 (2009). 
13. I. Takanami, K. Takeuchi, M. Giga, The prognostic value of natural killer cell infiltration in resected 

pulmonary adenocarcinoma. J Thorac Cardiovasc Surg 121, 1058-1063 (2001). 
14. A. Orimo, R. A. Weinberg, Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 

5, 1597-1601 (2006). 
15. K. Matsumoto, T. Nakamura, Hepatocyte growth factor and the Met system as a mediator of tumor-

stromal interactions. Int J Cancer 119, 477-483 (2006). 
16. T. Silzle, G. J. Randolph, M. Kreutz, L. A. Kunz-Schughart, The fibroblast: sentinel cell and local 

immune modulator in tumor tissue. Int J Cancer 108, 173-180 (2004). 
17. K. S. Smalley, P. A. Brafford, M. Herlyn, Selective evolutionary pressure from the tissue 

microenvironment drives tumor progression. Semin Cancer Biol 15, 451-459 (2005). 
18. S. A. Mani et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 

133, 704-715 (2008). 
19. N. E. Navin, The first five years of single-cell cancer genomics and beyond. Genome research 25, 1499-

1507 (2015). 
20. A. J. Gentles et al., Integrating Tumor and Stromal Gene Expression Signatures With Clinical Indices for 

Survival Stratification of Early-Stage Non–Small Cell Lung Cancer. Journal of the National Cancer 
Institute 107, djv211 (2015). 

21. P. P. Wang, W. T. Parker, S. Branford, A. W. Schreiber, BAM-matcher: a tool for rapid NGS sample 
matching. Bioinformatics, btw239 (2016). 

22. A. M. Newman et al., Robust enumeration of cell subsets from tissue expression profiles. Nature methods 
12, 453-457 (2015). 

23. I. Kupershmidt et al., Ontology-based meta-analysis of global collections of high-throughput public data. 
5, e13066 (2010). 

24. A. J. Gentles et al., The prognostic landscape of genes and infiltrating immune cells across human 
cancers. Nature medicine 21, 938-945 (2015). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/637306doi: bioRxiv preprint 

https://doi.org/10.1101/637306
http://creativecommons.org/licenses/by-nc-nd/4.0/


25. J. A. Ramilowski et al., A draft network of ligand–receptor-mediated multicellular signalling in human. 
Nature communications 6,  (2015). 

26. J. B. Sneddon et al., Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-
associated stromal cells and can promote tumor cell proliferation. 103, 14842-14847 (2006). 

27. J. Barretina et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug 
sensitivity. Nature 483, 603-607 (2012). 

28. T. J. Lynch et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness 
of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 2129-2139 (2004). 

29. J. G. Paez et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. 
Science 304, 1497-1500 (2004). 

30. M. Soda et al., Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. 
Nature 448, 561-566 (2007). 

31. H. West, R. Lilenbaum, D. Harpole, A. Wozniak, L. Sequist, Molecular analysis-based treatment 
strategies for the management of non-small cell lung cancer. J Thorac Oncol 4, S1029-1039; quiz S1041-
1022 (2009). 

32. A. J. Gentles et al., A pluripotency signature predicts histologic transformation and influences survival in 
follicular lymphoma patients. Blood 114, 3158-3166 (2009). 

33. T. Palomero et al., NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional 
network promoting leukemic cell growth. Proc Natl Acad Sci U S A 103, 18261-18266 (2006). 

34. K. Basso et al., Integrated biochemical and computational approach identifies BCL6 direct target genes 
controlling multiple pathways in normal germinal center B cells. Blood 115, 975-984. 

35. K. M. Mani et al., A systems biology approach to prediction of oncogenes and molecular perturbation 
targets in B-cell lymphomas. Mol Syst Biol 4, 169 (2008). 

36. M. Saito et al., BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. 
Proc Natl Acad Sci U S A 106, 11294-11299 (2009). 

37. M. S. Carro et al., The transcriptional network for mesenchymal transformation of brain tumours. Nature 
463, 318-325. 

38. B. Mlecnik et al., Biomolecular Network Reconstruction Identifies T-Cell Homing Factors Associated 
With Survival in Colorectal Cancer. Gastroenterology,  (2009). 

39. A. Torkamani, N. J. Schork, Identification of rare cancer driver mutations by network reconstruction. 
Genome Res 19, 1570-1578 (2009). 

40. G. Finak et al., Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14, 518-527 
(2008). 

41. C. D. Hoang et al., Analysis of paired primary lung and lymph node tumor cells: a model of metastatic 
potential by multiple genetic programs. Cancer Detect Prev 29, 509-517 (2005). 

42. G. Lorusso, C. Ruegg, The tumor microenvironment and its contribution to tumor evolution toward 
metastasis. Histochem Cell Biol 130, 1091-1103 (2008). 

43. A. M. Santos, J. Jung, N. Aziz, J. L. Kissil, E. Pure, Targeting fibroblast activation protein inhibits tumor 
stromagenesis and growth in mice. J Clin Invest 119, 3613-3625 (2009). 

44. M. Nakao et al., Prognostic significance of carbonic anhydrase IX expression by cancer-associated 
fibroblasts in lung adenocarcinoma. Cancer 115, 2732-2743 (2009). 

45. M. Wysoczynski, M. Z. Ratajczak, Lung cancer secreted microvesicles: underappreciated modulators of 
microenvironment in expanding tumors. Int J Cancer 125, 1595-1603 (2009). 

46. F. della Rovere et al., Mast cells in invasive ductal breast cancer: different behavior in high and minimum 
hormone-receptive cancers. Anticancer Res 27, 2465-2471 (2007). 

47. A. Dobin et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013). 
48. J. Harrow et al., GENCODE: the reference human genome annotation for The ENCODE Project. Genome 

research 22, 1760-1774 (2012). 
49. R. Patro, G. Duggal, C. Kingsford, Accurate, fast, and model-aware transcript expression quantification 

with Salmon. bioRxiv 2015. Publisher Full Text. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/637306doi: bioRxiv preprint 

https://doi.org/10.1101/637306
http://creativecommons.org/licenses/by-nc-nd/4.0/


50. C. Soneson, M. Delorenzi, A comparison of methods for differential expression analysis of RNA-seq 
data. BMC bioinformatics 14, 1 (2013). 

51. X. Adiconis et al., Comparative analysis of RNA sequencing methods for degraded or low-input samples. 
Nature methods 10, 623-629 (2013). 

52. W. E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical 
Bayes methods. Biostatistics 8, 118-127 (2007). 

53. J. Da Cunha et al., Bioinformatics construction of the human cell surfaceome. Proceedings of the 
National Academy of Sciences 106, 16752-16757 (2009). 

 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/637306doi: bioRxiv preprint 

https://doi.org/10.1101/637306
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY TABLE LEGENDS AND SUPPLEMENTARY FIGURES 

 

Supplementary Table 1 

Histology of patient tumor samples, and populations processed for RNA-seq. Crosses indicate “not done”, usually 

due to low cell numbers, or poor RNA quality. Samples with double ticks were sequenced twice. 

 

Supplementary Table 2 

Clinical characteristics of the cohorts used in this study (gene expression and Tissue Microarray) 

 

Supplementary Table 3 

Differentially expressed genes between sorted malignant populations from adenocarcinoma and squamous cell 

carcinoma 

 

Supplementary Table 4 

CIBERSORT signature matrix derived from RNA-seq of sorted populations from adenocarcinoma and SCC. Sep-

arate signatures were used for malignant cells, pan-NSCLC for fibroblasts, endothelial cells, and immune cells. 

 

Supplementary Table 5 

CIBERSORT deconvolution outputs for U01 signature matrix versus sorted and bulk populations. P-values are for 

the overall deconvolution; see Newman et al for full discussion. 

 

Supplementary Table 6 

Differences between average gene expression across transcriptome in bulk vs. reconstructed profiles. Relevant to 

Figure 1e. 

 

Supplementary Table 7 
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Number of populations that highly express ligands and their receptors in adenocarcinoma and SCC. A cut-off of 

TPM>10 was used for comparison with the original FANTOM5 study. 

 

Supplementary Table 8 

PRECOG prognostic z-scores for genes that encode secreted or surface proteins in adenocarcinoma and SCC.  

 

Supplementary Table 9 

Number of uDEG ligands and receptors (Data underlying Figure 2c and 2d). Shown are the number of cases 

where a ligand (rows) is a uDEG in the indicated population and its cognate receptor is a uDEG in a population 

(column). Top panel: adenocarcinoma; bottom panel: SCC. 

 

Supplementary Table 10 

Gene Set Enrichment analysis applied to ranked gene lists representing correlation between expression levels in 

malignant sorted populations vs GREM1 expression in fibroblasts. The c2 (curated gene sets) and c5 (Gene On-

tology) gene sets were used from the Molecular Signatures Database. Selected enrichment results are shown in 

Figure 3b). 

 

Supplementary Table 11 

Expression of GREM1 in cell lines from the Cancer Cell Line Encyclopedia. The values shown are the log2 of 

Affymetrix signal intensity which has a range of 0 to 15. Two adenocarcinomas with low GREM1 (HCC78 and 

SW1573 SCC), and two with high GREM1 (H1755 and H1792) were selected for experimental validations based 

on availability. 

 

Supplementary Table 12 

Gene Set Enrichment analysis applied to ranked gene lists representing correlation between expression levels in 

malignant sorted populations vs TPSAB1 (mast cell tryptase) expression in the pan-immune population. The c2 

(curated gene sets) and c5 (Gene Ontology) gene sets were used from the Molecular Signatures Database. Se-

lected enrichment results are shown in Figures 4b,c). 
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Supplementary Table 13 

Gene Set Enrichment analysis applied to ranked gene lists representing correlation between expression levels in 

malignant sorted populations vs GREM1 expression in fibroblasts. The c2 (curated gene sets) and c5 (Gene On-

tology) gene sets were used from the Molecular Signatures Database. Selected enrichment results are shown in 

Figure 3b). 
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Supplementary Figure 1: Transcriptional output across feature types and tissues 

 

Summary of the number of protein coding genes and lincRNAs that are expressed at specific TPM thresholds in 1, 

2, 3, or 4 sorted populations. 
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Supplementary Figure 2 

 

Check of sample identities by comparing SNPs. All pairwise comparisons were done using Bammatch. Similarity 

was computed as the proportion of shared SNPs (upper right of figure). Bottom left panel shows sample similarity 

vs number of SNPs compared. Red are samples from the same tumor; yellow from different tumors. 
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Supplementary Figure 3 

 

Example of effects of batch correction on two representative samples; one with good initial concordance and one 

with poor concordance. The blue density plot represent all genes quantified; dots are outliers. 
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Supplementary Figure 4 – CIBERSORT signature matrix 

 

Depiction of CIBERSORT signature matrix used for inferring proportions of cell types in bulk tumors. Rows rep-

resent genes (n=652); see Supplementary Table 4 for the actual genes and their average expression in each cell 

type class. 
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Supplementary Figure 5 – CIBERSORT deconvolution of immune populations in bulk RNA-seq and PRE-

COG microarray samples. 

 

Comparison of immune proportions inferred in lung adenocarinoma and SCC by CIBERSORT from bulk RNA-

seq (this study) and from microarrays (PRECOG) 
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Supplementary Figure 6 

 

TPSAB1 expression is 30-fold higher in mast cells relative to other immune cell types in the LM22 signature ma-

trix from CIBERSORT. Bars show the Affymetrix MAS5 intensity levels, averaged across replicates for the indi-

cated cell types. 
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Supplementary Figure 7: Mast cell counts across histologies, and across stages within adenocarcinoma and 

SCC. 

 

Mast cell counts across NSCLC histologies (top) on TMA; and across stage for adenocarcinoma (bottom left) and 

SCC (bottom right). 
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Supplementary Figure 8: Mast cell tryptase and KI67 staining for a low-mast-cell infiltration adenocarci-

noma 
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Supplementary Figure 9: Mast cell tryptase and KI67 staining for a high-mast-cell infiltration adenocarci-

noma 
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Supplementary Figure 10: Kaplan-Meier analysis of Mast cell association with overall survival across 

stages of NSCLC. 
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