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Abstract 
CRISPR-Cas9 has become the preferred gene editing technology to obtain loss-of-function 

mutants in plants, and hence a valuable tool to study gene function. This is mainly due to the easy 

reprograming of Cas9 specificity using customizable small non-coding RNAs, and to the ability to 

target several independent genes simultaneously. Despite these advances, the identification of 

CRISPR-edited plants remains time and resource consuming. Here, based on the premise that 

one editing event in one locus is a good predictor of editing event/s in other locus/loci, we 

developed a CRISPR co-editing selection strategy that greatly facilitates the identification of 

CRISPR-mutagenized Arabidopsis plants. This strategy is based on targeting the gene/s of 

interest simultaneously with a proxy of CRISPR-Cas9-directed mutagenesis. The proxy is an 

endogenous gene whose loss-of-function mutation produces an easy-to-detect visible phenotype 

that is unrelated to the expected phenotype of the gene/s under study. We tested this strategy via 

assessing the frequency of co-editing of three functionally unrelated proxies. We found all three 

proxies predicted the occurrence of mutations in either or both of the other two proxies with 

efficiencies ranging from 40% to 100%, dramatically reducing the number of plants that need to 

be screened to identify CRISPR mutants. This selection strategy provides a framework to facilitate 

gene function studies of gene families as well as the function of single copy genes in polyploid 

plant species where the identification of multiplex mutants remains challenging. 
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Introduction 

The ability to precisely edit genes is revolutionizing our ability to study gene function. Due to its 

genetic tractability, assembled genome sequence and collections of mutants, the model plant 

Arabidopsis thaliana is the preferred plant species to uncover gene function. Arabidopsis is a 

diploid species with a genome size of ~135 Mb and ~29,000 genes that encode for ~37,000 

proteins. However, in spite of the three decades of effort by many research groups, less than 40% 

of the Arabidopsis genes have been experimentally linked to at least one phenotype (Li et al. 

2012; Akiyama et al. 2014; Provart et al. 2016). Forward genetic screens of chemically (i.e. EMS) 

or physically (i.e. g irradiation) mutagenized Arabidopsis have been very successful at linking 

genes to protein function and phenotypes (Koornneef and Meinke 2010). However, reverse 

genetic screens of T-DNA insertional lines or transposon mutagenized lines have shown more 

limited success, as most single gene mutants do not produce observable phenotypes (Lloyd and 

Meinke 2012). Although a diploid species, the Arabidopsis genome contains a large number of 

gene duplications (The Arabidopsis Genome Initiative et al. 2000) that often translate into 

completely or partially redundant gene functions (Vision et al. 2000; Bowers et al. 2003). 

Therefore, several months of crossing single-gene mutants and selecting for multiplex is often 

needed to define the function of the gene/s under study.  

Three gene targeting methods, Zinc Finger Nuclease (ZFN), Transcription Activator-Like Effector 

Nuclease (TALEN), and CRISPR-Cas9 have accelerated gene function discovery in the past few 

years. All three methods have been successfully used in Arabidopsis, and other plants, to 

generate loss-of-function mutations in specific genes (Miller et al. 2007, 2011; Christian et al. 

2010; Li et al. 2013). All three methods are based on directing the activity of a DNA endonuclease 

to a specific target sequence in the genome to generate a double strand break (DSB). This is 

followed by the repair of the DSB via Non-Homologous End-Joining (NHEJ) (Puchta 2005; Schiml 

and Puchta 2016). This error-prone repair pathway generates indels that shift the frame of the 

coding sequence, which will likely eliminate the function of the protein encoded. While ZFN and 

TALEN DNA-binding specificity is based on DNA-binding protein domains that need to be 

optimized for every gene of interest, the gene specificity of CRISPR-Cas9 is provided by an easily 

customizable small guide RNA (sgRNA). Each sgRNA has three important elements: 1) a 20 bp 

gene-specific CRISPR RNA (crRNA) that defines the target sequence; 2) a Protospacer Adjacent 

Motif (PAM) site, which consists of the sequence 5'-NGG-3' for the most commonly used 

Streptococcus pyogenes Cas9 enzyme ; 3) a constant trans-activating crRNA (tracrRNA) that 

mediates the formation of the sgRNA-Cas9 complex (Jinek et al. 2012; Karvelis et al. 2013). 

Hence, targeting a new gene with CRISPR-Cas9 only requires the identification of a 20nt gene-
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specific sequence 3-6 bp upstream of a PAM site, and the PCR-mediated or in vitro DNA 

synthesis of the crRNA-PAM-tracrRNA sequence.  

The expression of CRISPR-Cas9 in Arabidopsis and other plant species necessitates the 

insertion of foreign DNA encoding Cas9 and sgRNAs into the plant’s genome. For this, both Cas9 

and sgRNAs are cloned in a binary plasmid and transgenic plants are obtained via Agrobacterium 

tumefaciens-mediated transformation of immature flowers (Clough and Bent 1998). In most 

vectors, Cas9 expression is typically controlled by a ubiquitous constitutive promoter such as 

UBQ10 or CaMV-35S. Agrobacterium inserts the T-DNA randomly in the genome of a few cells, 

most of which are somatic cells. If some germline cells are transformed with the T-DNA, the 

transgene will pass to the next generation (T1 generation) (Hood et al., 1998). From the few plants 

in the progenies that receive the T-DNA, a yet smaller subset would harbor the T-DNA in a region 

of the genome that allows Cas9 expression. The Cas9-expressing T1 plants, will edit the target 

gene/s throughout their lifetime in somatic cells  as well as in some germline cells allowing 

CRISPR-editing to pass to the next generation (T2 progenies) (Feng et al. 2014). Finally, a small 

proportion of these T2 progenies will be homozygous for the mutation of interest. Usually, as the 

gene/s under study does not produce a known phenotype, the identification of the CRISPR-

mutagenized T2 plants requires the non-biased DNA genotyping of a large number of plants (Kim 

et al. 2014)(Thomas et al. 2014)(Peng et al. 2018). A few alternatives have been pursued to 

alleviate the cost and to reduce the time invested in the identification of CRISPR-mutagenized 

plants. One such strategy is the use of Cas9 fusions to fluorescent proteins (i.e. GFP, mCherry, 

etc.) or protein tags (i.e. HA, FLAG, etc) to identify T1 plants that express CRISPR-Cas9 

(Osakabe et al. 2016). These strategies inform about Cas9 expression in T1 plants but do not 

alleviate the burden of screening for CRISPR-edited plants, and typically requires imaging T1 

plants under UV light or detecting Cas9 protein fusions via western blot. Therefore, the use of 

proxies of CRISPR-Cas9 activity instead of Cas9 expression, could significantly reduce the time 

and effort invested in identifying CRISPR-mutagenized plants.  

Recent studies reported that CRISPR-Cas9 can simultaneously edit multiple loci (co-editing) at 

high frequency in the somatic tissues of T1 Arabidopsis and rice plants (Ma et al. 2015; Yan et al. 

2016; Zhang et al. 2016; Minkenberg et al. 2017). Hence, we hypothesized that we could take 

advantage of this high co-targeting frequency to aid in the selection of CRISPR-mutagenized 

plants. The rationale follows: if we targeted a gene that produces a visible and easy to detect 

phenotype, we could use it as a proxy to identify T2 plants where other loci of interest were 

simultaneously edited. To test this hypothesis, we chose three genes with independent functions 

and located in different chromosomes as potential proxies of CRISPR-Cas9 activity, namely 
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GLABRA-1 (GL1), Jasmonic Acid Resistant-1 (JAR1) and Ethylene Insensitive-2 (EIN2). In 

Arabidopsis, the formation of leaf trichomes is contingent to the function of GL1. Loss-of-function 

mutants of GL1 do not produce trichomes, a phenotype that is easily observable as these plants 

have smooth leaves (Herman and Marks 1989; Marks and Feldmann 1989). Loss-of-function 

mutations in JAR1 and EIN2 produce insensitivity to jasmonic acid (JA) and ethylene (ET), 

respectively. The responses to both JA and ET can be monitored in seedlings exposed to JA or 

ET in tissue culture plates (Alonso et al. 1999; Staswick et al. 2002). In plants harboring a wild 

type allele of JAR1, exposure to JA causes root growth inhibition. In seedling harboring a wild 

type allele of EIN2, exposure to ET causes hypocotyls to bend downwards. We used these three 

genes to test whether they are effective proxies of CRISPR-Cas9 activity, and could therefore 

facilitate the isolation of CRISPR-mutagenized T2 plants. Our data show that co-editing of GL1, 

EIN2 or JAR1 predicts co-editing of the gene of interest with frequencies ranging from 40-100%, 

greatly reducing the time and resources needed to identify CRISPR-Cas9 multiplex mutants for 

the genes of interest. Importantly, the selection strategy laid out in this study could accelerate the 

process and reduce the cost of identifying multiplex mutants in plant species with large and 

polyploid genomes. 

 

Material and Methods 
Design and synthesis of sgRNA expression cassettes.  

The sgRNAs were designed with an online web tool at the Zhang lab (crispr.mit.edu). The 

occurrence of the crRNA sequences retrieved by the software was verified via PCR amplification 

on genomic DNA from wild-type (Col-0) plants and Sanger sequencing of the PCR amplicon. 

Each candidate crRNA sequence was evaluated based on the calculated specificity score and 

the number of off-target sites. The crRNA target site was inserted into an in-silico cloning 

construct template between the AtU6P promoter sequence and the tracrRNA sequence. The 

AtU6 promoter, crRNA, tracrRNA, and a poly-T tail together constitute a complete sgRNA 

expression cassette (Peterson et al., 2016). Each of the three individual cassettes was assembled 

into a stackable array. A 32-nucleotides sequence upstream of the first AtU6 promoter and a 17-

nucleotide sequence downstream of the last poly-T tail of the array was included to facilitate future 

cloning (Figure S1). The final DNA sequence was synthesized through GenscriptTM Custom Gene 

Synthesis services (Cat#SC1010).  

 

T-DNA construct and bacteria preparation 
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The DNA fragment of the synthetic sgRNA expression cassettes was PCR amplified with high 

fidelity Taq DNA polymerase (NEB Phusion® Cat#M0530S) using the forward and reverse primers 

5’-aggctcccgggtgcgtcgacggtctcaggtcagagcttg-3’ and 5’-

gaaagctgggtgattcaagcttggtctcatcagggatccaaaag-3’ respectively. The PCR amplified DNA 

fragment was assembled in In-Fusion reaction (Takara® In-Fusion® HD Eco-DryTM Cloning Plus 

Cat#638915) with a pDONR vector linearized with SalI (NEB, SalI-HF® Cat#R3138S) and HindIII 

(NEB, HindIII-HF® Cat#R3104S) to form the donor vector (pDONR-CE). The pDONR-CE vector 

contains the Gateway (GW) cloning sites AttL1 and AttL2. The sgRNA expression cassettes 

stacking was inserted between the two GW cloning sites after the In-Fusion assembling. Further 

through GW LR cloning reaction (Thermo Fisher Scientific ®, GatewayTM LR ClonaseTM Enzyme 

mix Cat#11791019), the entire sgRNA expression cassettes fragment was transferred into a 

binary vector (pCUT3) which also encodes Cas9 enzyme conjugated with nuclear localization 

signal (NLS) and an epitope tag (HA) under the control of a UBQ10 promoter.  

 

Plant transformation, selection and handling 
All plants used in this study were Columbia-0 (Col-0) background. All transgenic plants were 

transformed with the pCUT3-CE binary vector via standard Agrobacterium-mediated floral dipping 

as previously described. To select transgenic seeds, T1 seeds were sown on sterile Petri dishes 

containing Murashige and Skoog (MS) medium 0.7% (w/v) phyto-agar (Plant Media 

Cat#40100072-2) and 50 µg/mL Kanamycin (Fisher Scientific® CAS#25389-94-0). Seeds were 

surface sterilized with 10% (v/v) bleach and 0.1% Tween 20 (v/v). After 14 days of growth on 

sterile agar plate, resistant seedlings were scored and transferred to individual pots containing 

soil and were grown at 24C/16h light/100uM/cm2/sec-1 for further analysis and seed propagation. 

Green leaf tissue was collected 4 weeks later from each independent transgenic plant and stored 

at -80C for western blot analysis.  T2 seeds were collected from individual T1 plants for further 

analysis. To visually select the glabrous plants, T2 seeds were stratified in 0.1% phyto-agar at 

4ºC for 3 days. Then, each individual seed was sown on commercial soil (50% Fafard 50% 

MetroMIX 360, SunGro® Horticulture) 1 cm apart from each other to facilitate visual inspection. 

After 3 weeks and 16hr light photoperiod at 24C, glabrous plants were visually identified by the 

lack of leaf trichomes. The visual identification of jar1 and ein2 homozygous mutants was carried 

out in sterile petri dishes with MS medium supplemented with ACC (Millipore Sigma®, SKU#A3903) 

or Methyl-Jasmonate (Millipore Sigma® SKU#W341002) in tissue culture plates as previous 
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described (Alonso et al. 1999; Staswick et al. 2002). Visually identified T2 seedlings were 

transferred to individual soil pots for further analysis and seeds propagation.  

 

Protein and Western Blot assay 
Cas9 expression was assessed via Western blot in leaf samples. Total protein samples were 

extracted from 4-weeks old green leaf tissue via grinding in liquid nitrogen with mortar and pestle 

and resuspended in protein loading buffer (Tris-HCl, pH:8.8) and heat to 100°C for 5min. Extracts 

were centrifuged at 17,000x g for 5min at 25°C and the supernatant was used for gel blot analysis. 

Protein were subject to electrophoresis in poly-acrylamide (0.375M Tris-HCl pH=8.8, 8% 

Acrylamide, 0.05% APS, 0.1% SDS) matrix and transferred to PVDF membranes (Thermo 

ScientificTM, Cat#88520) with 70V under 4ºC for 90min. After blocking in milk solution, the 

membranes were incubated with monoclonal rabbit anti-HA antibody (Cell Signaling 

TechnologyTM, mAb#3724, 1:4000 dilution) and monoclonal mouse anti-β-Actin antibody 

(Millipore SigmaTM, Cat#MAB1501). Secondary HRP conjugated anti-rabbit IgG antibody 

(Jackson ImmunoResearch Laboratories, Inc. Code#111-0350144) and fluorescent conjugated 

anti-mouse antibody (LiCorTM IRDye® 800CW Goat anti-rabbit IgG P/N#925-32210) were used 

for probing the primary antibody and blot visualization. ECL (Bio-Rad®, Cat#1705060) 

chemiluminescence and fluorescence were detected with Bio-Rad® ChemiDoc MP® system and 

image result was analyzed by Bio-Rad Image LabTM software. 

 
Gene sequencing and allele detection 
To detect CRISPR-Cas9 introduced mutation, gene specific primers annealing at ~300bp 

upstream and ~300bp downstream the target site were used for PCR amplification using genomic 

DNA from visually selected plants and Phusion® High-Fidelity DNA Polymerase (New England 

BioLab® Inc., Phusion®, Cat#M0530S) reaction. After the PCR, excess non-incorporated primers 

were removed with a single strand DNAase exonuclease (Fisher Scientific® ExoSap-ITTM Cat#78-

201-1ML), individual forward and reverse primers were added to separate Sanger sequencing 

reactions. Sanger sequencing was performed at Eurofin Genomic (Eurofins, Louisville, KY). The 

sequencing results were analyzed using BLAST web tool at NCBI website, aligned against wild-

type (Col-0) genomic sequence. Fluorescence chromatograms were analyzed using the online 

tool ICE (Synthego®, ICE® Analysis; https://ice.synthego.com) to infer allelic composition of each 

T2 plant as described previously (Hsiau et al. 2019). 

 

Analysis of sgRNA nucleotide composition and secondary structure 
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The calculation of G/C content of all sgRNAs that were used in the experiment were done by a 

Python script. The secondary structure was predicted by input the sgRNA FASTA sequence into 

the Mfold web server (http://unafold.rna.albany.edu) as previously described (Zuker 2003).  

 
Data and materials availability  
E. coli and Agrobacterium tumefaciens strains harboring CRISPR-Cas9 plasmids, as well as 

transgenic Arabidopsis plants are available upon request. The authors assure that all data 

necessary for confirming the conclusions are present within the article, figures, and tables.  

Supplementary figures available at figshare: TBD  

Figure S1 shows the DNA sequence containing the three sgRNA and regulatory sequences to 

target JAR1, GL1 and EIN2. Figure S2 shows the general scheme used for the transformation of 

T0 plants, the selection of T1, and the identification of T2 mutants.  Figure S3 shows western blot 

and quantification of Cas9 in four independent T1 plants. Figure S4 shows the screening of T2 

plants based of the proxy phenotypes. Figure S5 shows the secondary structures predicted for 

each of the three sgRNAs used in this study.  

 

Results 
 
Design of an effective CRISPR/Cas9 co-editing proxy vector 
A proxy-based CRISPR-Cas9 co-editing vector is composed of: 1) Cas9 nuclease coding 

sequence, 2) validated sgRNA against a proxy gene driven by the RNA polymerase-II promoter, 

3) sgRNAs against all genes of interest, and 4) plasmid backbone encoding all elements required 

for Agrobacterium mediated transformation and selection of transformants (REF). To assemble 

each component of the multiplex gene targeting CRISPR-Cas9 system we used the all-in-one 

vector pCUT3-CE (Figure 1A)(Peterson et al. 2016). The resulting multiplex editing vector 

contains: 1) Cas9-HA fusion downstream of the UBQ10 promoter and upstream of NOS 

terminator; 2) three sgRNA expression cassettes within which each sgRNA is flanked by a U6 

promoter (AtU6) and a transcriptional termination signal (“TTTT”) to provide similar expression 

levels across all three sgRNA. In addition, the RNA polymerase-II transcription start site “G” was 

added 23 nucleotides downstream of the AtU6 promoter TATA box to efficiently initiate the 

transcription of each sgRNA (Figure S1); 3) all regulatory elements in the pCUT3 binary vector 

that allow for E. coli and Agrobacterium replication and provide Kanamycin resistance for the 

selection of transgenic T1 plants. To enable visual identification of CRISPR-mutagenized T2 

plants we chose to mutagenize GL1 (At3g27920), JAR1 (At2g46370), and EIN2 (At5g03280). 
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Each of these loci reside in a different chromosome, their functions are unrelated to each other, 

and their loss-of-function mutants can be visually identified. The 20nt crRNA sequences were 

designed to target either the 1st or 2nd exon of each gene to increase the likelihood of yielding a 

null allele as a consequence of NHEJ repair generating a frame-shift or a premature stop codon 

for all potential isoforms of each gene (Figure 1B-D).  

 
Heritable CRISPR-Cas9-mutageniced proxies are easily detectable in T2 progenies 
After Agrobacterium-mediated transformation of immature flowers of Col-0 wild type plants, we 

selected for transformants on agarose plates using Kanamycin 50 µg/mL as the selective agent. 

From five independent transformation experiments, we recovered a total of twenty-six T1 

transgenic plants. After self-fertilization, we randomly chose the progeny of four T1 lines (#1, #3, 

#4 and # 25), obtained from four independent transformation experiments, for proxy-based visual 

screening of CRISPR-edited T2 plants (Figure S2). For each of the four independent T1 lines, we 

grew ~1000 T2 seeds to screen for loss of function of proxies (jar1, gl1 and ein2 plants). Among 

T2 plants visually inspected for lack of trichomes in the progeny of T1 lines #1, #3 and #25, gl1 

mutants appeared with frequencies ranging from ~2 to 6.3 % (Figure 2A), suggesting a high-

efficiency of editing. For jar1 or ein2 selection, we sown ~1,000 T2 seeds on Murashige and 

Skoog phyto-agar plates containing either the JA-precursor Methyl Jasmonate (MeJA) or the ET-

precursor Amino-Cyclopropane-Carboxylic acid (ACC), respectively. One week after germination 

on MeJA-containing square plates incubated vertically to allow for root length assessment, wild 

type seedlings produced roots of 0.5±0.2 cm in length, while jar1 positive control seedlings 

produced roots of more than 1.5 cm in length. T2 seedlings from individual T1 progenies with 

roots of more than 2 cm in length were selected for further analysis. Five days after sowing on 

ACC-containing plates incubated in the dark, wild type seedlings produced hypocotyls of 

approximately 0.5 cm in length with the typical downward cubature, while ein2 positive control 

seedlings produced straight hypocotyls of more than 1 cm in length. T2 seedlings from individual 

T1 progenies with straight long hypocotyls were selected for further analysis. Again, we found 

jar1 and ein2 plants in the progeny of T1 lines #1, #3 and #25, but we did not identify mutants in 

the T2 progeny of T1 line #4 (Figure 2). Western blots of leaf protein samples of each T1 line 

analyzed showed Cas9 expression in lines #1, #3 and #25, but no in T1 line #4, explaining the 

lack of observable phenotypes in the T2 progeny of this T1 line (Figure 3). As expected, each 

individual T1 plant expressed different levels of Cas9, a variation that may stem from the 

independent chromosomal location of the T-DNA in each T1 plant analyzed. Interestingly, the 

percentage of visually identified T2 plants varied across independent T1 lines but did not correlate 
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with Cas9 expression. The frequency of jar1 and ein2 plants in T2 progenies ranged from 0.001 

to 0.002% and 0.9 to 1.8% for jar1 and ein2, respectively (Figure 2B and 2C). The lower recovery 

of jar1 and eni2 relative to gl1 mutants may in part relate to the quantitative scoring of these 

phenotypes (as opposed to qualitative scoring of gl1), and to our stringent cutoff for root and 

hypocotyl length (see above).  

Due to the UBQ10 promoter activity, the constitutive and ubiquitous expression of Cas9 may 

produce edited cells or lineages in somatic and/or germline tissues, yielding mosaic T2 plants. To 

reduce the odds of analyzing mosaic edited plants, we only selected T2 plants that had no 

trichomes anywhere in the leaves, or showed long roots (more than 1.5 cm) or long straight 

hypocotyl (Figure S4). We reasoned that mutations in these T2 plants should have originated in 

T1 germline and hence their genetic makeup should be more uniform across reproductive and 

somatic tissues. To assess the genetic makeup of the selected mutants, plants were allowed to 

self-pollinate and produce T3 seeds for progeny tests. All the T2 plants that show jar1, gl1 or ein2 

phenotypes produced 100% jar1, gl1 and ein2 mutant plants in their T3 progenies, respectively, 

which confirmed that the selected T2 plants were loss-of-function mutants, as indicated by their 

phenotypes.  

 

Sub-optimal sgRNA secondary structure may limit the efficiency of CRISPR-Cas9 editing 
To understand the underlying causes that produced different mutagenesis frequencies of the 

three targeted loci, we investigated three important factors related to sgRNAs design that are 

known to impact CRISPR editing: 1) number of crRNA off targets; 2) crRNA GC content; 3) sgRNA 

secondary structure. The first factor under consideration, the specificity score, which is reported 

as a whole number out of 100 perfect score, the values of the three 20nt crRNA sequences were 

similar (crJAR1: 98/100, crGL1: 98/100, crEIN2: 99/100). Yet, the number of potential off-targets 

within the Arabidopsis genome were higher for JAR1 crRNA than for GL1 and EIN2 crRNAs 

(crJAR1: 9, crGL1: 5, crEIN2: 3). Assuming that there is competition for sgRNAs across potential 

off-targets at different loci, we would expect EIN2 or JAR1, the outermost sgRNA in the array, to 

show the highest efficiency. In addition, the numbers of off-targets do not seem to explain the 

high mutagenesis of GL1 and the low mutagenesis of JAR1 (Doench et al., 2016). Therefore, we 

should consider other explanations. The G/C content of the three crRNAs varied substantially, 

being 35% for crJAR1, 50% for crGL1, and 55% for crEIN2, suggesting that the low G/C content 

of crJAR1 could, at least in part, explain its low mutagenesis efficiency. However, the GC content 

for all 3 crRNAs falls within the effective range of 30 to 80% (Liang et al. 2016), and the GC 

content of crGL1 and crEIN2 are only 5% different while the editing efficiency of sgGL1 is up to 
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6-fold higher than that of sgEIN2. Therefore, GC content does not seem to be a major determinant 

of the efficiency differences across the three sgRNAs. A third factor to consider is the secondary 

structure of the sgRNA. Previous studies revealed that three stem loops (hairpins) are necessary 

for the effectively formation of a DNA-sgRNA-Cas9 complex (Liang et al., 2016). Among these, 

stem loop #1 is crucial for the formation of a functional Cas9-sgRNA-DNA complex, while stem 

loop #2 is critical to improve complex stability and in vivo activity. We performed in-silico analysis 

of the JAR1, GL1 and EIN2 sgRNAs sequences using the online tool Mfold (Zuker et al., 2003). 

A single in-silico prediction revealed that all three stem loops are intact in the GL1 sgRNA (Figure 

S5D). The EIN2 sgRNA analysis rendered two predictions (Figure S5E-F), one showing all three 

intact stem loops and one showing a missing stem loop #1. The secondary structure predictions 

of JAR1 sgRNA showed that stem loops #1 and #2 are missing in all three predicted structure 

(Figure S5A-B-C). Hence, the presence of three stem loops and the low number of CBPs and 

IBPs in GL1 sgRNA may explain the high efficiency of GL1 mutagenesis. The presence of two 

stable and one unstable stem loop, together with the higher number of CBPs and IBPs, may 

explain the intermediate efficiency of the EIN2 sgRNA. Finally, the absence of stem loops #1 and 

#2, and high number of CBPs and IBPs would explain the low efficiency of JAR1 sgRNA. 

Therefore, an optimal sgRNA secondary structure seems critical for effective CRISPR-Cas9 

editing, and may be carefully considered at the time of designing sgRNAs. 

 
Efficient identification of Cas-9-editing at other genomic loci using proxy-based selection  
For most gene-editing endeavors, the phenotype/s associated to the gene/s of interest is not 

known. In fact, the purpose of using CRISPR-editing in most cases is to uncover phenotypes 

associated to the function of the gene/s of interest. To verify the mutations at each locus, we 

analyzed the DNA sequences of visually selected gl1, jar1, and eni2 plants. We collected leaf 

samples of gl1, eni2 and jar1-selected T2 plants, extracted DNA, and PCR-amplified and Sanger-

sequenced 600bp of DNA surrounding the crRNA target sequence of the three proxy genes. A 

CRISPR-edited locus typically consists of a mix of mutant and wild type sequences (alleles). This 

complexity stems from DSB of DNA introduced by Cas9 followed by DNA repair via NHEJ, a 

process that may start when the T-DNA harboring CRISPR-Cas9 is integrated into the genome 

of germline cells in T0 plants (see Figure S1). Throughout the T1 and T2 generations, Cas9 will 

continue to edited wild type target sequences in germline as well as somatic cells. The analysis 

of the DNA sequences was accomplished using the ICE (Inference of CRISPR Edits) sequence 

analysis tool (https://ice.synthego.com). ICE weighs the quality of each DNA sequence and 

determine the relative representation of each of the four possible nucleotides at each given 
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position in the DNA sequence via assessing the area below the fluorescence chromatogram peak 

at each position (Hsiau et al. 2018). Among the visually selected gl1, jar1 and eni2 plants, we 

identified three different alleles of gl1, five alleles of jar1, and four alleles of eni2 (Figure 3). The 

mutations detected in the three proxies were consistent with previous studies reporting insertions 

of 1 or 2 nucleotides (+1 or +2) and deletions of 1, 2 or 3 nucleotides (-1, -2 and -3) within the six 

nucleotides upstream of the PAM sites, which are the hallmarks of NHEJ-mediated DNA repair in 

Arabidopsis (Jinek et al. 2012; Oost 2013; Peterson et al. 2016). 

To assess the power of each of these proxies to predict co-editing, we used PCR and Sanger 

DNA sequencing analyses to detect mutant alleles in surrogate genes; for gl1 selected T2 plants 

we PCR and sequenced JAR1 and EIN2 targets, for ein2 selected T2 plants we PCR and 

sequenced JAR1 and GL1 DNA targets, and for jar1 selected T2 plants we PCR and sequenced 

EIN2 and GL1 targets. We scored the frequency of single and double co-editing, indicative of 

plants carrying mutant alleles in two or three of the targeted genes, respectively, via counting the 

number of plants with unresolved DNA sequences upstream of the PAM site of each target divided 

by the total number of T2 plants visually identified with each proxy (smooth leaves, JA insensitivity, 

or ET insensitivity). The frequency at which each mutant allele was detected varied across the T2 

progenies of independent T1 plants. Among plants without trichomes (gl1 = smooth leaves), the 

frequency of single co-editing varied from 61.1% to 93.75% for either JAR1 or EIN2 (Figure 4). 

Further, the frequency of double co-editing (yielding a triple gl1-jar1-eni2 mutant) ranged from 

18.5% to 50% when using gl1 as the proxy (Figure 4A). Among ET insensitive plants (eni2), single 

gene co-editing frequency varied from 55.6% to 81.25%, while double co-editing ranged from 0% 

to 56.25% (Figure 4B). Although JA insensitive plants (jar1) were recovered through in plate 

selection of T2 progenies from the three T1 plants expressing Cas9, we only recovered a total of 

five jar1 plants (2 from T1 #1, 1 from T1 #3, and 2 from T1 #25). Therefore, the frequency of co-

editing cannot be accurately estimated and was not included in Figure 4. Nevertheless, every one 

of the five jar1 T2 mutants recovered were also mutants for both GL1 and EIN2, suggesting high 

efficiency of co-editing (up to 100%) when using jar1 as the initial selection proxy.  

A detailed analysis of the DNA sequence of each surrogate gene using the ICE online tool 

revealed a complex allelic composition in the somatic cells of most T2 plants. As expected, we 

detected wild type, homozygote mutants, heterozygotes and Bi-allelic (or higher order allelism) 

sequences for each gene under study across different plants (Feng et al. 2014). Thirty percent of 

co-edited plants initially selected using gl1 did not have wild type alleles of JAR1 or EIN2. Triple 

mutants were found in the T2 progeny of T1 line #25, where wild type alleles for JAR1 and EIN2 

were not detected in 3.85% of plants analyzed. Importantly, up to 30.8% of the T2 plants in this 
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progeny did not have wild type alleles for a second gene and had a mix of wild type and mutant 

alleles for a third targeted gene (Table I). Among ein2 plants, we found up to 46.2 % of plants (in 

T2 progeny of T1 #25) that were also homozygous for either jar1 or gl1 mutant alleles. Most ein2 

mutants in every of the three T2 progenies analyzed were heterozygous for either JAR1 or GL1 

(Table I). Interestingly, neither the percentage of visually selected plants (Figure 2) nor the 

percentage of plants with mutant alleles in a second or a third gene within the visually selected 

T2 plants (Figure 4) seem to correlate with Cas9 expression (Figure S3). 

Overall, our data demonstrate that proxies of CRISPR mutagenesis are powerful predictors of the 

occurrence of CRISPR-induced mutations in surrogate genes, thus allowing for the rapid 

identification of plants where genes of interest have been edited as well. 

 
Discussion 
The challenge associated to the identification of a handful of edited plants among hundreds of 

non-edited plants was recognized early when CRISPR-Cas9 genome-editing was proven to work 

in plants. Previous studies have used fluorescent protein-Cas9 fusions or epitope-tagged Cas9 

to identify T1 plants that express Cas9, which has significantly reduced the resources spent in 

the identification of CRISPR mutagenized plants (Osakabe et al. 2016; Tang et al. 2018). 

Although a significant step forward, these strategies involve imaging leaf samples with a 

fluorescence microscope or taking leaf samples to run western blots to detect Cas9-expressing 

T1 plants. In addition, a large number of T2 progenies of the Cas9 expressing plants need to be 

DNA-profiled in order to identify the T2 plants harboring mutant alleles. Our proxy-based selection 

approach greatly reduces the number of T2 plants that need to be DNA profiled as 40-100% of 

proxy-based selected plants had mutations in a second or a third gene of interest. As for the most 

effective manner to apply proxy-based selection, some considerations may be necessary. For 

instance, the most effective sgRNA was the one targeting GL1. However, when looking at the 

frequency of co-editing, although high (~80% of the gl1 plants had mutations in a second gene, 

and ~40% had mutations in a second and a third gene of interest), gl1 was a less effective proxy 

than jar1, as all five jar1 plants isolated in this study had mutations in both GL1 and EIN2. It is 

tempting to speculate that the high frequency of co-editing observed in jar1 mutants could be due 

to the low mutagenesis observed in JAR1 combined with higher mutagenesis in GL1 and EIN2. 

Our analysis showed that the mutagenesis efficiency of each gene tested correlates with its 

sgRNA secondary structure, which in turns is highly dependent on the gene-specific crRNA 

sequence. In light of this observation, it seems reasonable to hypothesize that using a suboptimal 

(low efficiency) sgRNA to target the proxy of choice, in combination with highly efficient sgRNA/s 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/637314doi: bioRxiv preprint 

https://doi.org/10.1101/637314


 14 

to target the gene/s of interest, could dramatically reduce the number of plants that need to be 

DNA profiled to identify CRISPR multiplex mutants. Our results, in combination with previous 

reports showing that up to several genes can be Cas9 mutagenized simultaneously, support the 

notion that our approach could be scaled up to target more than three genes at a time (Feng et 

al. 2014; Zhang et al. 2016). 

Importantly, once the T2 plants of interest are identified, progeny tests or genotyping of T3 

progenies allows for the selection of mutant plants that no longer harbor the T-DNA. This would 

prevent the continuous mutagenesis of the target genes by the ubiquitously expressed Cas9, and 

minimize the likelihood of off-target mutagenesis. In cases where the proxy represents an 

impediment for the analysis of gene function, the mutants could be crossed with wild type plants 

to segregate the proxy and the T-DNA from the mutations of interest and select for F2 plants that 

express a wild type version of the proxy and no longer express CRISPR-Cas9. JAR1, GL1 and 

EIN2, are encoded in chromosomes 2, 3 and 5, respectively, enabling to choose a proxy gene 

that is not linked to the gene/s of interest, and can later be easily segregated out. While 

outcrossing the mutants, it is important to select for plants that no longer express Cas9.  

Unlike Cas9 fusions to fluorescence proteins or epitope tags, the identification of jar1, gl1 and 

ein2 mutant plants does not require any sophisticated piece of equipment. While jar1 and ein2 

plants can be identified in culture plates within 1 week after germination, the identification of gl1 

mutants only involves growing T2 plants in soil for three weeks and visually identifying plants with 

smooth leaves among hairy wild type plants, thus, making this strategy more accessible for 

laboratories with little resources or even the classroom setting. The strategy laid out in this study 

constitutes a proof-of-principle of the potential use of proxies to facilitate the selection of genome-

edited plants. The choice of the appropriate proxy will depend on the plant species and on the 

phenotypes expected/predicted to be associated to the gene/s of interest. In any event, GL1 

mutant alleles are found in many naturally occurring ecotypes of Arabidopsis, which suggests that 

mutation in GL1 should not produce overly pleotropic phenotypes that could interfere with the 

function of the genes of interest that are targeted simultaneously, unless of course, they also 

affect trichome development. Similar selection strategies could be used for the identification of 

CRISPR-Cas9 mutagenized plants in crops with more complex, often polyploid genomes, where 

the identification of multiplex mutants remains challenging. 
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Figure 1. Proxy co-editing CRISPR/Cas9 construct. 
A) The pCUT3-CE construct contains three individual 
transcriptional units that generate sgRNA for JAR1, GL1 
and EIN2 editing. The expression of each sgRNA is 
controlled by individual AtU6 promoters (U6P) and poly-
T terminator (TTTT). B-D) JAR1, GL1 and EIN2 target 
sites. Sequence in red denote the 20nt crRNA target site 
within each proxy. The PAM site is boxed in blue. Scale 
bar=0.1kb 
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Figure 2. Frequency of loss-of-function mutants 
visually identified in T2 progenies. Percentage of gl1 
(A), jar1 (B) and ein2 (C) plants across T2 progenies of 
three independent T1 lines (#1, #3 and #25) calculated 
as number of plants with mutant phenotypes/total 
number of T2 plants obtained from each independent 
T1 plants (#1, #3, #4 and #25). Total number of gl1, jar1 
and ein2 recovered was 130, 5 and 32 plants, 
respectively.  
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Figure 3. Sequence analysis of CRISPR/Cas9 edited 
proxy genes. A-C) CRISPR/Cas9 induced mutations 
detected via PCR and Sanger sequencing in jar1 (A), gl1 
(B) and ein2 (C) mutants across independent T2 
progenies. The target sequence is depicted in green. The 
PAM site is depicted in blue. Indels are depicted in green. 
Wild type reference DNA sequence (WT) and mutant 
alleles (M1…5) detected for each proxy gene are shown 
as sequence alignments.  
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Figure 4. Predictive power of proxy genes.  
Scoring of mutant alleles detected in one (black) or 
two (grey) surrogate gene in addition to the loss-of-
function proxy. Visual selection of proxy based on 
A) lack of trichomes (gl1) or  B) ethylene 
insensitivity (ein2).  
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Table I. Allelic constituency of co-edited genes. Numbers indicate the percentage of co-edited surrogate genes in T2 plants of three independent progenies (#1,
#3 and #25) and their allelic state. HM: homozygous. HET: heterozygous. Bi: bi-allelic. Double-HM: no wild type alleles for both genes under study. HM/HET: no
wild type alleles for one gene and one wild type allele for the second gene under study. Double-HET: one wild type allele for each gene under study. Bi-HET:
multiple alleles in one gene and at least one wild type allele for the second gene under study.
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