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Abstract 
Summary: DDAP is a tool for predicting the biosynthetic pathways of the products of type I modular polyketide synthase 

(PKS) with the focus on providing a more accurate prediction of the ordering of proteins and substrates in the pathway. In 

this study, the module docking domain (DD) affinity prediction performance on a hold-out testing data set reached AUC = 

0.88; the MRR of pathway prediction reached 0.67. DDAP has advantages compared to previous informatics tools in several 

aspects: (i) it does not rely on large databases, making it a high efficiency tool, (ii) the predicted DD affinity is represented 

by a probability (0 to 1), which is more intuitive than raw scores, (iii) its performance is competitive compared to the current 

popular rule-based algorithm. To the best of our knowledge, DDAP is so far the first machine learning based algorithm for 

type I PKS pathway prediction. We also established the first database of type I modular PKSs, featuring a comprehensive 

annotation of available docking domains information in bacterial biosynthetic pathways. 

Availability and implementation: The DDAP database is available at https://tylii.github.io/ddap. The prediction algorithm DDAP 

is freely available on GitHub (https://github.com/tylii/ddap) and released under the MIT license. 

Contact: ukarvind@umich.edu  

1 Introduction  

Natural products (NPs) such as penicillin, erythromycin, artemisinin, taxol 

and tetrodotoxin are small chemical compounds produced by bacteria, 

fungi, plants, and animals. These small molecules are found to display a 

broad range of bioactivities (Katz and Baltz, 2016). About 40% of new 

drugs approved in the past 30 years were either unaltered NPs or derived 

from NPs (Newman and Cragg, 2016). Interest is growing in the search 

for novel NPs in both industrial and academic fields. Although new 

technologies have improved efficiency, traditional NP discovery requires 

compound isolation, mass spectrometry (MS) analysis, and nuclear 

magnetic resonance (NMR) data acquisition, and structure elucidation can 

be time consuming. Developing computational tools to predict NP 

structures based on DNA/protein sequences (e.g., antiSMASH (Blin et al., 

2017), NP.searcher (Li et al., 2009), PRISM (Skinnider et al., 2017) and 

SeMPI (Zierep et al., 2017)) is of high interest to facilitate structure 

characterization, and offer new automated approaches. 

Polyketide synthases (PKSs) are one of the most important classes of 

biosynthetic enzymes. Type I modular PKS (T1PKS) consists of a series 

of genes encoding multifunctional proteins, including a loading module 

and multiple extension modules (Dutta et al., 2014). Each extension 

module is responsible for adding one acyl-monomer to the polyketide 

chain. The assembly order of polyketide substrates is not always 

coincident with gene cluster architecture in the bacterial genome. 

Therefore, finding the correct order of modules and substrates in the 

polyketide biosynthetic pathway is a crucial step in structure prediction. 

Previous research has demonstrated that the substrate assembly order is 

determined by cognate docking domain pairs (DDs) at the N-/C-terminus 

of PKS proteins (Gokhale and Khosla, 2000; Gokhale et al., 1999). In 

2009, Yadav et al. published a rule-based affinity prediction algorithm, 

based on a general assumption about the 6-deoxyerythronolide B synthase 

(DEBS) DD structure (Yadav et al., 2009). This method is used by many 

well-known NP discovery tools including antiSMASH and NP.searcher, 

despite its several defects (Supplementary Materials). To our knowledge, 

it is the only available algorithm that specifically predicts DD affinity in 

T1PKS.  

In this study, we collected pathway information of T1PKS from 

manuscripts published over the past 24 years (1995 - 2018) and developed 

a machine learning based docking domain affinity prediction tool, DDAP. 

DDAP uses protein sequences to predict the assembly order of the 

compounds produced by T1PKS. The DDAP database includes 172 

T1PKS and 764 docking domains. As far as we are aware, this is the first 

and most comprehensive database of DDs in bacterial type I modular 

PKSs. 

2 Methods 

2.1 The DDAP Database 

The DDAP database contains 172 records of type I modular PKS proteins, 

among which 92 are annotated with published pathway information, 80 

are annotated with pathways predicted by DDAP. Pathway information 

includes the docking domain sequences (764 DDs) and the order of genes 

in the biosynthetic pathway. Users are able to download all above-

mentioned datasets from the database and browse the pathway data 

through an interactive table on the web page.  

2.2 Docking Domain Affinity Prediction 

DDAP has two main functions: (i) predicting the likelihood of interaction 

given the AA sequences of a C-terminal DD (Head) and a N-terminal DD 

(Tail); (ii) predicting the most likely pathways based on the predicted DD 

affinity. DDAP uses machine learning models to predict DD affinity (Fig. 

S1A, Fig. S1B, Fig. S1C). DDAP takes DD sequences in FASTA format 

as input and returns the predicted affinity of each DD pair. The affinity 

will always be a number between 0 and 1, where 1 indicates high affinity 

(Fig. S1D).  
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2.3 Pathway Prediction 

AntiSMASH 4 is a state-of-the-art tool for genome mining for natural 

product gene cluster discovery (Blin et al., 2017). Following antiSMASH 

identification of a biosynthetic gene cluster, DDAP can read the PKS 

annotation and its docking domain affinity prediction algorithm predicts 

the order of modules/substrates in the biosynthetic pathway (see 

Supplementary Materials). Alternatively, users can also provide the AA 

sequences of PKS proteins in FASTA, or CSV format. In the output, 

DDAP returns an exhaustive list of all possible pathways, each associated 

with a probability score (0 to 1), and a SMILES string representing the 

backbone structure of the proposed biosynthetic product. DDAP also 

provides a plot of the compound structure for the top ten most likely 

pathways (Fig. S1E).  

3 Results 

According to the five-fold cross-validation results of the best performing 

model, the area under the receiver operating characteristic (ROC) curve 

(AUC) for DD affinity prediction was 0.80 (95% CI: 0.78-0.81). The 

Mean Reciprocal Ranking (MRR) of the true pathways was 0.63 (95% CI: 

0.59-0.67). Approximately 71% of the time, the true pathway ranked 

among the top three. We further tested the best performing model on the 

hold-out testing set. The final model achieved AUC = 0.88 (95% CI: 0.77-

0.98) for DD affinity prediction. The MRR for pathway prediction was 

0.67 (95% CI: 0.27-1.00). The true order received the highest likelihood 

score in 4 of 7 testing pathways (see Supplementary Materials). 

Finally, we compared our method with the most widely used method, 

which was originally developed by Yadav et al., and later adopted by 

antiSMASH and NP.searcher. We used antiSMASH 4.2.0 to test the 

performance of Yadav’s method. Seventy pathways were used to compare 

the performance (see Supplementary Materials). For these 70 pathways, 

antiSMASH achieved MRR = 0.48 (95% CI: 0.38-0.57); DDAP achieved 

MRR = 0.62 (95% CI: 0.57-0.66). 

4 Conclusion 

In this study, we established a database for pathways and docking domains 

of type I modular polyketide synthases. We also built a machine learning 

based algorithm that predicts T1PKS pathways. The DDAP algorithm is 

shown to outperform the state-of-the-art without relying on large 

databases of proteins/compounds (e.g. SeMPI). The prediction tool can be 

readily incorporated into natural product discovery pipelines and used as 

a complementary tool along with genome mining software to provide 

accurate predictions of bacterial type I modular PKS pathways and 

backbone structures of the secondary metabolites. 
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