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Abstract 
Scores on intelligence tests have been reported to correlate significantly with educational, 

occupational and health outcomes. Twin and genome wide association studies in adults have 
revealed that intelligence scores are moderately heritable. We aimed to better understand the 
relationship between genetic variation and intelligence in the context of the developing brain. 
Specifically, we questioned if a genetic predictor of intelligence derived from a large GWAS 
dataset a) loaded on specific factors of cognition (i.e. fluid vs. crystallized) and b) were related to 
differences in cortical brain morphology measured using MRI scans. To do this we calculated an 
intelligence polygenic score (IPS) for the Adolescent Brain Cognitive Development (ABCD) 
baseline data, which consists of 11,875 nine- and ten- year old children across the US. We found 
that the IPS was a highly significant predictor of estimates of both fluid (t=8.7, p=3.0x10-18, 
0.8% variance explained) and crystallized (t=17.1, p=2.0x10-64, 3.1% variance explained) 
cognition. Critically we found greater predictive power for crystallized than fluid (z=5.1, 
p=3.1x10-7), this result replicated in ancestry stratified analysis: for Europeans (z=4.7, 3.2 x10-8) 
and non-Europeans (z=2.6, p=9.4x10-3). This indicates a stronger loading of IPS on crystallized 
cognition. IPS was significantly related to total cortical surface area (t=5.5, p=2.5x10-8, 0.4% 
variance explained), but not mean thickness (t=2.0, p=0.045) – after Bonferroni correction. 
These results replicated in the European subsample (area: t=5.4, p=6.3x10-8, mean thickness: 
t=2.3, p=0.021), but not in the non-European subsample (area: t=2.4, p=0.016, mean thickness: 
t=-0.41, p=0.68). Vertex-wise analyses within the European group showed that the surface area 
association is largely global across the cortex. The stronger association of IPS with crystallized 
compared to fluid measures is consistent with recent results that more culturally dependent 
measures of cognition are more heritable. These findings in children provide new evidence 
relevant to the developmental origins of previously observed cognitive loadings and brain 
morphology patterns associated with polygenic predictors of intelligence. 
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Introduction 
Intelligence is an important indicator of health and societally defined measures of 

success1–3 that has been shown to be moderately heritable at around 50%4. In intelligence 
research two latent factors are often distinguished: crystallized and fluid5. Crystallized 
intelligence is related to aspects of cognition that are developed through experience, such as 
vocabulary, academic skills, and general knowledge. Conversely, fluid intelligence is related to 
an individual’s ability to perform well cognitively in novel situations. Traditional views of these 
factors predicted that crystallized intelligence would be less influenced by genetics as it was 
thought to be more impacted by experience and environment6. However, recent evidence in 
adults has shown that this is not the case. A meta analysis across adult twin samples 
demonstrated that more culturally dependent measures of cognition are more heritable7. Kan et 
al.7 speculated that these results may reflect the presence of gene-environment correlation (rGE). 
In this case rGE might reflect the fact that individuals with genotypes that initially bias them 
toward higher cognitive performance are more likely to end up in environments, or have 
experiences, that further develop these functions.  This could occur, for example as a result of 
streaming students into classes by aptitude. rGE can thus increase heritability estimates. It has 
been argued that rGE more strongly impacts culturally-dependent measures of intelligence, as 
society more readily creates environments that facilitate rGE for crystalized intelligence7. Higher 
heritability for more culturally dependent measures of intelligence has been shown for adults, but 
not for children7. As rGE is presumed to accumulate over time8 we hypothesize that this 
differentiation in heritability between fluid and crystallized intelligence might develop across 
childhood. We thus aimed to investigate the relationship between genetic variation and factors of 
intelligence in the early adolescent brain. 

A recent genome wide association study (GWAS) in 269,867 adults of European ancestry 
associated 205 genomic loci and 1,016 genes to variability in intelligence9. By generating an 
intelligence polygenic score (IPS) they explained up to 5.2% of the variability in intelligence in 
independent samples. They found that associated genes were strongly expressed in the brain, and 
specifically associated with hippocampal pyramidal neurons and striatal medium spiny neurons. 
Additionally, studies have found that total brain volume and intelligence are correlated at 0.24-
0.3310,11, with both gray and white matter volume contributing to this association12. This 
correlation between intelligence and both gray and white matter volume has been shown to be 
largely determined by genetics13,14. For adults, thicker cortex has sometimes been associated with 
greater intelligence13–15. A recent study, however, in children reported that at age 9 there was no 
significant relationship between intelligence and cortical thickness, but at age 12 a negative 
correlation between intelligence and thickness across the cortex was observed16. Conversely, 
cortical area has been shown to be positively associated with intelligence scores in adolescents17. 
Both thickness and area have been shown to be genetically correlated with intelligence in 
children and adolescents16,17. These findings suggest that brain morphology is related to 
intelligence and that the two share a common genetic basis.  

We aimed to further disentangle the associations between genetics, brain morphometry 
and intelligence in a large cohort (N= 9,511 individuals) of 9- and 10-year-old children obtained 
from the Adolescent Brain Cognitive Development (ABCD) study. To investigate these 
associations, we generated an IPS for each individual in the ABCD dataset using summary 
statistics from a GWAS of intelligence on 269,867 individuals9. After controlling for 
socioeconomic and demographic differences, we predicted that the IPS would: 1) significantly 
predict cognitive performance in the ABCD sample; 2) be more associated with crystallized than 
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with fluid intelligence; and, 3) be associated with cortical morphology. The ABCD sample is 
ancestrally diverse and the portability of polygenic scores to different ancestry groups has been 
shown to detrimentally impact prediction18–20, as such for any discovered associations in the full 
sample we will investigate if they replicate in European and non-European subsets of the dataset. 

 
Methods and Data 
2.1 ABCD data  

The ABCD study (http://abcdstudy.org) consists of N=11,875 individuals aged 9/10 years 
old at baseline21. This longitudinal study was designed to follow the development of children at 
21 sites across the US for ten years. The cohort exhibits a large degree of socio-economic and 
demographic diversity. Exclusion criteria were limited to: 1) lack of English proficiency; 2) the 
presence of severe sensory, neurological, medical or intellectual issues that would inhibit the 
child’s ability to comply with the protocol; and, 3) an inability to complete an MRI scan at 
baseline. 

Here, we utilized baseline data from ABCD release 2.0 (DOI: 10.15154/1503209). A 
wide range of measurements were collected for each individual. In addition to demographic and 
socio-economic variables, for the current study we utilized three data sources: 1) cognitive 
assessments from the NIH Toolbox22; 2) whole-genome genotyping data23; and, 3) magnetic 
resonance imaging24,25. Each of these data types will briefly be described below.  
 
2.1.1 NIH Toolbox Cognitive Assessment:  

The NIH Toolbox® Cognition Battery (http://www.nihtoolbox.org)26, herein referred to as 
‘the Toolbox’, consists of seven different tasks that test executive function, working memory, 
episodic memory, attention, processing speed and language ability. The Toolbox® was normed 
on individuals between 3 and 85 years old. The total time to complete the battery is 
approximately 35 minutes. The ABCD study administers the Toolbox in English27, as eligibility 
criteria requires that youth participants are fluent in English.  

The Toolbox Reading Recognition Task® is a test in which individuals pronounce single 
words. The Toolbox Picture Vocabulary Task®28 tests participants vocabulary by asking them to 
match spoken words to pictures. The Toolbox Pattern Comparison Processing Speed Test®29 
measures processing speed by asking them to identify if two side by side pictures are the same or 
different as rapidly as possible. The Toolbox List Sorting Working Memory Test ® tests 
participants working memory by requiring them to order presented objects in size order. The 
Toolbox Picture Sequence Memory Test® assesses episodic memory by asking participants to 
reproduce a sequence of items in the correct order30. The Toolbox Flanker Task®, a variant of 
the Eriksen Flanker task31, is designed to measure cognitive control by requiring individuals to 
identify the direction of a central arrow that is flanked by either congruent or incongruent arrows. 
The Toolbox Dimensional Change Card Sort Task® is designed to measure cognitive 
flexibility32. All tasks  provide raw scores, uncorrected standard scores, and age-corrected 
standard scores27. Uncorrected task scores were used for all our analyses.  

Two summary scores also provided are the Crystallized Composite and Fluid Composite. 
The Crystallized Composite score is derived from performance on the Reading Recognition and 
the Picture Vocabulary tasks, the Fluid Composite score from performance on the five remaining 
measures. These composite scales have been shown to have high convergent validity with ‘gold 
standard’ measures of fluid and crystallized intelligence in both adults33 and children34.  
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2.1.2 Genetic Data 
 Saliva samples were collected at the baseline visit and sent to Rutgers University Cell and 
DNA Repository for storage and DNA isolation. Genotyping was performed using the 
Smokescreen array35, consisting of 646,247 genetic variants. Before variant imputation, quality 
controls (QC) on the genotyping were performed to ensure each genetic variant has been 
successfully called in more than 95 percent of the sample and that missingness for each 
individual was not higher than 20%. After this QC 517,724 SNPs and 10,659 individuals 
remained. Based on genotyped data, we derived genetic ancestry using fastStructure36 with four 
ancestry groups. Genetic relatedness and principal components were calculated using PLINK.  

We then performed imputation using the Michigan Imputation Server37 using 
hrc.r1.1.2016 reference panel, Eagle v2.3 phasing and multiethnic imputation process. PLINK38 
was used to convert dosage files to plink files using a best guess threshold of 0.9 for each loci. 
After best guess conversion, we used post imputation variant QCs of minor allele frequency 
above 5%, Hardy-Weinberg threshold of 10-6 and missingness of 10%. Additionally, we 
enforced no greater than 10% missing SNPs for each individual. These QCs were performed 
using PLINK38 and resulted in 1,427,972 SNPs and 10,659 individuals remaining. 
 
2.1.3 Neuroimaging Data 
 The imaging component of the ABCD study was developed by the ABCD Data Analysis 
and Informatics Center (DAIC) and the ABCD Image Acquisition Workgroup. Imaging methods 
were developed and optimized to be harmonized across all 21 sites and 3 scanner platforms: 
Siemens Prisma, General Electric 750 and Phillips. Details of these data collection methods and 
scanning protocols can be found at 25. Image postprocessing was conducted by the ABCD 
DAIC24. For each subject, a 3D model of their cortical surface was reconstructed using 
Freesurfer (http://surfer.nmr.mgh.harvard.edu/). Vertex-wise cortical thickness was estimated 
after defining the cortical surface and underlying white/gray matter boundary. Vertex estimates 
of cortical area were computed by calculating the area of elements of the standardized 
tessellation mapped to each subject’s native space. Details of this procedure can be found at 39–43. 
 
2.2 Methods 
2.2.1 Computing the Polygenic Score 
 Polygenic scores aggregate the effects of individual SNPs estimated from a previous 
GWAS discovery analysis, to produce a single score for each individual. The discovery dataset 
was computed on 269,867 individuals by Savage et al, using a meta-analysis in which 
neurocognitive tests primarily gauged fluid cognitive performance9. The summary statistics from 
this analysis were downloaded from (https://ctg.cncr.nl/software/summary_statistics). As nearby 
SNPs are correlated with one another these are removed before polygenic scoring; this process is 
known as clumping and pruning. After imputation was performed for the ABCD sample we 
performed clumping and pruning of SNPs using PRSice44 with a clumping window of 250 kb, 
clumping r2 of 0.1 and no thresholding of significance on the summary statistics. SNPs from the 
major histone compatibility complex were also removed from the analysis. This resulted in 
692,685 SNPs remaining. The polygenic score for each individual was then computed as a sum 
of their SNPs, with each SNP being weighted by the effect in the discovery sample. 
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2.2.2 Ancestry Stratified Analysis 
 The ABCD study contains individuals from multiple ancestry groups. However, the 
discovery sample for the IPS was European individuals. Training and testing polygenic scores in 
different ancestry groups have been shown to reduce predictive power18–20. The ABCD study has 
made specific efforts to collect individuals from ethnically diverse backgrounds and in service of 
this effort we wanted to prevent the total exclusion of non-Europeans from the current analysis. 
As such we perform analyses for three strata of ancestry: 1) full sample, 2) Europeans only 
(proportion above 90%) and 3) non-European (the remainder of the sample).  
 
2.2.3 Statistical Model for Behavioral Tasks 
 To assess the association between the IPS and cognitive performance in ABCD, we fit 
Generalized Linear Mixed-Effect Models (GLMMs). Each model had a different task or 
composite score from the NIH Toolbox as the dependent variable. In addition to the IPS, all 
models included the fixed effects of sex at birth, parental marital status, age, education level of 
parent/caregiver, household income and top ten components of genetic ancestry.  Data collection 
site and family were input as random effects. Continuous variables were z-scored before model 
fitting to allow coefficients to be interpreted as standardized effect sizes. GLMMs were 
implemented using the R gamm4 package45. In order to assess the increased predictive power of 
the IPS beyond the covariates alone, we calculated the change in variance explained between the 
null model (just covariates) and the full model (covariates + IPS). To test if standardized 
regression coefficients differed between analogous regressions we performed a z-test on the 
difference between coefficients, based on the propagated standard error for the two regression 
coefficients. This test assumes the standard errors are not correlated and so provides a 
conservative estimate of significance.  
 
2.2.4 Neuroimaging Analysis 
 In order to test the association between IPS and global measures of brain morphology, we 
used the same GLMMs described for predicting Toolbox measures, with the addition of scanner 
id as a fixed effect, to predict total cortical surface area and mean thickness. To explore regional 
brain morphology features associated with individuals’ IPS, we fit univariate general linear 
models to predict vertex-wise area and thickness from IPS. The fixed effects were the same as 
those used for behavioral data. We used scanner ID instead of study site as a covariate, as this is 
more relevant for imaging measures. All covariates were treated as fixed effects due to the large 
computational burden of fitting vertex-wise mixed models. Family was excluded as a covariate 
as treating it as a fixed effect would have drastically increased the number of estimated 
parameters. Once again predictors and responses were z-scored to allow coefficients to be 
mapped and interpreted as standardized effect sizes. False discovery rate (FDR) corrected p-
values were calculated for each vertex to allow thresholding at a corrected level of 0.05. 
 
Results  
Sample 
 Due to missing demographic information and/or Toolbox scores 1,319 individuals were 
removed, with 1,018 of those being due to missing declared household income. Failure of 
individuals’ genetic data to pass QC metrics resulted in a further 1,414 individuals being 
removed. Table 1 shows behavioral and demographic statistics for the remaining individuals 
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used in this analysis. Note: self-declared race is in this table for the readers’ information, 
however for statistical models principal components of genetics ancestry were used (see 
methods). This left 9,142 individuals in the full sample, 5,212 in the European sample and 3,930 
in the non-European sample.  
 

  Full Sample Europeans Non-Europeans 
Total N 9142 5212 3930 

 Mean (SD) 
Toolbox Fluid Composite Score 92.11 (10.47) 93.95 (9.61) 89.67 (11.05) 

Toolbox Crystallized Composite Score  86.84 (6.92) 88.60 (6.28) 84.50 (7.07) 
Age - months  119.04 (7.47) 119.19 (7.47) 118.84 (7.46) 

Gender N (%) 
   M 4775 (52.2) 2751 (52.8) 2024 (51.5) 

Parent Married = Yes 6436 (70.4) 4325 (83.0) 2111 (53.7) 
Parental Education 

 
  

   < HS Diploma 339 (3.7) 21 (0.4) 318 (8.1) 
   HS Diploma/GED 703 (7.7) 150 (2.9) 553 (14.1) 

   Some College 2302 (25.2) 966 (18.5) 1336 (34.0) 
   Bachelor 2473 (27.0) 1649 (31.6) 824 (21.0) 

   Post Graduate Degree 3325 (36.4) 2426 (46.5) 899 (22.9) 
Household Income 

 
  

   [<50K] 25543(27.9) 643 (12.3) 1910 (48.6) 
   [>=50K & <100K] 2627 (28.7) 1587 (30.4) 1040 (26.5) 

   [>=100K] 3962 (43.3) 2982 (57.2) 980 (24.9) 
Race Ethnicity 

 
  

   White 5102 (55.9) 4944 (95.0) 158 (4.0) 
   Hispanic 1745 (19.1) 136 (2.6) 1609 (41.0) 

   Black 1144 (12.5) 1 (0.0) 1143 (29.1) 
   Asian 195 (2.1) 0 (0.0) 195 (5.0) 
   Other 946 (10.4) 125 (2.4) 821 (20.9) 

Table 1: Summary of demographics and composite toolbox scores for individuals with full data used in behavioral analysis. (Self 
declared race is reported here, however top 10 principal components of genetic ancestry were used instead in statistical models) 

Behavioral Results 
Table 2 displays the regression results for associating the IPS with fluid and crystallized 

composite scales, using GLMMs, across each ancestry strata. The IPS was significantly 
predictive of both subscales across all groups. Critically, the standardized regression coefficient 
was significantly higher for crystallized than fluid composite scores regardless of ancestry group 
(full sample: z=5.1, p=3.1x10-7, Europeans: z=4.7, p=3.2x10-6  and non-Europeans: z=2.6, 
p=9.4x10-3). A table of all outputs from these two regression models for each ancestry group can 
be found in supplementary materials.  
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Sample Fluid Composite Crystallized Composite 

 Standard. 
b 

T-stat P value % Var. 
Explained  

Standard. 
b 

T-stat P value % Var 
Explained 

Full Sample 0.29 8.7 3.0x10-18 0.8 0.52 17.1 2.0x10-64 3.1 
Europeans 0.32 8.1 4.9x10-16 1.3 0.59 15.4 3.1x10-52 4.4 

Non-Europeans 0.22 3.8 1.6x10-4 0.37 0.42 8.2 3.9x10-16 1.7 
Table 2: Regression results for GLMMs associating IPS and a) fluid composite and b) crystallized composite scores within i) full 
sample (N=9142), ii) Europeans (N=5212) and iii) non-Europeans (N=3930). 

Fitting separate regression models for each individual test of the Toolbox, we found that 
the IPS was a significant predictor for each cognitive measure individually for the full sample 
and European individuals (all p values<10-3), surviving the Bonferroni-corrected significance 
threshold of 0.05/9=0.006. Within the non-Europeans only three measures were individually 
significantly predicted by the IPS (surviving Bonferroni correction): List Sorting Working 
Memory (t=4.2, p=3.1x10-5), Picture Vocabulary (t=6.2, p=4.9x10-10) and Reading Recognition 
tasks (t=7.5, p=3.1x10-14). Standardized regression coefficients of IPS predicting each of the 

 
Figure 1  Standardized regression coefficeints of IPS for fitting linear mixed models to each Toolbox measure and the two 
composite scales (fluid and crystallized) – Full sample (top), European sample (bottom left), non-European sample (bottom 
right). Error bars indicate 95% confidence intervals from 1.96 ´ standard errror. Tasks making up the fluid subscale have 
consistantly lower regression coefficients than those making up the crystallized subscale.  
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toolbox measures and composite scales are displayed in Figure 1 for the full sample (top panel), 
Europeans (lower left) and non-Europeans (lower right). In blue are those measures making up 
the fluid composite and in red are those making up the crystallized composite. In this figure there 
is a clear separation where the cognitive measures used to produce the fluid composite score 
have consistently lower IPS standardized regression weights than the measures used to produce 
the crystallized composite score. Both Figure 1 and Table 2 demonstrates attenuation of 
predictive performance of IPS from Europeans to non-European samples in line with previous 
findings. 
 
Neuroimaging Results 

For the neuroimaging analyses an additional  775 individuals were excluded due to 
missing or failed QC of MRI scans (European: 281, non-European: 395 individuals). Within the 
full sample at the level of the whole brain, IPS was significantly associated with larger total 
cortical surface area (t=5.5, p=2.5x10-8) explaining 0.4% of variance in cortical surface area 
above and beyond the socioeconomic and demographic covariates. IPS was nominally significant 
when associated with mean thickness but did not survive Bonferroni corrected significance 
(t=2.0, p=0.045). Within ancestry stratified analyses we found similar associations within 
Europeans for IPS and total cortical surface area (t=5.4, p=6.3x10-8) and mean thickness (t=2.3, 
p=0.021), respectively explaining 0.6% and 0.1% of variance. Conversely, for non-Europeans we 
saw a greatly reduced association between IPS and cortical surface area (t=2.4, p=0.016) 
explaining 0.2% of variance, and no association with mean thickness (t=-0.41, p=0.68). This 
suggests the majority of the signal between IPS and total cortical area in the full sample was 
being driven by the European group, as such for vertex-wise analysis of cortical area we focused 

 

Figure 2 Vertex-wise associations between IPS and area for European subsample. Units are Standardized Effect Sizes 
(predictors and response variables z scored – i.e. units of standard deviation). Map is thresholded at 0.05 FDR corrected p 
value. 

on the European sample. Figure 2 shows the regional pattern of cortical area associations with 
higher IPS. The map shows standardized regression coefficients (as in Figure 1) thresholded at 
an FDR-corrected p-value of 0.05. It suggests a distributed and global cortical area phenotype 
associated with high IPS, characterized by slightly larger associations in medial frontal regions. 
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Discussion 
 Results reveal that an IPS is more predictive of crystallized than fluid cognitive 
performance in a large sample of 9- and 10-year-old children, despite the fact that the discovery 
GWAS to produce the IPS was trained predominantly on fluid dimensions of cognition9. 
Conventional theories of general intelligence would predict that more culturally-dependent 
cognition should be more impacted by one’s environment and therefore less heritable6. We show 
here, however, that this is not the case, which is similar to heritability estimates from a prior twin 
study7. It is in fact the more culturally-mediated measures of crystallized intelligence that are 
more strongly predicted by genetics in the ABCD sample at baseline. A plausible explanation 
that has been suggested for this unexpected result attributes the effect to gene-environment 
correlation7. For example, individuals with an initial slight bias toward higher cognitive 
performance may be more likely to end up in environments or having experiences (e.g., reading 
more or taking more advanced classes in school) that are likely to exaggerate the effect of this 
initial genetic predisposition. It is argued that the reason for this effect being stronger for 
culturally-loaded factors of intelligence is that these factors represent societal demands46. As 
such, society creates environments that facilitate gene-environment correlations (rGE) for 
culture-mediated factors, in a way that it does not for culture-reduced factors. If this argument 
holds, we expect that as participants in ABCD get older the effects of gene-environment 
correlation will become greater and the association presented here should become larger (i.e. a 
larger difference in predictive power of IPS between fluid and crystallized factors).  In a recent 
study, Beam and Turkheimer modeled the effects of increasing rGE and showed that it could 
explain often observed increases in the heritability of measures of cognitive function between 
childhood and adolescence8. We anticipate testing this hypothesis in later time points of this 
longitudinal study.  
 Ancestry stratified analyses revealed the results in the full dataset replicated within 
European and non-European subsets of the dataset. This indicates that these effects are unlikely 
driven by either: a) solely European individuals; or, b) the admixture of ABCD. Problems with 
training and testing polygenic scores in different ancestry groups is well documented18–20, and 
although the IPS does significantly predict cognition in the non-European group we find a 
reduction in effect sizes when compared to Europeans. As has been discussed in human 
genetics47,48, this once again underscores the importance of collecting genetic data from 
ancestrally diverse populations and developing methods that can be used across ancestry groups.  
 In the full sample we also found that total cortical area was associated with higher  
IPS. This is consistent with the findings in adults that total brain volume (area x thickness) is 
positively correlated with intelligence10,11 and that they share a common genetic basis13,14. This 
result replicated in the European sample, but not in the non-European sample suggesting the full 
sample result was driven by the European individuals, once again highlighting issues of 
portability of polygenic scores across ancestry groups. Additionally, previous work has 
demonstrated that cortical surface geometry is highly predictive of genetic ancestry49,50 and it is 
possible that that shared genetic basis between brain morphology and intelligence differs 
between ancestry groups. Within the European sample, the vertex-wise analysis showed that the 
pattern of cortical area associated with higher IPS was global across the cortex with medial 
frontal regions showing slightly higher associations. Neither mean nor vertex-wise cortical 
thickness were found to be significantly associated with IPS. This is consistent with a recent 
study’s finding that in 9-year-old children that there was no relationship between cortical 
thickness and intelligence16. The same study showed the emergence of a negative correlation 
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between thickness and measures of intelligence at 12 years of age. We may therefore find that 
the IPS is negatively correlated with cortical thickness at future time points as brain development 
proceeds in the ABCD sample. 
 A note of caution should be added when interpreting the IPS: it should not simply be 
thought of as a proxy for genetics or ‘nature’. Each individual in this study inherited half of their 
genome from each parent and so these genetic associations can also have indirect influences on 
their cognitive performance through the cognitively enriching environments that parents provide. 
Indeed a recent study demonstrated that up to 30% of a polygenic score based on individuals can 
be explained through a score based on non-transmitted alleles of parents51. Furthermore, it 
should be emphasized that in addition to one’s DNA sequence, epigenetic effects of chromatin 
and histone modifications as well as DNA methylation are also biological factors that have been 
shown to impact cognition52. These are biological mechanisms that can be impacted by one’s 
environment and influence one’s cognitive function and brain structure dynamically over the 
lifespan. 
 Although the association between IPS and cognitive performance is highly significant, 
the effect is a moderate one (full sample - fluid:0.29s and crystallized: 0.52s). It is possible that 
these effects will become larger for later time points collected in the ABCD study. This 
expectation is based on the finding that heritability of intelligence increases over age55–57 and 
studies finding that a IPS based on educational attainment (the number of years completed in 
education) has stronger correlations with school performance of older children58,59. The predictor 
with the largest effect size in our analysis was parental education, with children of highly 
educated parents (post graduate) on average having crystallized scores 0.91 standard deviations 
higher than those of low educated parents (<high school diploma; see supplementary tables). 
Parental education is an important socioeconomic measure that is partially a proxy for material 
resources. However, it is also confounded by genetics: highly educated individuals are likely to 
possess genotypes that are advantageous for performing better in school and this in turn will be 
passed on to their children. It will be important to leverage the wealth of data available in ABCD 
and other studies to develop new methods that can partial socioeconomic and environmental 
effects from genetic ones. More precisely characterizing these components will enable us to 
investigate modifiable factors that can benefit the cognitive development of adolescents. 
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