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Abstract:  25 

Mental imagery is the ability to generate images in the mind in the absence of sensory 26 

input. Both perceptual visual processing and internally generated imagery engage large, 27 

overlapping networks of brain regions. However, it is unclear whether they are 28 

characterized by similar temporal dynamics. Recent magnetoencephalography work has 29 

shown that object category information was decodable from brain activity during mental 30 

imagery, but the timing was delayed relative to perception. The current study builds on 31 

these findings, using electroencephalography to investigate the dynamics of mental 32 

imagery. Sixteen participants viewed two images of the Sydney Harbour Bridge and two 33 

images of Santa Claus. On each trial, they viewed a sequence of the four images and were 34 

asked to imagine one of them, which was cued retroactively by its temporal location in the 35 

sequence. Time-resolved multivariate pattern analysis was used to decode the viewed and 36 

imagined stimuli. Our results indicate that the dynamics of imagery processes are more 37 

variable across, and within, participants compared to perception of physical stimuli. 38 

Although category and exemplar information was decodable for viewed stimuli, there were 39 

no informative patterns of activity during mental imagery. The current findings suggest 40 

stimulus complexity, task design and individual differences may influence the ability to 41 

successfully decode imagined images. We discuss the implications of these results for our 42 

understanding of the neural processes underlying mental imagery.  43 

Keywords: mental imagery; electroencephalography; MVPA; decoding 44 
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Introduction 49 

Does the Mona Lisa face left or right? A common method of solving this problem is to 50 

form an image of the Da Vinci painting in your ‘mind’s eye’. Our ability to imagine scenes 51 

and objects can help us solve everyday problems and accomplish day-to-day tasks, such 52 

as retracing our steps to find a lost item or navigating from a memorised map. These 53 

mentally-generated images are formed in the absence of visual information, and are instead 54 

based on short- or long-term memories (Ganis et al., 2003; Kosslyn et al., 2001). Images 55 

generated from memory seem anecdotally weaker, or less vivid, than those evoked by 56 

sensory input, yet also appear to rely on the visual system (Dijkstra et al., 2018). In line with 57 

this, current theories of mental imagery involve common mechanisms for human vision and 58 

mental imagery.  59 

Recent work has revealed overlapping neural substrates for visual perception and 60 

imagery. Positron emission tomography (PET) and functional magnetic resonance imaging 61 

(fMRI) have revealed similar patterns of brain activity during perception and imagery, 62 

suggesting computational overlap in the neural systems responsible for each process (Ganis 63 

et al., 2004; Kosslyn et al., 1999; Lee et al., 2012; Slotnick et al., 2005). This overlap is 64 

particularly clear for areas associated with higher-order abstract visual processing, such as 65 

visual association cortex (Albers et al., 2013; Goldenberg et al., 1989; Knauff et al., 2000) 66 

and category-selective temporal cortices (Mechelli et al., 2004; Reeder et al., 2015). 67 

Overlapping activation is also present in low-level visual areas, despite the absence of visual 68 

input during imagery; imagery and visual perception both activate the lateral geniculate 69 

nucleus of the thalamus (LGN) (Chen et al., 1998) and primary visual cortex (V1) (Albers et 70 

al., 2013; Harrison and Tong, 2009; Pearson et al., 2008). Together, this supports the notion 71 

that imagery utilises many of the same mechanisms as visual perception. 72 

Despite overlapping neural activation for vision and imagery, the neural processes are 73 

not identical. For example, there is more overlap in higher, anterior regions (i.e., frontal and 74 

parietal; Ganis et al., 2004), compared to lower, posterior visual regions (Harrison and Tong, 75 
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2009; Lee et al., 2012). There are also task-related differences in imagery such that different 76 

imagery tasks show varying degrees of overlap with vision (Ganis et al., 2004; Ishai et al., 77 

2000; Kosslyn and Thompson, 2003). Patients with brain damage also provide evidence for 78 

dissociation between imagery and vision. Some patients with occipital or parietal lesions can 79 

successfully complete tasks relying on mental imagery, despite significant visual deficits, 80 

while others have fully functioning vision but impaired imagery (Bartolomeo et al., 2013; 81 

Bridge et al., 2012; Moro et al., 2008; Zago et al., 2010). Therefore, there is some 82 

dissociation between vision and imagery despite similar neural processing.  83 

To date, research has focused on understanding the brain networks recruited by a 84 

variety of imagery tasks (Fulford et al., 2018; Mechelli et al., 2004), yet we have very little 85 

understanding of the temporal dynamics of mental imagery. Although fMRI studies have 86 

found correlations between imagery and perception in the later stages of visual processing 87 

(Stokes et al., 2011), as well as similar activation patterns between imagery and working 88 

memory (Albers et al., 2013), this evidence is limited by the temporal resolution of fMRI. 89 

Recent work using MEG has revealed that while similar activation patterns are present in 90 

imagery and vision, they occur at a later time and are more diffuse, pointing towards a 91 

temporal dissociation between the two seemingly similar processes (Dijkstra et al., 2018). 92 

Multi-Variate Pattern Analysis (MVPA) applied to neuroimaging data can elucidate the 93 

information represented in different brain regions (fMRI), and at particular points in time 94 

(M/EEG). MVPA offers an advantage in analysing data from mental imagery, as analyses 95 

are conducted at an individual-subject level and mental imagery ability is understood to vary 96 

significantly between people (e.g., Cui et al., 2007). MVPA is also more sensitive to variation 97 

across fine-grained patterns, and provides a powerful framework for the detection of content-98 

specific information (Grootswagers et al., 2017; Haynes, 2015). This is particularly 99 

advantageous for imagery signals that are likely to be weaker than visual input (Naselaris et 100 

al., 2015). One recent study found that the category of imagined images (faces and houses) 101 

was decodable from MEG recordings, albeit later than viewed images (Dijkstra et al., 2018). 102 
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However, decoding of individual exemplars was poor, indicating a dissociation between low- 103 

and high-level imagery processes.    104 

Here, we examined how the neural representation of mental images develops and 105 

changes over time. Participants imagined one of four previously learned pictures: two faces 106 

and two places. Each image was visually dissimilar to the other within the category, while 107 

maintaining clear category divisions. Neural responses were measured using EEG while 108 

participants viewed the experimental images, imagined the images, and viewed fast streams 109 

of semantically related images (i.e., other faces and places). We expected that category 110 

information would be decodable from the EEG data during mental imagery (Dijkstra et al., 111 

2018), that it would be broadly generalisable across the imagery period, and delayed relative 112 

to vision. We also predicted that exemplars within each category would be distinguishable 113 

(i.e., successful within-category decoding). We found that the dynamics of imagery 114 

processes are more variable across, and within, participants compared to perception of 115 

physical stimuli. Although category and exemplar information was decodable for viewed 116 

stimuli, there were no informative patterns of activity during mental imagery.  117 

 118 

Materials and Methods  119 

Experimental structure  120 

At the start of the session, participants completed the Vividness of Visual Imagery 121 

Questionnaire (VVIQ) (Marks, 1973). They were then informed of the task instructions and 122 

completed 24 imagery task training trials. The experiment itself consisted of four blocks that 123 

were completed while EEG was measured. In each block, participants passively viewed five 124 

rapid streams of images (Pattern Estimator), followed by a series of imagery trials. Each 125 

imagery trial consisted of a four-image sequence (Seen images), after which participants were 126 

cued to imagine one of those stimuli (Imagery).  127 

 128 
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Participants 129 

We recruited 16 right-handed subjects (11 male), of mean age 23 (SD= 5.58, range 18-130 

39), with normal or corrected-to-normal vision and no history of psychiatric or neurological 131 

disorders. The experiment was approved by the Human Ethics Committee of the University of 132 

Sydney. Written, informed consent was obtained from all participants.  133 

 134 

Behavioural data 135 

To measure individual variation in vividness, we administered a modified VVIQ (Marks, 136 

1973) prior to EEG set-up. The VVIQ measures subjective perception of the strength of an 137 

individual’s mental imagery. Participants were asked to imagine 16 scenarios, and rated each 138 

for vividness on a five-point Likert-like scale. A reversed scoring system was used to decrease 139 

confusion. Participants rated each item from 1 (“No image at all, you only ‘know’ that you are 140 

thinking of an object”) to 5 (“Perfectly clear and as vivid as normal vision”). All questions were 141 

completed twice, once with open eyes and once with closed eyes. A final summed score 142 

between 32 and 160 was calculated for each subject; higher scores indicate greater vividness.  143 

 144 

Apparatus and Stimuli  145 

Four stimuli were used in this experiment: two images of Santa and two images of the 146 

Sydney Harbour Bridge. The inclusion of two exemplars per category allowed us to 147 

disentangle whether participants are thinking of the concept (i.e., Santa, Sydney Harbour 148 

Bridge) or generating a specific image. These stimuli also fit into distinct face/place categories, 149 

which have been shown to evoke robustly distinct patterns of neural activity (Haxby et al., 150 

2001; Kanwisher et al., 1997).  151 

All stimuli were displayed on a 1920 x 1080 pixel Asus monitor on a grey background. 152 

Participants viewed stimuli at approximately 57cm, such that all stimuli subtended 153 

approximately 4.1 degrees of visual angle (including a 0.15 degree black border). Responses 154 

were made using a mouse with the right hand. A grey fixation cross was superimposed on all 155 
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stimuli, with horizontal and vertical arms subtending approximately 0.6 degrees of visual angle. 156 

Experimental presentations were coded in MATLAB using extensions from the PsychoPhysics 157 

Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).  158 

 159 

Imagery sequence 160 

Each imagery sequence began with a fixation cross in the centre of the screen for 1000 161 

milliseconds. The four stimuli were displayed sequentially in the centre of the screen, within a 162 

black border. Each was displayed for 1500 milliseconds each, in a pseudo-random order. 163 

Targets were counterbalanced such that each block contained all 24 possible sequences of 164 

the four stimuli. For each sequence, a different target was selected in each block. Target 165 

allocation in each block was also randomised. This counterbalancing meant each image 166 

appeared in each temporal position as a target equally often.  167 

The fourth stimulus was followed by a 1000ms fixation cross, then a numerical cue 168 

appeared (1-4). This cue referred to the target’s position in the stream; for example, ‘3’ 169 

indicated the target was the third image in the stream. Participants were instructed to click the 170 

mouse once they had identified the target and were mentally “projecting an image into the 171 

square”. Upon clicking, the number was replaced with a dark grey fixation cross and the frame 172 

was filled light grey. This ‘imagery’ screen was displayed for 3000ms before automatically 173 

advancing to a response screen. On the response screen, participants were shown the four 174 

stimuli and horizontal mirror images of these stimuli. They used a mouse to select which of 175 

these images they were imagining. Mirror images were used as distractors because they are 176 

semantically identical but visually different, to determine if participants were using a semantic 177 

strategy rather than an imagery-based strategy. Horizontal positioning changed across blocks 178 

(stimulus identity), and vertical positioning was randomised every trial (mirror images/stimulus) 179 

such that for some trials the mirror image was in the top row, and some in the bottom row. 180 

This randomisation aimed to reduce predictability in responses.   181 

 182 
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Training  183 

Participants completed a block of 24 practice trials of the imagery sequence before EEG 184 

recording. We expected these training trials to give participants the opportunity to learn task 185 

structure and observe more details about the images to facilitate vivid imagery. Training trials 186 

were similar to experimental trials. The first 12 trials contained typed instructions on how to 187 

identify the target, and went straight to the response screen after the cue, with no imagery 188 

component. On incorrect responses, participants were shown the correct image. The second 189 

12 trials mimicked experimental trials, with the addition of typed instructions and feedback. 190 

Participants were given the option to repeat the training, and two did so.  191 

 192 

Pattern Estimator 193 

We also included a pattern estimator at the beginning of each to investigate the degree 194 

of generalisation across semantic category. These images were semantically similar to the 195 

critical experimental stimuli. Participants passively viewed a rapid stream containing the four 196 

stimuli from the imagery sequence, as well as horizontally flipped, inverted and blurred 197 

versions of these images. It also included other images of the Sydney Harbour Bridge and 198 

Santa, other bridges and other people. Each block began with five short streams of 56 images, 199 

displayed for 200ms each. Every stream contained all 56 images in a random order, and lasted 200 

for 11.2 seconds. Participants could pause between streams and elected to advance when 201 

they were ready. 202 

 203 

Data recording and processing  204 

EEG recording 205 

EEG data were continuously recorded at 1000Hz using a 64-channel Brain Products 206 

(GmbH, Herrsching, Germany) ActiCAP system with active electrodes. Electrode locations 207 

corresponded to the modified 10-10 international system for electrode placement (Oostenveld 208 
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and Praamstra, 2001), with the online reference at Cz. Electrolyte gel kept impedances below 209 

10kW.  210 

 211 

Pre-processing EEG 212 

EEG pre-processing was completed offline using EEGLAB (Delorme and Makeig, 2004) 213 

and ERPLAB (Lopez-Calderon and Luck, 2014). The data were minimally pre-processed. 214 

Data were down-sampled to 250Hz to reduce computational load, then filtered using a 0.1Hz 215 

high-pass filter, and a 100Hz low-pass filter. Line noise at 50Hz was removed using the 216 

CleanLine function in EEGLAB. Four types of epochs were created: Pattern Estimator, Vision, 217 

Cue-Locked Imagined and Response-Locked Imagined. Each epoch included 300ms before 218 

to 1500ms after stimulus onset. Pattern Estimator epochs were from the fast stream at the 219 

beginning of each block, and Vision epochs were from the four images displayed in each 220 

experimental trial. Cue-locked Imagined epochs were centred around presentation of the 221 

numerical cue designating the target. Response-Locked Imagined epochs were centred 222 

around participants’ mouse click to begin imagery. Although the period between cue and 223 

response was variable across trials (Supplementary Fig S2), we expected the period 224 

immediately following the cue to provide insight into the initial stages of imagery generation.  225 

 226 

Decoding analysis  227 

All EEG analyses were performed using time-resolved decoding methods, custom-written 228 

using CoSMoMVPA functions in MATLAB (Oosterhof et al., 2016). For all decoding analyses, 229 

a regularised linear discriminant classifier (as implemented in CoSMoMVPA) was trained to 230 

differentiate brain patterns evoked by each image or category of images.  231 

For category decoding, a classifier was trained to distinguish images of Santa from 232 

images of the Sydney Harbour Bridge for recordings from the same type (i.e., a classifier 233 

trained on data from the Pattern Estimator was tested on another independent portion of the 234 

Pattern Estimator data). To determine if exemplars were also uniquely represented, a classifier 235 

was trained to distinguish between the two exemplars within each category (e.g., decode the 236 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/637603doi: bioRxiv preprint 

https://doi.org/10.1101/637603


 

 10 

two Santa images). Classifiers were trained and tested for each time point using a 12ms sliding 237 

time window (three time points).  238 

To analyse data from the Pattern Estimator and Vision epochs, each presentation 239 

sequence was treated as independent. We used a leave-one-trial-out cross-validation 240 

approach, where Vision trials were composed of the four stimuli in each imagery sequence 241 

and Pattern Estimator trials were composed of a single sequence containing all 56 242 

semantically relevant images. Imagined stimuli were analysed using a leave-two-out cross-243 

validation approach, which took each imagery epoch as independent and left one exemplar of 244 

each category (one Santa and one Sydney Harbour Bridge) in the test set. Cross-decoding 245 

analyses were conducted using split-half cross-validation, where a classifier was trained on 246 

one trial type and tested on another trial type (e.g., train on all Vision trials and test on all Cue-247 

Locked Imagined trials). To investigate the possibility of similar processes occurring in vision 248 

and imagery at different times, we used temporal generalisation methods (King and Dehaene, 249 

2014), in which the trained classifier for a single time point is applied to every time point in a 250 

second set of data.   251 

To compute statistical probability for all within-type, cross-decoding and time 252 

generalisation analyses, we used the Monte Carlo Cluster Statistics function in the 253 

CoSMoMVPA toolbox (Maris and Oostenveld, 2007; Smith and Nichols, 2009; Stelzer et al., 254 

2013). These statistics yield a corrected p-value that represents the chance that the decoding 255 

accuracy could have come from a null distribution formed from 10,000 iterations (North et al., 256 

2002). These p-values were thresholded at pcorrected < .05 for significance.  257 

 258 

Results 259 

In this experiment, participants viewed rapid streams of images (Pattern Estimator), and 260 

series of imagery trials. In imagery trials, participants were presented with a sequence of four 261 

images (Vision) and then were cued to imagine one of the images (Imagery). We trained and 262 

tested multivariate classifiers to decode exemplar and category of the object in all three 263 
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conditions, as well as tested the generalisation performance of classifiers between vision and 264 

imagery trials. 265 

Behavioural results  266 

Vividness of Visual Imagery Questionnaire  267 

The VVIQ was scored out of 160, a sum of responses to each of the 16 questions on a 268 

five-point scale. The VVIQ was given to participants both with eyes open and closed (Marks, 269 

1973). The average overall score was 113 (SD = 15.93, range 82-150), similar to previously 270 

reported means (Amedi et al., 2005; Crawford, 1982; Fulford et al., 2018). Responses with 271 

eyes open (M = 56.44, SD = 8.54) were very similar to eyes closed (M = 57.69, SD = 10.28). 272 

The distribution of overall scores is shown in Supplementary Figure S1.  273 

Target identification   274 

To verify if participants were able to identify the target for imagery trials correctly, we 275 

examined their behavioural responses after each imagery sequence. Participants were able 276 

to accurately identify the target, with an average overall accuracy of 92% (SD = 4.40). Of 277 

the trials which were errors, most participants chose one of the four original images (67% of 278 

errors). Approximately a third of incorrect responses were to the flipped version of the target. 279 

This suggests participants successfully learned the basic characteristics of the target images 280 

and were not simply relying on a mnemonic strategy to complete the task. The mean 281 

response time from cue to imagery was 3.21 seconds (SD = 1.86) and the most frequent 282 

response time was between 1.5 and 2 seconds (Supplementary Fig S2).  283 

EEG results 284 

Significant decoding of image category and exemplars for seen 285 

images on imagery trials 286 
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To test whether category information was represented in visually displayed images, we 287 

trained and tested a classifier on the images seen during experimental trials (Vision). 288 

Category decoding was continuously above chance (ps < .05) after 88ms (Fig 1), indicating 289 

patterns of brain activity for Santas and Sydney Harbour Bridges were distinguishable from 290 

this point. This above-chance decoding was sustained for the entire time the image was 291 

displayed. Continuous above-chance decoding began for both Santas and Sydney Harbour 292 

Bridges at 96ms. Peak accuracy occurred at 132ms for Santas, 124ms for Sydney Harbour 293 

Bridges and at 196ms for category decoding. 294 
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 13  295 

Figure 1. Mean decoding accuracy for Vision (A) and Pattern Estimator (B) images. Dots below plots 
indicate time points at which decoding was significantly above chance (p < .05). Shaded areas represent 
the standard error of the mean across subjects. (A) Decoding category and exemplar identity from the 
four target images presented in the experimental trials. (B) Decoding category and exemplar identity from 
the 56 images presented in the fast streams at the beginning of each block; category decoding was 
based on all images in the stream classified by either face or place, and exemplar decoding was based 
only on the targets and modified targets  
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Significant category decoding in Pattern Estimator 296 

To create a category classification model for imagery, we looked at patterns of brain 297 

activity while participants were viewing images in the fast stream (Pattern Estimator). All 298 

images were labelled according to super-ordinate categories of ‘face’ or ‘place’. To assess 299 

the model’s utility, we cross-validated it on the Pattern Estimator trials. There was sustained 300 

above-chance category decoding from 124ms after stimulus onset until approximately 301 

535ms after stimulus onset (Fig 1). The classifier was also able to distinguish between the 302 

two Sydney Harbour Bridge targets at several discrete time points between 236ms and 303 

348ms after stimulus onset. There was no continuous above-chance decoding for Santas. 304 

Category decoding peaked at 404ms after stimulus onset, at 244ms for Sydney Harbour 305 

Bridges, and at 120ms for Santas. 306 

No significant decoding for imagery 307 

To determine if category or exemplar information was decodable from imagined data, 308 

we trained and tested a classifier on the Cue- and Response-Locked Imagined epochs (Fig 309 

2). Brain areas activated during imagery are known to vary between individuals (Cui et al., 310 

2007), so we looked at imagery decoding on an individual subject basis. For each subject, 311 

we ran a permutation test in which the decoding procedure was run 1000 times, with 312 

category labels randomly assigned to the epochs. A p-value was calculated for each time 313 

point, based on the number of permutations with a greater decoding accuracy than the 314 

correct label decoding. We used the False Discovery Rate to correct for multiple 315 

comparisons. This test was conducted on both Response- and Cue-Locked epochs, and we 316 

found decoding was not significantly above chance for any individual at any time point for 317 

either Cue- or Response-Locked data (ps > .05).  318 

 319 

 320 
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 321 

 322 

 323 

Figure 2. Mean decoding accuracy for Cue-Locked and Response-Locked Imagined epochs. The 

absence of dots below the plots indicates there were no points at which decoding was significantly 

above chance (ps>.05). Shaded areas represent the standard error of the mean across subjects. 

(A) Decoding accuracy centred on when participants click to advance to the imagining period. (B) 

Decoding accuracy centred on presentation of the numerical cue indicating the location of the 

target in the preceding stream.  
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To test whether there was any representational overlap in imagery and vision, we ran a 324 

cross-decoding analysis. We ran all pairwise combinations of vision and imagery; a classifier 325 

trained to distinguish Santas from Harbour Bridges in the viewed stimuli (Pattern Estimator 326 

or Vision epochs) and was tested on imagery periods (Cue-Locked or Response-Locked). 327 

There were no significant periods of overlap for any cross-decoding involving imagined trials 328 

(ps  > .05).  329 

It could be that the processes in vision and imagery engage overlapping representations 330 

but at different times. To test this, we conducted a time generalisation analysis (King and 331 

Dehaene, 2014). A classifier was trained on visual data (Pattern Estimator or Vision epochs) 332 

at each time point, and then tested on imagined data (Cue- and Response-Locked) at every 333 

possible time point. There was no time point where decoding was significantly above chance 334 

for any combination of training and testing (all ps > .05), indicating there was no point where 335 

the patterns of brain activity during perceptually processed stimuli were present during 336 

imagery.  337 

Differences in vividness did not affect decoding accuracy  338 

Another possibility is that people with greater capacity for imagery have more decodable 339 

imagery representations. To investigate the effects of subjective imagery vividness on 340 

decoding accuracy, we grouped the participants as ‘high’ or ‘low’ imagery vividness based 341 

on a median split of their ‘eyes-open’ scores in the VVIQ. Two participants had the median 342 

score and were excluded from further analysis. We used the eyes-open score because it 343 

was the most relevant for the task at hand, and makes our results comparable to prior MEG 344 

research (Dijkstra et al., 2018), where only the eyes-open section was used. To see if there 345 

were any significant differences between the groups in any of the previously described 346 

analyses, we conducted a random-effects Monte Carlo statistic with 10,000 iterations to find 347 

where differences between the groups were significantly greater than zero. There was only 348 

one isolated point of significant differences between the two conditions, at 1484ms, when 349 
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the classifier was trained on Pattern Estimator data and tested on Response-Locked 350 

Imagery.   351 

Discussion 352 

The current study used time-series decoding to capture the precise temporal 353 

fluctuations underlying mental imagery. Based on prior MEG evidence showing the category 354 

and identity of imagined objects can be decoded, we expected successful category and 355 

exemplar decoding from imagery. However, contrary to our predictions, we were unable to 356 

detect any systematic representations of category or exemplar information during imagery. 357 

Based on previous evidence that imagery recruits similar neural networks to vision (Ganis 358 

et al., 2004), we also anticipated overlapping patterns of neural activity when participants 359 

were viewing and imagining the same image. Although we were able to decode stimulus 360 

category and identity from visually processed stimuli, there were no time points where neural 361 

representations of vision and imagery were overlapping. Finally, we considered whether 362 

individual subject results might vary on the basis of imagery vividness, and found no 363 

systematic differences between subjects reporting high and low vividness. Overall, our 364 

findings demonstrate the variability of imagery processes within subjects over time, and 365 

suggest stimulus- and design-related factors may influence the chances of successfully 366 

decoding mental imagery.  367 

 To compare the overlap between imagery and visual processing, we first defined 368 

the temporal dynamics of visual processing for the images in this experiment. For stimuli 369 

presented as part of the imagery sequence (Vision), image category was predictable from 370 

approximately 100ms after stimulus presentation until offset 1400ms later. Exemplar 371 

decoding was also significant from 100ms, albeit for less continuous time than category 372 

decoding, reflecting well-established evidence that both categories and exemplars evoke 373 

distinct patterns of brain activity (Carlson et al., 2013). For the Pattern Estimator, category 374 

decoding was significantly higher than chance from 100ms until approximately 500ms after 375 

stimulus onset. This extended period of decoding after stimulus offset supports recent 376 
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evidence that multiple representations can co-exist in the brain (Grootswagers et al., 2019; 377 

Marti and Dehaene, 2017).  378 

In both visual conditions, exemplar decoding peaked earlier than category decoding. 379 

This reflects well-established evidence of increasing abstraction along the ventral visual 380 

pathway (Carlson et al., 2013; Contini et al., 2017). It also appears that decoding accuracy 381 

for Sydney Harbour Bridges is higher than for Santas, for both visual conditions (Vision and 382 

Pattern Estimator), though this pattern is less defined for the Pattern Estimator stimuli 383 

because of the low numbers of training and testing stimuli (4 of each exemplar per stream). 384 

Informal questioning of participants post-experiment suggested many participants found the 385 

Sydney Harbour Bridge images easier to imagine because of the distinct lines forming the 386 

arches and underside of the bridge.  387 

When the classifier trained on the visual stimuli was tested on imagery, there were no 388 

time points where the signal was sufficiently similar to accurately predict image category or 389 

identity. To investigate the possibility that the processes were not temporally aligned, we 390 

conducted a temporal generalisation analysis. There were no regular patterns of activity at 391 

the group level, indicating there was no overlap in representations at any point in the imagery 392 

period. Based on evidence that areas of activation during imagery vary across people (e.g., 393 

Cui et al., 2007), we examined results on the individual level. Patterns of individual decoding 394 

accuracy varied dramatically between subjects. Neither category nor exemplar decoding 395 

was significant at any time point for any individual. At face value, these results seem 396 

inconsistent with prior findings by Dijkstra and colleagues (Dijkstra et al., 2018). These 397 

differences primarily point to the difficulties of studying visual mental imagery, and the 398 

specific methodological characteristics required to obtain significant imagery decoding.  399 

Several factors may have impacted our capacity to decode imagined mental 400 

representations. For example, the increased number of channels in MEG compared to EEG 401 

provides better signal to noise ratio and greater likelihood of detecting an effect (Cichy and 402 

Pantazis, 2017). An additional consideration is that individual variability in image generation 403 
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would reduce the sensitivity of population statistics. Moreover, the temporal variability in an 404 

individual’s capacity to generate a mental image would further reduce individual effect sizes.  405 

Another potential explanation for our non-significant imagery decoding is the 406 

unavailability of non-imagery based strategies. Previous imagery experiments using a retro-407 

cue design, in which participants identify the imagery target based on a cue presented 408 

immediately following a sequence of images, have found significant imagery decoding using 409 

only two stimuli (e.g., Dijkstra et al., 2017; Dijkstra et al., 2018; Harrison and Tong, 2009). 410 

However, with only two classes of stimuli, participants can effectively complete the task 411 

without imagery. For example, participants could perform the retro-cue house-face task used 412 

in Dijkstra and colleagues’ research (Dijkstra et al., 2018) by recalling a label for each image 413 

as it is presented (e.g., ‘house-face’), and mentally repeating this order after cue 414 

presentation. After identifying the target, subjects could simply continue to think of the 415 

relevant label. This pattern of thought is likely to be sufficiently similar during perception and 416 

imagery to be identified by the classifier as a reliable difference between the categories, 417 

leading to accurate decoding of patterns of brain activity based on semantic labels instead 418 

of imagery.  419 

We designed our experiment to test if this was the case by including a superordinate 420 

category distinction with two exemplars in each category. We obtained response data after 421 

every trial with flipped images as distractors to test whether participants were using an 422 

imagery-based strategy. If participants were using a purely semantic label-based strategy, 423 

we would expect a similar number of responses for flipped and target images. However, only 424 

0.33% of all responses were the flipped version of the target. These response patterns 425 

clearly show participants in our experiment were aware of the visual elements of the images 426 

rather than solely the semantic label. Due to the fundamentally introspective nature of mental 427 

imagery, there is no way to determine if participants are genuinely completing the imagery 428 

portion of the task. However, these response patterns point strongly to the use of an 429 

imagery-based strategy. Future experiments with similar hierarchical structure and more 430 

subtly modified response options (e.g. deleting or rotating a single element of the image, or 431 
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changing colours of elements of the target images) could help determine whether this is a 432 

plausible theoretical explanation for our results.   433 

Generation of mental imagery requires activation of complex, distributed systems 434 

(Ganis et al., 2004). Higher stimulus complexity increases the number of details that need 435 

to be recalled from memory. It therefore seems likely that the neural processes involved in 436 

viewing a static image are more temporally consistent than generating an image from 437 

memory, which is unlikely to follow a millisecond-aligned time-locked process. This is 438 

particularly apparent for complex stimuli which require more details, stored in potentially 439 

disparate locations, to generate vivid imagery. This same temporal blurring between trials 440 

from temporally misaligned processes is present in other prior studies (Dijkstra et al., 2018), 441 

as it is somewhat inherent to the temporal specificity that decoding of time-series data 442 

provides.  443 

Most previous experiments using complex visual scenes as imagery targets use an 444 

extensive training period prior to the study, relying on long-term memories of targets for 445 

imagery (Naselaris et al., 2015). Although our participants completed a training period prior 446 

to EEG recording, slightly longer than those in Dijkstra and colleagues’ MEG study, it is 447 

possible (Dijkstra et al., 2018) that participants might have experienced more vivid imagery 448 

if they had more exposure to the experimental images. Intuitively, it seems easier to imagine 449 

a highly familiar object such as an apple rather than a scene of Sydney Harbour because 450 

there are fewer details required to create an accurate representation. Mental images that 451 

are less vivid or less detailed are likely to generate weaker neural activation (Dijkstra et al., 452 

2017) and are less likely to fully resemble the details that are processed during vision. If the 453 

patterns are less distinct, a classifier is less likely to be able to identify reliable patterns of 454 

brain activity on which to base categorisation. To determine the effects of memory on 455 

imagery vividness and reliability, future study could compare the current results to a similar 456 

paradigm where subjects have extensive training prior to recording (e.g., participants are 457 

extensively questioned about characteristics of the image, or have to draw the main aspects 458 

to show awareness of details in the image).  459 
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As highlighted in recent research (Dijkstra et al., 2019), individual differences in imagery 460 

generate increased variation between individuals. For example, differences in visual working 461 

memory capacity, personal decision-making boundary, and memory strategy may have 462 

increased variation between participants. Individuals who report stronger imagery ability 463 

tend to use an imagery-based strategy on visual working memory tasks (Pearson et al., 464 

2015). Features of both working memory and long-term memory (e.g. meaningfulness, 465 

familiarity) affect ratings of imagery vividness (Baddeley and Andrade, 2000). These factors 466 

might also influence variability within a participant… changes over the course of the 467 

experiment, increasing experience with images, etc, could influence temporal variability from 468 

trial-to-trial. 469 

Other individual differences, such as personal decision strategies vary across 470 

individuals. We may have captured a slightly different stage of imagery, as it is likely each 471 

person based the timing of their mouse clicks on a different threshold criterion for the point 472 

at which they had begun to imagine. Different strategies for identifying the target may have 473 

directed the focus of imagery. When asked informally at the conclusion of the experiment, 474 

all participants could explicitly describe their strategy for identifying the target. Most 475 

participants assigned a label to each image and mentally repeated these to remember the 476 

image order. The majority of strategies relied on structural characteristics, for example, “fat, 477 

tall, under, above”. Several participants also reported a direction-based strategy, for 478 

example, “top, bottom, centre, side” or “straight, side, face, body”, indicating the orientation 479 

of the main object in the image. Though there is no reliable way to compare decoding 480 

accuracy based on strategy, different strategies may direct focus on different aspects of the 481 

complex images (e.g. thinking of ‘face’ might make facial features salient, compared to 482 

labelling the same image as ‘fat’, drawing focus to body shape). These differences in 483 

strategy present another potential source of variation between subjects.  484 

It is clear that capability to decode visual mental imagery is influenced by several 485 

factors, including vividness, memory and stimulus complexity. These factors do not affect 486 

imagery in isolation; they are inherently related. Better memory for the details of an image 487 
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is likely to increase vividness. The number of details remembered by an individual is 488 

influenced by their memory capacity, but also by the complexity of the stimulus and the 489 

number of details necessary to generate a vivid image. All these factors create variation in 490 

the processes used to generate mental imagery, across both people and time (Borst and 491 

Kosslyn, 2010; Dijkstra et al., 2018).  The potential for MVPA techniques to analyse data at 492 

the individual level provides insight into the variation across subjects, and highlights the 493 

need for future studies to consider patterns of data at an individual level to maximise the 494 

chances of obtaining clear signals from imagery.   495 

 496 

Conclusion  497 

In this study, we investigated how neural representations of mental imagery change 498 

over time. Our results suggest successful category decoding in earlier studies may be a 499 

result of better signal to noise ratio from a variety of factors, including individual variation. 500 

Variety in response times, imagery strategy and ability, in addition to fewer recording 501 

sensors may have reduced our power to find systematic patterns of neural activity during 502 

imagery. Furthermore, the interactions between stimulus complexity, working memory, and 503 

imagery vividness may have increased this variation between individuals. Our results raise 504 

many questions for further investigation and demonstrate both the challenges and 505 

advantages associated with time-series decoding for EEG in investigating the introspective 506 

processes underlying mental imagery.  507 

 508 
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 525 

Figure S1. Frequency Distribution of scores in the Vividness of Visual Imagery Questionnaire overall 
scores. Scores are calculated out of a possible 160 by summing responses to each question completed with 
the eyes open and with the eyes closed.  
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 527 
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 529 
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 532 

 533 

Figure S2. Frequency of response times from cue to imagery across all participants. Response 

time is taken from the onset of the numerical cue indicating the location of the target in the 

stream, until the participant voluntarily clicked the mouse. During this period, participants 

identified the correct target and began to imagine it on the screen.  
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