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Abstract: Long-read sequencing technologies substantially improved assemblies of many isolate 
bacterial genomes as compared to fragmented assemblies produced with short-read technologies. 
However, assembling complex metagenomic datasets remains a challenge even for the state-of-the-art 
long-read assemblers. To address this gap, we present the metaFlye assembler and demonstrate that it 
generates highly contiguous and accurate metagenome assemblies. In contrast to short-read 
metagenomics assemblers that typically fail to reconstruct full-length 16S RNA genes, metaFlye captures 
many 16S RNA genes within long contigs, thus providing new opportunities for analyzing the microbial 
“dark matter of life”. We also demonstrate that long-read metagenome assemblers significantly improve 
full-length plasmid and virus reconstruction as compared to short-read assemblers and reveal many novel 
plasmids and viruses.  
 
Introduction . Bacterial genome assemblies of long Single Molecule Sequencing reads (generated by 
Pacific Biosciences or Oxford Nanopore sequencers) substantially improved the contiguity of assembled 
genomes as compared to short-read assemblies (Phillippy, 2017, Jain et al., 2018, Schmid et al., 2018). 
In contrast, early long-read metagenomic studies reported lower yield and reduced read length compared 
to isolate bacterial assemblies, making it difficult to generate high-quality assemblies and suggesting that 
sample preparation protocols have to be optimized to utilize long reads in metagenomic studies (Tsai et 
al., 2016, Driscoll et al., 2017 ). However, the recent improvements in high molecular weight DNA 
extraction techniques allow one to sequence complex metagenomes with deep coverage and increased 
read length (Moss and Bhatt. 2018, Bertrand et al., 2018, Somerville et al., 2018, Nicholls et al., 2019 ). 
These improved protocols have already been used for sequencing complex bacterial communities 
(Bickhart et al., 2018, Stewart et al., 2018 ). 
 
Although some long-read assemblers (Chin et al, 2016, Li, 2016, Koren et al., 2017, Kamath et al., 2017, 
Kolmogorov et al., 2019, Ruan and Li, 2019) have been applied to metagenomic datasets, none of them 
was specifically designed for metagenome assembly. This is unfortunate since long-read metagenomic 
assemblies have a potential to greatly increase the contiguity of short-read assemblies and address their 
inherent limitations, such as strain resolution (Goltsman et al., 2018), detection of horizontal gene transfer 
(Guo et al., 2015), and sequencing of novel plasmids and viruses (Arredondo-Alonso et al., 2017, 
Paez-Espino et al., 2016).  
 
Metagenomic assembly presents additional computational challenges compared to the assembly of 
isolates due to highly non-uniform coverage of the species/strains comprising the sample, the presence of 
long intra-genomic and inter-genomic repeats (Li et al., 2015, Nurk et al., 2017), and difficulties in plasmid 
and virus reconstructions (Antipov et al., 2019, Wick and Holt, 2019). We recently developed a fast, 
long-read genome assembler Flye and showed that it produces accurate and contiguous assemblies 
(Kolmogorov et al., 2019). Wick and Holt, 2019 benchmarked Flye on various bacterial datasets and 
demonstrated that it improves on the state-of-the-art long-read assemblers. Below we describe a fast, 
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long-read metagenome assembler metaFlye, benchmark it on both mock and real bacterial communities, 
and demonstrate that it generates high quality assemblies. 
 
Results. The Flye algorithm first attempts to approximate the set of genomic k -mers (k-mers that appear 
in the genome) by selecting solid k -mers (high-frequency k-mers in the read-set). It further uses solid 
k-mers to efficiently detect overlapping reads, and greedily combines overlapping reads into disjointigs 
(Kolmogorov et al., 2019). This approach excludes most erroneous k-mers (that appear in reads but not in 
the genome) from consideration and reduces the memory footprint of the k-mer index. However, in a 
metagenome setting, this approach would favor high-abundance species, while low-abundance species 
will have a reduced number of solid k-mers (if any), and thus will fail to be assembled. To address this 
limitation, we introduce a new approach to solid k-mer selection, which combines global k-mer counting 
with analyzing local k-mer distributions (see Methods). 
 
In difference from contigs (that are expected to represent contiguous segments of a genome), error-prone 
disjointigs represent arbitrary paths in the assembly graph that can be generated much faster than 
contigs. To fix potential misassemblies within disjointigs, Flye constructs the repeat graph from disjointigs 
by collapsing each family of long repeats into a single path in the graph (Kolmogorov et al., 2019). It 
further classifies edges in the repeat graph into unique and repetitive and simplifies the graph by 
untangling most repeat edges using bridging reads.  
 
Flye classifies an edge in the repeat graph as repetitive if it has high coverage or if the reads that are 
traversing this edge induce diverging paths in the graph. Although the coverage-based criteria works well 
for isolate genome assembly, it is not applicable to metagenomic assembly. Further, the path-based 
criteria might fail to identify edges that belong to complex mosaic repeats. To address these 
complications, we developed a new repeat classification algorithm that reliably detects repeat edges in 
the metagenomic assembly graph in an iterative manner (see Methods). 
 
In addition to the challenges of assembling bacterial chromosomes, there are additional difficulties in 
assembling short plasmids that are typically covered only by a small number of reads. We show that such 
plasmids often remain undetected by existing assemblers and describe an algorithm that recovers 
unassembled plasmids from long-read sequencing data.  
 
We benchmarked metaFlye, Canu (Koren et al., 2017), miniasm (Li, 2016) and wtdbg2 (Ruan and Li, 
2019) using three Pacific Biosciences (PacBio) and Oxford Nanopore Technology (ONT) mock 
metagenome datasets, for which closely related reference genomes are available. We also ran the 
FALCON assembler (Chin et al, 2016) on the PacBio datasets, but not on the ONT datasets (since 
FALCON requires PacBio-specific information as input). For each mock metagenome, we used 
metaQUAST (Mikheenko et al., 2018) to evaluate the statistics of the combined references (Table 1) as 
well as to compute the separate statistics for each species present in the sample (Figure 1). Figure 2 
additionally shows NGAx plots for all datasets. Because miniasm outputs contigs with a high 
per-nucleotide error rate, we performed a round of contig polishing using Racon (Vaser et al., 2017) to 
generate more accurate miniasm assemblies (see Methods).  
 
The HMP mock dataset represents a human mock metagenome formed by 22 bacteria with known 
reference genomes sequenced using PacBio reads (total length 6.8 Gb and N50 = 6.7 kb). Nineteen of 
these bacteria have read coverages ranging from 39x (B. cereus) to 477x (H. pylori). Since the remaining 
three genomes (M. smithii, C. albicans, and  S. pneumoniae) have low coverage (below 1x), they were 
excluded from further analysis.  
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Dataset 
description 

Assembler Total 
length 

Contigs Reference 
coverage 

NGA50  Mis- 
assemblies 

CPU 
hours 

HMP  
 

6.8 Gb PacBio, 
19 bacterial 

ref. 

metaFlye 66.2 Mb 85 99.8% 1.77 Mb 67 45 

Canu 68.2 Mb 180 99.7% 1.82 Mb 122 756 

FALCON 60.0 Mb 388 90.3% 0.76 Mb 116 150 

miniasm + Racon 66.5 Mb 95 99.6% 1.48 Mb 74 11 

wtdbg2 65.5 Mb 187 98.7% 0.66 Mb 104 4 

ZymoEven 
GridION 

 
14 Gb ONT, 

8 bacterial &  2 
yeast ref.  

metaFlye 65.5 Mb 637 94.6% 526 Kb 29 90 

Canu 65.7 Mb 807 95.6% 272 Kb 36 4,590 

miniasm + Racon 51.9 Mb 998 80.4% 83 Kb 26 67 

wtdbg2 54.2 Mb 1101 75.9% 75 Kb 11 5 

ZymoLog 
GridION 

 
   16 Gb ONT, 
3 bacterial & 1 

yeast ref. 
 

metaFlye 23.6 Mb 363 75.2% 407 Kb 10 112 

Canu 26.9 Mb 433 90.2% 187 Kb 57 38,800 

miniasm + Racon 15.6 Mb 122 56.5% 209 Kb 43 299 

wtdbg2 23.0 Mb 668 56.6% 14 Kb 20 13 

ZymoEven 
PromethION 
146 Gb ONT 

8 bacterial & 2 
yeast ref.  

metaFlye 70.3 Mb 527 94.6% 647 Kb 11 1,000 

wtdgb2 25.7 Mb 313 39.4% - 30 12 

ZymoLog 
PromethION 
148 Gb ONT 

5 bacterial & 1 
yeast ref. 

metaFlye 38.4 Mb 284 95.4% 3 Mb 34 4,500 

wtdgb2 17.3 Mb 385 32.8% - 31 16 

 
Table 1. Assembly statistics and benchmarks for the HMP, ZymoEven, and ZymoLog  datasets. For the HMP 
dataset, we used 19 bacterial references with sufficient read coverage and excluded three references with low 
coverage for assembly quality evaluation with metaQUAST. All reference genomes were used for assembly quality 
evaluation in the case of the ZymoEven datasets. For the ZymoLog GridION dataset, we used only four reference 
genomes that had read coverages above 3x (L. monocytogenes, P. aeruginosa , B. subtilis , and S. cerevisiae ) for 
assembly quality evaluation. Similarly, five bacteria and one yeast references were used in ZymoLog PromethION 
analysis. Two yeast genomes (S. cerevisiae and C. neoformans) were excluded from the misassembly analysis in all 
Zymo datasets because of the many apparent differences between the reference and the assembled strains. 
Statistics were computed with metaQUAST 5.0 with the sequence identity threshold set to 90% and the minimum 
contig length set to 5 Kb. All tools were benchmarked on a computational node with 52 Intel Xeon 8164 CPUs. 
Reference coverage is the percentage of the reference genome covered by assembled contigs. NGA50 is the NG50 
statistic computed for contigs that are broken at their misassembly breakpoints. 
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The metaFlye, Canu and miniasm assemblies resulted in high reference coverage (ranging from 99.6% 
for miniasm to 99.8% for metaFlye) and NGA50 (ranging from 1.48 Mb for miniasm to 1.82 Mb for Canu). 
The number of mis-assemblies varied from 67 for metaFlye to 122 for Canu. The wtdbg2 and FALCON 
assemblies had reduced reference coverage (98.6% and 89.9%, respectively) and lower contiguity 
(NGA50 = 0.66 Mb and 0.76 Mb, respectively). The reduced coverage and contiguity were mainly 
associated with bacteria with abundances that significantly deviated from the median dataset coverage 
(B. cereus, R. shaeroides, C. beijerinckii and H. pylori; see Figure 1), highlighting the challenge of 
assembling metagenomics datasets with uneven species abundance. 
 
metaFlye assembled all 14 known plasmids that have been previously identified  in the HMP dataset 
(Antipov et al., 2019). Miniasm, Canu, FALCON and wtdbg2 missed one, two, four, and four plasmids, 
respectively. Most of the missed plasmids were shorter than 5 Kb and were fully covered by a single read, 
illustrating additional complications in reconstructing short plasmids.  Overall, plasmid reconstruction 
using long reads showed substantial improvement over short-read metagenome assemblers: 
metaplasmidSPAdes short-read plasmid assembler reconstructed only seven out of the 14 plasmids from 
the same sample (Antipov et al., 2019). 
 
We then evaluated the assemblies of the mock datasets from the ZymoBIOMICS Microbial Community 
Standards, generated using ONT reads with an N50 of ~5 Kb (Nicholls et al., 2019). The ZymoEven mock 
community consists of eight bacteria with abundance ≅12% and two yeast species with abundance ≅2%. 
The ZymoLog dataset represents the same microbial community with abundances distributed as a log 
scale from 89.1% (Listeria monocytogenes) to 0.000089% (Staphylococcus aureus). Each of the two 
communities were sequenced using GridION (total read lengths of 14 Gb and 16 Gb for the ZymoEven 
and ZymoLog datasets, respectively) and PromethION (total read lengths of 146 Gb and 148 Gb for the 
ZymoEven and ZymoLog datasets, respectively). Since the provided reference assemblies of two yeast 
species (S. cerevisiae and C. neoformans) were highly fragmented, we substituted them with the closest 
complete reference strains from NCBI (YJM1307 and JEC21, respectively). Because of the structural 
differences between the reference and the assembled strains, we ignored misassemblies from the yeast 
genomes in the total count of misassemblies.  
 
The Canu and metaFlye assemblies of the ZymoEven GridION dataset covered 95.6% and 94.6% of the 
combined reference length (in contigs of length 5 kb and higher), and significantly improved over miniasm 
and wtdbg2 assemblies (80% and 76%, respectively). metaFlye showed better contiguity than Canu 
(NGA50 = 526 kb and 272 kb, respectively). The number of misassemblies varied from 11 for wtdbg2 to 
36 for Canu. Figure 1 illustrates that metaFlye and miniasm produced very similar assemblies of most of 
the bacterial species; however, miniasm produced more fragmented assemblies of the yeast species.  
 
The ZymoLog GridION dataset has only four species with read coverage above 3x: L. monocytogenes 
(3960x), P. aeruginosa (158x), B. subtilis (38x) and S. cerevisiae (7x). metaFlye reconstructed over 99% 
of the three most abundant bacteria and 49% of S.cerevisiae. Miniasm assembled a smaller fraction of 
S.cerevisiae (10%), and wtdbg2 generated a highly fragmented assembly of the abundant L. 
monocytogenes. Canu produced the best coverage of the S.cerevisiae genome (80%), however the 
assembly was highly fragmented. Overall, metaFlye showed the best contiguity, followed by miniasm and 
Canu (NGA50 = 407 Kb, 209 Kb and 187 Kb, respectively; see Figure 1). The number of misassemblies 
varied from 10 for metaFlye to 57 for Canu (Table 1).  
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Figure 1. Per-species statistics for the HMP, ZymoEven GridON, and ZymoLog GridON datasets. Reference 
coverage and NGA50 statistics were computed using metaQUAST. The read coverage for each species are given in 
the brackets after the species name. NGA50 values are not reported for assemblies with reference coverage below 
50%.  
 
metaFlye assembled PromethION runs of both ZymoEven and ZymoLog communities in 1,000 and 4,500 
CPU hours, respectively (Table 1). In the ZymoEven dataset, all bacterial genomes but two were 
assembled into single circular contigs (assemblies of L. monocytogenes and E. faecalis resulted in three 
contigs since they share an unresolved repeat of length 35 kb). The contiguity of the C. neoformans and 
C. cerevisiae assemblies (NGA50) increased by a factor of 2 as compared to the GridION assembly. The 
metaFlye assembly of the ZymoLog community from PromethION reads significantly improved over its 
assembly of the community from GridION reads: the cumulative reference coverage of all species 
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increased from 38% to 58%. In particular, S.cerevisiae coverage increased from 49% to 87% and the 
previously unassembled  E. coli and S. enterica genomes had over 99% coverage in the PromethION 
assembly. This improvement in the reconstruction of underrepresented species highlights the benefits of 
generating deep coverage datasets for long-read metagenome sequencing. 
 
Since the Canu running time on the Zymo PromethION datasets was estimated as 50,000+ CPU hours, it 
was impractical to run it on the available hardware. Miniasm requires all pairwise-read alignments to be 
computed first using minimap2. The size of such alignment (in the PAF format) for the GridION 
ZymoEven dataset was ~200 Gb. Since the expected size of the alignments for the PromethION dataset 
is ~20 Tb (the number of alignments is quadratic in the number of reads), it was impractical to run 
miniasm on the available hardware. The wtdbg2 assembly of the ZymoEven PromethION dataset was 
much shorter than its GridION assembly (26 Mb vs 54.2 Mb, respectively), which might be a result of read 
subsampling procedures implemented in this assembler. Similarly, the ZymoLog assembly size was 
reduced from 23.4 Mb for GridION to 17.3 Mb for PromethION. 
 
In addition to the mock metagenomic datasets, we assembled the cow rumen dataset consisting of 
PacBio reads (total read length 52.2 Gb with N50 ~9 Kb) and compared metaFlye assembly against Canu 
assembly generated in the original study (Bickhart et al., 2018). Both assemblies were polished using 
short reads with two rounds of the Pilon polishing procedure in the indel correction mode (Walker et al., 
2014 ). The metaFlye and Canu assemblies had total lengths of 1,260 Mb and 1,035 Mb in contigs longer 
than 5 Kb, respectively. The metaFlye assembly was also more contiguous (Figure 2): the NG50 was 44 
Kb for metaFlye and 19 Kb for Canu, for a hypothetical metagenome size of 1 Gb (NGAalignment 
statistics were not computed since the reference genomes were unknown). Prodigal (Hyatt et al., 2010) 
predicted 1,431,527 full (38,376 partial) genes in the metaFlye assembly, and 1,191,681 full (95,679 
partial) genes in the Canu assembly.  
 
We then used Barrnap (https://github.com/tseemann/barrnap) to identify 581 and 422 full-length 16S 
rRNA genes in metaFlye and Canu assemblies, respectively. We further performed Operational 
Taxonomic Unit (OTU) clustering of these genes at 95% identity using QIIME2 (Bolyen et al., 2018) to 
reveal the fine-grained taxonomic composition of the microbial community. The clustering resulted into 
377 and 218 OTUs for metaFlye and Canu assemblies, respectively (all but one OTUs from Canu 
assembly were also recovered by metaFlye). Taxonomic assignment against SILVA132 full-length rRNA 
database (Quast et al., 2012) revealed 65 and 34 unassigned OTUs (with best match against the 
SILVA132 database below 95% percent identity) in metaFlye and Canu assemblies, respectively. This 
analysis reveals the great potential of long-read metagenomic assemblers to analyze the microbial “dark 
matter of life” (Lloyd et al., 2018). In contrast to short-read assemblers that typically fail to reconstruct 
full-length 16S RNAs (due to collapsing their multiple copies and further assembly fragmentation), 
long-read assemblers capture many 16S RNA genes within long contigs (up to 374 kb long in the 
metaFlye assembly).  
 
To identify Antibiotic Resistance Genes  (ARGs), we predicted ORFs with Prodigal in the metagenomic 
mode, aligned them using blastn against the ResFinder ARG database (Zankari et al., 2012), and 
retained hits with at least 95% nucleotide sequence identity and at least 90% ARG sequence coverage. 
This procedure resulted in 46 and 104 putative ARGs in metaFlye and Canu assemblies, respectively. To 
rule out a possibility that some of them are caused by duplicated regions in assemblies, we clustered the 
identified ARGs based on their k-mer content using Mash (Ondov et al. 2016) and classified two ARGs as 
duplicates if their k-mer compositions differ by less than 1%. After this clustering, we revealed 26 and 23 
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potential unique ARGs in metaFlye and Canu assemblies, respectively (16 of them were found in both 
metaFlye and Canu assemblies).  
 
plasmidVerify (Antipov et al., 2019) and VirSorter (Roux et al, 2015) identified 52 putative plasmids and 
37 viruses among circular contigs in the metaFlye assembly. Among them, seven plasmids and two 
viruses were identified only using the plasmid detection algorithm aimed at short plasmids and described 
in Methods section. All but three of the identified plasmids and viruses did not have significant BLAST 
matches against the NCBI database, thus potentially representing novel plasmids/viruses.  
 
plasmidVerify and VirSorter identified fewer putative plasmids among circular contigs in Canu assembly of 
the cow rumen microbiome (39 versus 52) but more viruses (87 versus 37) as compared to the metaFlye 
assembly. Interestingly, there is little overlap between plasmids (only 8) and viruses (only 10) identified in 
metaFlye and Canu assemblies, suggesting that there may be a synergy between these two tools with 
respect to plasmid and virus assembly.  
 

 
Figure 2. NGAx / NGx plots for different datasets generated using metaQUAST.  NGA statistics were 
computed for the datasets with available references (A-C). For the cow rumen dataset (D), the NG plot is 
given with the genome size set to 1 Gb. 
 
Discussion. Although long-read metagenomics is a promising direction for untangling complex bacterial 
communities, it faces difficult algorithmic challenges. We developed the first long-read metagenomic 
assembler metaFlye and benchmarked it using both mock and real metagenomic communities. Most 
long-read assemblers generated assemblies with a high reference coverage of the HMP mock dataset, 
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with metaFlye, Canu and miniasm assemblies being the most contiguous. However miniasm and wtdbg2 
had difficulties in assembling species with large deviations in coverage in the Zymo datasets, and the 
Canu assemblies showed reduced contiguity and an increased number of assembly errors. With respect 
to the running time, metaFlye was 10 to 300-fold faster than Canu on the various datasets. Only metaFlye 
and wtdgb2 were able to scale to the 150 Gb PromethION runs, but wtdbg2 assemblies were surprisingly 
incomplete and fragmented, compared to the corresponding GridION assemblies. 
 
Our analysis of the cow rumen dataset revealed that long-read assemblers greatly improve on short-read 
assemblers with respect to full-length sequencing of 16S RNA genes, plasmids and viruses, metaFlye 
and Canu assemblies of this dataset confirmed the trend that we observed with the mock metagenomes, 
with the metaFlye assembly being more contiguous (in terms of the NG50 statistics) than the one 
produced by Canu. Since the number of assembly errors is not known, It remains unclear what is the gap 
between the NGA50 and NG50 statistics for both Canu and metaFlye (note that Canu assemblies of all 
mock datasets had the largest numbers of misassemblies among all benchmarked tools).  
 
Although metaFlye is currently limited to assembling long reads only, we plan to extend it to assembling 
hybrid datasets that combine long and short reads. The existing hybrid assemblers, such as 
hybridSPAdes (Antipov et al., 2016) and Unicycler  (Wick et al., 2017), first assemble short reads using 
SPAdes or metaSPAdes and further scaffold the resulting contigs using individual long reads. As a result, 
they do not fully utilize long-read assemblies. metaFlye enables an alternative approach based on (i) 
assembling long reads into metaFlye contigs, (ii) assembling short reads into metaSPAdes contigs, and 
(iii) combining metaFlye and metaSPAdes contigs and assembling them together using Flye.  
 
Methods 
  
Generating assemblies. metaFlye was run using the following additional options for the mock 
metagenome datasets: “--meta --plasmids”. While assembling the cow rumen dataset, we found that 13% 
of PacBio reads contained more than one PacBio subread (reads with multiple polymerase passes). To 
efficiently split those “chimeric” reads, we developed a small program called pbclip 
(https://github.com/fenderglass/pbclip) and applied it to the PacBio data before running metaFlye. 
Minimum overlap parameter for metaFlye was manually set to 2 kb for the cow rumen assembly. Miniasm 
was run using their default parameters for all datasets. Canu was run using parameters recommended 
for metagenome assembly: “corOutCoverage=10000 corMhapSensitivity=high corMinCoverage=0 
redMemory=32 oeaMemory=32 batMemory=200”. Wtdbg2 was run using the default parameters for the 
HMP dataset. However, since the Zymo datasets had higher read coverage as well as low-abundant 
species, we increased the k-mer frequency coverage range by using “--node-max 1000 -e 2” as 
suggested by the developers. This resulted in a significant increase in the total length of the assembly as 
compared to the default settings (from 28 Mb to 55 Mb for the ZymoEven dataset, and from 12.6 Mb to 
23.4 Mb for the ZymoLog dataset). FALCON was run using a configuration file recommended for bacterial 
assemblies. 
 
Solid k-mer selection in metagenome assemblies. The Flye algorithm (Kolmogorov et al., 2019) 
selects solid k-mers as follows (the typical k-mer size is 15 or 17 nucleotides for PacBio and ONT reads). 
In the first pass through all reads, the algorithm counts frequencies of k-mer hashes using a fixed-size 
array of counters. In the second pass, k-mers with pre-computed frequency higher than a threshold 
(typically equal to 2 or 3) are counted using a cuckoo hash table (Li et al., 2014). Given the computed 
k-mer frequency table and an estimated genome size |G|, the algorithm selects the  |G|  most frequent 
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k-mers, and sets a frequency threshold t as the minimum frequency among the selected k-mers. The 
selected threshold t separates solid k-mers (that are indexed) from erroneous ones (that are discarded).  
 
This strategy typically results in a relatively small misclassification rate; e.g., in a typical isolate bacterial 
project only ~5% of unique genomic k -mers (true k-mers from the genome) are missing from the set of 
solid k-mers and only ~10% of unique solid k-mers represent non-genomic k-mers. However, although it 
works well in genomic assemblies, it is not suitable for metagenomic assemblies, because there is no 
frequency threshold that robustly separates genomic from non-genomic k-mers (due to the uneven 
species coverage). Below, we describe an alternative strategy for solid k-mer selection and benchmark it 
using both isolate and metagenome datasets. 
 
Similarly to the uniform coverage mode in Flye, metaFlye also starts with counting k-mers in all reads. 
Although high-frequency k-mers are still expected to represent genomic k-mers, non-genomic k-mers 
arising from reads in highly abundant species often outnumber genomic k-mers from rare species. Given 
a per-nucleotide error rate ε in reads, we estimate the probability of a k-mer in a read to be error-free as E 
= e -kε , under a Poisson error distribution model. Thus, the expected number of solid  k-mers in a read is E 
* |read|. For each read, metaFlye selects a frequency threshold f so as there are at least E * |read| k -mers 
in this read with frequency at least f and indexes k-mers above this threshold using a hash table. Similarly 
to other k-mer counting/indexing tools, metaFlye keeps the canonical representation of each k-mer, which 
is defined as the lexicographical minimum of the forward and reverse-complement of the k-mer. 
 
We evaluated the uniform and metagenome k-mer selection modes using two bacterial datasets, for 
which true k-mers were extracted from the available references. The first set of PacBio  reads from an E. 
coli isolate (at 50x coverage) contains 254.2M (million) k-mers, out of which 56.7M (22%) are genomic. In 
the uniform k-mer selection mode, Flye indexed 55.3M genomic k-mers (97% of all genomic k-mers) and 
5.0M non-genomic (erroneous) k-mers. In the metagenome selection mode, metaFlye indexed 50.3M 
genomic k-mers (89%) and 22M non-genomic k-mers. 
 
We further used the HMP dataset (described above) to evaluate the k-mer selection in a metagenome 
setting. We focused on the two least abundant genomes in the mixture - B. cereus and R. sphaeroides - 
which had coverage 2-fold below the median coverage. These two bacteria contributed to 83M genomic 
k-mers in the reads. In the uniform coverage mode, Flye selected only 33.2M (40%) of their genomic 
k-mers. In contrast, metaFlye selected 71M (86%) of genomic k-mers in the metagenome coverage 
mode. 
 
Identifying repeats in the metagenome assembly graph . metaFlye classifies each edge of the 
metagenome assembly graph as unique (its sequence appears only once in a single genome) or 
repetitive (the edge sequence appears multiple times in a single genome or is shared by multiple 
genomes). Flye uses this classification to identify bridging reads (that start and end at different unique 
edges) and resolves repeats using bridging reads (Kolmogorov et al., 2019). Thus, the contiguity of Flye 
assemblies critically depends on its ability to correctly classify unique and repetitive edges of the 
assembly graph.  
 
The Flye algorithm first aligns all reads to the assembly graph, computes the mean coverage of each 
edge and represents all reads as read-paths (paths in the assembly graph). Afterwards, it captures the 
lion’s share of the repeat edges by simply classifying all high-coverage edges (with coverage exceeding 
the mean coverage by a factor of 1.75) as repetitive. However, since there are possible variations in 
coverage along the genome, this procedure mis-classifies some repetitive edges as unique. To improve 
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the classification of such edges, Flye additionally checks whether all read-paths through a unique edge 
continue into a single successor edge (a similar test is done for predecessor edges). If there are multiple 
successors or predecessors, the edge is re-classified as repetitive.  
 
Although this approach works well in genomic assemblies, it is not suitable for metagenomic assemblies 
since the edge coverage is not a reliable predictor of the edge multiplicity. Without the coverage test, the 
read-paths criteria might fail to identify repetitive edges that belong to mosaic repeats, since it only checks 
one immediate predecessor and successor of each edge (Figure 3). To address this pitfall, we substitute 
the “diverged read-paths” approach in Flye by the “repeat detection” approach in metaFlye (described 
below) to identify repeat edges in the metagenome assembly graph without using coverage information. 
 

 
Figure 3. An example of a mosaic repeat. The subgraph of an assembly graph is formed by four distinct genome 
sub-paths. Edges are shown in color (for repeats of multiplicity 2 or 3), or in black (for unique edges of multiplicity 1). 
Although the edge Y  is a part of the mosaic repeat, Flye may classify it as a unique edge since it has a single 
predecessor (X) and a single successor (Z). The metaFlye repeat detection algorithm will classify X and Z as 
repetitive on the first iteration (since they have three predecessors / successors). On the second iteration, Y  will be 
classified as a repeat, since there exist reads that start at Y  and continue into multiple predecessors / successors of X 
and Z, thus revealing that Y is a repeat.  
 
Initially, all edges in the assembly graph are labeled as unique. The algorithm iterates through all edges 
and may change their classification into repetitive as described below. Thus, at each intermediate 
iteration, the assembly graph may contain both unique and repetitive edges. 
 
Given a read-path through an edge e, metaFlye defines the next unique edge in this path as a successor 
of e (note that the original algorithm considers any edge as a successor). A set of all read-paths through 
an edge defines either a single or multiple successors. To account for chimeric reads, metaFlye filters out 
successors that are supported by less than MaxSucc / delta reads, where MaxSucc is the number of 
reads for a successor with the highest support and delta is a threshold (the default value of delta=5). If an 
edge has multiple successors or predecessors, it is classified as repetitive. The described test is 
performed iteratively on the entire set of edges, until no new edges are classified as repetitive. 
 
Intuitively, in a mosaic repeat, the first iteration of the test will classify some of its edges as repetitive, but 
consecutive iterations extend the set of repeats (Figure 3). For a faster convergence of the algorithm, we 
traverse edges of the graph in the increasing order of their length, as short edges are more likely to be 
repetitive (two iterations are typically sufficient).  
 
Assembling short plasmids. We distinguish between short (shorter than the threshold L with the default 
value 10 kb )) and long plasmids (of length at least L). Sequencing of short plasmids is an important task 
since they represent a large fraction (~30%) of all plasmids in the RefSeq database.  However, although 
existing long-read assemblers perform well in assembling long circular plasmids (longer than the typical 
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read length), our benchmarking revealed that they often miss short plasmids. Paradoxically, the longer 
the reads, the more plasmids remain unassembled.  
 
To assemble short plasmids, metaFlye first aligns all reads to the assembled contigs and then extracts 
unaligned reads (reads with an aligned fraction below 50%). It further extracts single unaligned reads and 
pairs of unaligned reads that assemble into circular sequences. metaFlye focuses on single reads and 
pairs of reads because short plasmids are typically fully covered by a single read or a pair of reads.  
 
Given the set of unaligned reads, metaFlye constructs a set of short cyclocontigs by first selecting all 
self-overlapping reads, i.e., reads that have overlapping prefix and suffix. To further extend the set of 
cyclocontigs, it considers all pairs of reads and selects pairs (A, B) such that B  overlaps A and A overlaps 
B. The collection of the constructed (unpolished) cyclocontigs may contain duplicates that represent the 
same circular plasmid. To extract unique sequences from the collection, metaFlye again performs an 
all-vs-all alignment of all the constructed cyclocontigs, finds similar ones and clusters them so that each 
cluster represents a unique circular sequence. metaFlye filters out single-read clusters (which are likely to 
represent artifacts from the extraction of unaligned reads). It then selects a representative for each 
cluster, polishes the representation using all reads contributing to the cluster as described in Lin et al., 
2016, and adds these sequences to the final assembly output.  
 
Software versions used. 

● Flye: 2.4.2 
● Canu: 1.8  
● FALCON: pb-falcon 0.2.5 
● Miniasm: 0.3  
● Wtdbg2: 2.3  
● QUAST: 5.0.2 

 
Data availability. The described datasets are available from the corresponding locations: 
 

● HMP mock dataset: 
https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun 

● Zymo datasets: https://github.com/LomanLab/mockcommunity 
● Cow rumen dataset: NCBI SRA repository under Bioproject PRJNA507739 

 
Assemblies and metaQUAST evaluations used in this study are available at: 
https://doi.org/10.5281/zenodo.2801953 

 
Code availability . metaFlye is freely available as a part of the Flye package at: 
https://github.com/fenderglass/Flye. The  pbclip tool for PacBio subreads splitting is available from: 
https://github.com/fenderglass/pbclip. 
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