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Abstract  1 

Recombinant human growth hormone (r-hGH) is used as a therapeutic agent for disorders of growth including 2 

growth hormone deficiency (GHD) and Turner syndrome (TS). Treatment is costly and current methods to 3 

model response can only account for up to 60% of the variance. The aim of this work was to take a novel 4 

genomic approach to growth prediction. GHD (n=71) and TS patients (n=43) were recruited in a study on the 5 

long term response to r-hGH over five years of therapy. Pharmacogenomic analysis was performed using 1219 6 

genetic markers and baseline blood transcriptome. Random forest was used to determine predictive value of 7 

transcriptomic data associated with growth response. No genetic marker passed the stringency criteria 8 

required for predictive value. However, we demonstrated that transcriptomic data can be used to predict 9 

growth with a high accuracy (AUC > 0.9) for short and long term therapeutic response in GHD and TS. Network 10 

models identified an identical core set of genes in both GHD and TS at each year of therapy whose expression 11 

can be used to classify therapeutic response to r-hGH. Combining transcriptomic markers with clinical 12 

phenotype was shown to significantly reduce predictive error. We have characterised the utility of baseline 13 

transcriptome for the prediction of growth response including the identification of a set of common genes in 14 

GHD and TS. This work could be translated into a single genomic test linked to a prediction algorithm to 15 

improve clinical management.  16 

 17 

Word count 238 18 
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Introduction 27 

Recombinant human growth hormone (r-hGH) is used as a therapeutic agent for a range of disorders of growth 28 

impairment including growth hormone deficiency (GHD) and Turner syndrome (TS). Treatment is costly at 29 

between £6000 – £24000 per centimetre (cm) gained in final height (1). Therapy is not always successful in 30 

patients and there are currently no genomic markers for predicting positive or negative responses. Prediction 31 

models up to four years of therapy have been defined using clinical measurements (2) but have been difficult 32 

to implement in practise. Whilst an understanding of the pharmacogenetic background has been established 33 

(3, 4), such approaches are of limited predictive value due to the influence of covariates related to the child’s 34 

developmental stage, disease severity and geographical location (5, 6). The pre-treatment blood 35 

transcriptome has been previously shown to relate to first year response to r-hGH therapy (7), however, little 36 

is known about the predictive value of this association and its relationship to longer term response to therapy. 37 

The transcriptome represents a level of ‘omic’ data that reflects genetic information, developmental stage in 38 

relation to age (8) along with the impact of the local environment (6) and, therefore, has potential to classify 39 

response to r-hGH. 40 

Response to r-hGH in the first year of therapy is considered to be a primary marker of growth response. 41 

Prediction of first year growth has been shown to be dependent on GHD severity, age, distance to target 42 

height, body weight, dose of r-hGH, birth weight and, as defined by regression models, can account for 61% 43 

in GHD (9) and 46% in TS (10, 11) of the variation within the data. Clinical markers such as distance to target 44 

height are surrogate genetic variables and this implies that an effective level of genomic prediction is 45 

hypothesised to be possible if developmental (8, 12) and environmental covariates (13) of growth response 46 

can be taken into account.  47 

Transcriptomic data have been used extensively in cancer tissues both to sub-type the tumour (14-16) and to 48 

predict response to therapies (17, 18). In contrast in this study we have used peripheral blood gene expression 49 

profiling as the source for gene expression profiles, and show that these patterns can be used to predict 50 

response to r-hGH in each year of treatment up to five years in two different growth disorders that account 51 

for approximately 60% of GH prescriptions. 52 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/637892doi: bioRxiv preprint 

https://doi.org/10.1101/637892
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Results 53 

Growth response of patients over five years of r-hGH treatment 54 

The auxology of the PREDICT study has been previously described at baseline and after one year (7) and after 55 

three years (5) of therapy with r-hGH. Height velocities as a measure of response to r-hGH at each year in GHD 56 

and TS are shown in Table 1A. As expected, first year growth response is the largest with a decline in 57 

subsequent years to a maintenance growth rate (19). 58 

 59 

Genetic associations were not robust enough to be used to predict changes in growth rate over the five years 60 

of the study 61 

The association between SNP carriage and growth response was assessed for 1096 and 792 growth-related 62 

candidate genes, in GHD and TS respectively, which passed the filtering criterion. Whilst 113 SNPs were 63 

associated with growth response endpoints with an FDR p-value <0.05 modified by the number of blocks of 64 

linkage disequilibrium, none of these were deemed to pass the stringency criteria required for predictive value 65 

(Supplemental Table S1A-E).  66 

 67 

Unsupervised and supervised analysis demonstrates that GHD and TS blood transcriptome at baseline can be 68 

used to classify response to r-hGH therapy over five years of treatment 69 

We first demonstrated that a fundamental relationship existed between the baseline blood transcriptome and 70 

response to r-hGH over the 5 years of the study (GHD n= 50, TS n=22) using DAPC on the unsupervised baseline 71 

transcriptome (GHD = 8875, TS = 8455 gene probe sets). These analyses showed clear segregation of the low 72 

response (LoQ) and the high response (HiQ) quartiles of response to r-hGH thus demonstrating the utility of 73 

blood transcriptome to differentiate response groups (Figure 1). Partial least squares Discriminant Analysis 74 

(PLS-DA) of the unsupervised baseline transcriptome demonstrated similar findings (Figure 2). 75 

 76 

GHD and TS blood transcriptome at baseline can be used to classify response to r-hGH therapy year-on-year 77 

over five years of treatment 78 
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Baseline gene expression associated with height velocity at each year of the five years after the start of 79 

treatment with r-hGH was defined using rank regression (p<0.01) (Supplemental Table S2) with a range of 80 

covariates – microarray batch, age, body mass index (BMI) at baseline for both GHD and TS patients along with 81 

gender and peak GH test response in GHD. Tanner stage was added as a further covariate to account for the 82 

pubertal status of the patients (Figure 3). There was no difference in auxology at baseline between each group 83 

of patients at each year of the study (Table 1B & Supplemental Table S2). First classification of low and high 84 

responding quartile groups of patients was assessed by PLS-DA using unmodified class sizes (Supplemental 85 

Table S3A & 3B): clear separation of the quartiles was observed (example of first year GHD response, Figure 86 

4). We also examined classification of growth response using random forest (RF) with oversampling by SMOTE 87 

to correct for uneven class size (GHD, Supplemental Table S3A and TS, Supplemental Table S3B). These data 88 

show clear classification of good and poor responders: at each year of the study all PLS-DA area under the 89 

curve of the receiver operating characteristics (AUCs) were between 73% and 98% and all RF AUCs were 90 

between 78% and 98% in both conditions.  91 

 92 

Interactome network models of response to r-hGH  93 

There was limited overlap between GHD and TS whole blood transcriptomic markers related to growth 94 

response at each year of the study (Supplemental Table S2). We therefore generated interactome network 95 

models including inferred interactions to assess whether GHD and TS growth response-associated gene 96 

expression was related by affecting the function of similar network modules, albeit in different ways.   97 

Interactome network models of gene expression associated with height velocity at each year of the study were 98 

generated. The hierarchy of overlapping modules of genes was identified in each network using the network 99 

topology parameter of “centrality” (Supplemental Table S4). Network centrality is measurement that is known 100 

to be related to gene function within networks; the more central a gene is, the more capable it is of influencing 101 

other genes within the network (20). 102 

The gene level summary of SNP associations with change in height and height velocity measurements with 103 

FDR <0.05 (Supplemental Table S1C and S1D) were mapped onto the network models (Supplemental Table 104 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/637892doi: bioRxiv preprint 

https://doi.org/10.1101/637892
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

S4). Most of the genetic associations with change in height and height velocity were also present within the 105 

network models – 15/25 SNPs in GHD and 9/12 in TS (Supplemental Table S5), implying that these genes have 106 

a functional role in network action.  107 

Network models associated with height velocity in each year in both GHD and TS demonstrated significant 108 

overlaps (Hypergeometric test, p<0.01) (Figure 5). These observations imply that whilst associated gene 109 

expression may be different between GHD and TS, common network elements are being affected in the two 110 

conditions. 111 

The overlap between network models formed a discrete interactome element shared between GHD and TS 112 

(Figure 6). When this network was partitioned into genes related to each year of response to r-hGH (coloured 113 

Figure 6A), it was determined that the genes associated with year 3 formed a less distinct cluster within the 114 

network (Figure 6B). This observation is in alignment with a partition between early (years 1 and 2) and later 115 

(years 4 and 5) response to r-hGH as would be expected clinically.  116 

The facts that i) genetic associations with growth response map to the network models derived from 117 

transcriptomic data and that ii) the network connectivity of the central modules changes over the duration of 118 

the study imply that the network models are robust and account for the effect of development on related 119 

phenotype (Supplemental Table S5). 120 

 121 

The Identification of core sets of genes that can classify response to r-hGH in both GHD and TS 122 

The overlap between network models was used to select a common set of genes at each year of therapy 123 

present in both GHD and TS. Genes within this common list were selected for growth response classification 124 

if they had previously been identified as significantly associated with height velocity by rank regression in 125 

either GHD or TS (p<0.05) (Figure 6C & Supplemental Table S2). 126 

Classification of both high and low r-hGH response quartiles against the remaining patients was shown using 127 

PLS-DA (no oversampling) and RF (using SMOTE oversampling). All AUCs for classification were between 74% 128 

and 96% (Supplemental Table S6). 129 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/637892doi: bioRxiv preprint 

https://doi.org/10.1101/637892
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

Further confidence in the findings was provided by assessing the predictive quality of the gene probe sets 130 

using BORUTA to define the limits of the noise in the analysis using a 100-fold permutation of the data (e.g. 131 

first year growth response Figure 7 & Supplemental Table S7).  132 

 133 

The core sets of genes with expression in whole blood that can classify response to r-hGH in both GHD and TS 134 

are associated with differential genomic methylation 135 

Changes in genomic methylation in response to short term treatment with r-hGH (4 days) have been 136 

demonstrated in children with range of conditions that manifest short stature (21). Using the data provided 137 

by this previously published study we examined the epigenome at baseline (prior to r-hGH treatment) in 138 

relation to growth response (measured by knemometry) in GHD patients (n=6) and found that using a gene 139 

level summary of DNA methylation (20618 genes) 497 had methylation associated with growth response to r-140 

hGH (rank regression, p<0.01) (Figure 8). The majority of associated genes (425/497) were hypermethylated 141 

at lower rates of growth response.  142 

We took the core sets of genes previously identified as classifiers of response to r-hGH in both GHD and TS 143 

and mapped gene level methylation present in the six GHD patients with knemometry measurements. The 144 

majority of genes (57/71) were correlated with growth response (|R|>0.3) these were evenly distributed 145 

between positive (n=27/71) and negative (n=30/71) correlations (year one data shown in Figure 8B). 146 

 147 

Transcriptomic markers combined with phenotype lead to better growth response prediction  148 

It is known that the baseline phenotype of GHD and TS patients can be used to predict response to r-hGH (2, 149 

22-24). We found that including the blood transcriptome markers increased predictive value at each year by 150 

an average of 7% (p=0.0031) and 4% (p=0.0365) (prediction of low quartile) along with 4% (p=0.0179) and 4% 151 

(p=0.0097) (prediction of high quartile) in GHD and TS respectively (Table S8).  152 

Importantly we also noted a significant decrease of error rate in the prediction of growth response at each 153 

year when blood transcriptome markers were combined with clinical phenotype markers. Error rates 154 

decreased by an average of 5% (p=0.0084) and 5% (p=0.0400) (prediction of low quartile) along with 5% 155 
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(p=0.0252) and 5% (p=0.0067) (prediction of high quartile) in GHD and TS respectively (Table S8). The 156 

reduction observed amounted to an average halving of the error rate seen when predicting response to r-hGH 157 

using clinical phenotype markers alone. 158 

 159 

Discussion 160 

This study aimed to identify for the first time the genomic associations that classify response to r-hGH therapy 161 

from one year up to five years of treatment with r-hGH in children with TS and GHD.  162 

Our previous analysis has shown limited utility of genetic associations derived from a candidate set of growth 163 

related genes in the prediction of response to r-hGh in GHD and TS after one year of therapy (5, 7, 25). Hence 164 

genetic data do not appear to be powerful enough on their own to be used in prediction and clinical 165 

management.   166 

The whole blood transcriptomic profile of GHD and TS patients has been shown to be associated with first year 167 

growth response to r-hGH (7) and to correlate with the interaction between GHRd3 and GHD severity (25). We 168 

therefore reasoned that there may be value in using transcriptomic data to classify growth response, as it 169 

reflects both a child’s genetic profile and the complex clinical phenotypes arising from changes in physical 170 

development during childhood, as well as variation in the severity of the underlying condition. By normalising 171 

gene expression for phenotype, including pubertal stage, we were able to show that whole blood 172 

transcriptomic data, associated with height velocity at each year of the study, could be used to classify both 173 

the low and high quartiles of growth response, with ‘Area under the Curve’ up to 97%, providing the basis for 174 

a predictive test. 175 

Little overlap between GHD and TS was observed between the gene expression data that was associated with 176 

each year of growth response. We therefore investigated whether GHD and TS were interacting with similar 177 

functional units of genes using network models (26). We generated network models of growth response (as 178 

determined by height velocity) at each of the five years of treatment using baseline gene expression. 179 

Functional modules of genes within these models were ranked according to their network centrality. The 180 

measure of network centrality is known to be associated with mechanism (27, 28) and we used this measure 181 
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to define the functional hierarchy of the modules of genes whose expression was linked to r-hGH response at 182 

each year of therapy.  183 

We demonstrated robustness of the network modules identified by mapping the genetic associations 184 

identified in this study to the network models. This process highlighted genes previously identified as 185 

associated with growth response after one year of therapy (GRB10, SOS1 and INPPL1 in GHD) (7) along with 186 

one month change in serum IGF-I associated with r-hGH therapy (CDK4) (29). It was also noted that three 187 

genes were present (INPPL1 and SOS1 in GHD and PTPN1 in TS) out of the four genes identified within the 188 

PREDICT validation study as having replicated an association with first year growth response when controlled 189 

for co-variates (5).  190 

A significant overlap between the core network gene modules between GHD and TS was identified. We then 191 

used gene expression changes associated with growth response within these network elements to identify 192 

genes common to both conditions and show that their expression could be used to classify growth response.  193 

The major strength of this study is to have identified predictive markers and common genomic mechanisms 194 

related to early and later growth in two different growth disorders. Our findings are also supported by the 195 

demonstration of differential methylation in these shared genes, associated with response to r-hGH in another 196 

study (30). Importantly we have defined sets of gene expression with predictive value in two conditions where 197 

the number of genes (17–26) is smaller than the number of patients in the group (33-70) [Table S2 & S6]; this 198 

indicates that the findings are not a consequence of overfitting (31).  199 

In this study we have compared the use of baseline patient auxology to blood transcriptome in predicting 200 

response to r-hGH. Linear models based on baseline patient auxology can account for ~40-60% of the variance 201 

observed (9, 10). Using random forest we found no significant difference in the AUC of baseline auxology alone 202 

compared to using blood transcriptome alone in either GHD or TS (all ~90%). It should be noted that this 203 

comparison was with the transcriptome shared between GHD and TS and if the full blood transcriptome is 204 

used then the average AUC is significantly higher than that derived from baseline auxology (average AUC ~90% 205 

compared to ~95%). We recognise that further work would need to be done to refine a smaller number of 206 

genes and therefore minimise the risk of overfitting when using the full blood transcriptome. However, we did 207 
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identify a significant boost to prediction of between 4% and 7% when the transcriptomic signature shared 208 

between GHD and TS was combined with the baseline patient auxology. Importantly the gain in prediction was 209 

combined with an average halving of the error rate, a feature that represents a major clinical advance in the 210 

prediction of response to r-hGH. 211 

This work has led to three novel findings relevant to growth studies, and potentially to other therapeutic areas 212 

in paediatrics. First, this study has demonstrated the utility of whole blood transcriptome in the classification 213 

of growth response in GHD and TS, derived from a baseline blood sample which is straightforward to obtain 214 

in any child. This technique may be of particular use in conditions with marked variability in response to r-hGH 215 

such as the short child born small for gestational age. Second, network analysis provides a novel approach that 216 

can be used to identify genomic features that are likely to have high predictive value. Finally, a set of common 217 

genes in GHD and TS identified by a network approach can be used to classify growth response in both 218 

conditions, providing the opportunity to develop a test to inform clinical management. 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 
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Methods 234 
 235 
Patients  236 

The PREDICT Long Term Follow up study (multicentre, open-label, prospective, phase IV) and the 237 

pharmacogenetics of the first year of r-hGH treatment have been described extensively previously (7, 29). 238 

Briefly, pre-pubertal children with GHD and TS were enrolled. A diagnosis of GHD was reached following two 239 

pharmacological stimulation tests with a peak GH concentration of < 10µg/L. Prior to enrolment in the study 240 

none of the children had received GH therapy. Children with GHD due to central nervous system tumours or 241 

radiotherapy were excluded but children born small for gestational age were not. The diagnosis of TS was 242 

based on karyotype. 243 

This PREDICT study was conducted in compliance with ethical principles based on the Declaration of Helsinki, 244 

the International Conference on Harmonization Tripartite Guideline for Good Clinical Practice, and all 245 

applicable regulatory requirements.  246 

 247 

Genetic Analysis  248 

A total of 1219 genetic markers were used in the analysis, 1217 Illumina-genotyped single nucleotide 249 

polymorphisms (SNPs) corresponding to a candidate list of 103 genes and 2 TaqMan-genotyped SNPs in the 250 

IGFBP3 promoter. All genes selected are known to be involved in growth regulation and GH action as 251 

previously described (5, 7).  252 

A Kruskal-Wallis rank sum test was applied on the following 3 genetic models a) genotypic (AA, AB, BB); b) 253 

dominant (AA/AB+BB) and; c) recessive (AA+AB/BB). For non-pseudoautosomal X chromosome markers, GHD 254 

boys and TS girls were analysed as having only two homozygote categories (AA/BB). Adjustment for multiple 255 

testing was performed using Bonferroni correction with 2 different parameters as the number of independent 256 

tests, the number of Linkage Disequilibrium (LD) blocks in the gene in which the SNP is contained and the total 257 

number of LD blocks present in all genes (768 in GHD and 563 in TS). Filtering criterion for prediction were 258 

defined as a false discovery rate [FDR] modified p-value <0.05 unmodified for linkage disequilibrium blocks. 259 

 260 
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Transcriptome Analysis  261 

Transcriptomic profiling was carried out on whole blood RNA as described previously (7) using Affymetrix 262 

GeneChip Human Genome U133 plus 2.0 Arrays. For background correction, the Robust Multichip Average 263 

(RMA) was applied with quantile normalisation and a mean probe set summarisation using Qlucore Omics 264 

Explorer 2.3 (Qlucore, Lund, Sweden). The data set generated was subject to quality control to investigate the 265 

presence of outliers and further confounding effects.  266 

Baseline gene expression associations with height velocity in each year of growth response were determined 267 

using rank regression with microarray batch, age, body mass index (BMI) at baseline as covariates for both 268 

GHD and TS patients along with gender and peak GH test response (average of two provocative tests) for the 269 

GHD patients. Over the study a number of children either entered puberty spontaneously or received 270 

exogenous sex steroids for pubertal induction. We therefore introduced a further normalisation for Tanner 271 

stage to the analysis to account for the proportion of children entering puberty in each year of the study. 272 

 273 

Generation of network models 274 

Network analysis allows the identification and prioritisation of key functional elements within interactome 275 

models. To derive an interactome model differentially expressed genes were used as “seeds” and all known 276 

protein:protein interactions between the seeds and their inferred immediate neighbours were calculated to 277 

generate a biological network using the output of the Biogrid model of the human Interactome (3.3.122)(32). 278 

Network generation and processing was performed using Cytoscape 2.8.3(33).  279 

 280 

Analysis of Gene Network Models 281 

Clustering and “community structure” of modules within biological networks arise from variation in 282 

connectivity within the network and are known to be associated with function (27, 34). To rank these 283 

functional components within interactome models we used the ModuLand plugin for Cytoscape 2.8.3 to 284 

determine overlapping modules and to identify hierarchical structure using the centrality property thus 285 

enabling the identification of key network elements (35). The central core unit of each network module 286 
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(metanode) was defined as the ten most central genes. A list of the unique genes in each metanode was 287 

generated and used as a model of the functional core of the associated network for further comparison. 288 

Network topology was analysed using the CytoHubba plugin for Cytoscape (36). The String database was used 289 

to assess the integrity and connectivity of gene modules (37). 290 

 291 

Analysis of epigenomic data 292 

Epigenomic data from the whole genome DNA previously published methylation profiles of six GHD patients 293 

was used to assess the relationship of changes in DNA methylation in relation to response to r-hGH (21). The 294 

data from GSE57107 was re-analysed in Qlucore Omics Explorer 3.3 and a median based gene level summary 295 

of methylation was determined (n=20618). The relationship between gene level DNA methylation and 296 

response to r-hGH was determined using rank regression. 297 

 298 

Classification of Growth Response  299 

All analysis was performed using the statistical software R 3.3.2 (38). The relationship of baseline gene 300 

expression to potential predictive value (classification of low and high quartiles of response) was performed 301 

using Discriminant Analysis of Principal Components (DAPC) (39), Partial Least Squares Discriminant Analysis 302 

(PLS-DA) (mixOmics 6.1.1 R package (40)) and random forest with 1000 trees (41). Class size imbalance was 303 

corrected for using Synthetic Minority Oversampling Technique (SMOTE) (42). Feature selection from random 304 

forest data was performed using the BORUTA algorithm (43). The area under the curve of the receiver 305 

operating characteristic (AUC) was used to present the probability of a randomly selected sample being 306 

classified correctly.  307 

In random forests about one third of the cases are left out of each iteration and can be used as a test set to 308 

perform cross-validation and to get an unbiased estimate of the test set error, the out of bag (oob) error 309 

estimate. The oob error estimate is recognised as being unbiased (41). 310 
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We used random forest to investigate whether blood transcriptomic data from GHD and TS patients provided 311 

additional value for prediction of response to r-hGH based on baseline patient auxology (age, weight SDS, 312 

birthweight SDS and distance to target height SDS in both TS and GHD with the addition of peak GH value for 313 

GH provocation test in GHD). These analyses were performed by defining the predictive value of baseline 314 

clinical phenotype alone and these data were then compared to baseline clinical phenotype in addition to 315 

blood transcriptomic markers. 316 

 317 

Statistics  318 

Analyses were performed to determine genetic associations with response to r-hGH using the Kruskal-Wallis 319 

rank-sum test with Bonferroni corrections for false discovery rate (FDR). 320 

Transcriptomic data was subjected to dimensional scaling using Principal Components Analysis (PCA) and Iso-321 

map multidimensional scaling (MDS) (44) and used to demonstrate data homogeneity (Qlucore Omics Explorer 322 

3.3) along with outliers using cross-validation. Unsupervised analysis of transcriptome data was performed 323 

using a projection score to select optimal variable subsets by variance filtering (45). 324 

Transcriptomic associations with response to r-hGH were performed using rank regression (p<0.01) and 325 

modified for the listed covariates. This was done by fitting a linear model with the factors to be eliminated as 326 

predictors, and retaining only the residuals (i.e. subtracting the part explained by the predictors). When a 327 

nominal factor was used as covariate (such as gender), this is equivalent to mean-centring each variable over 328 

each subgroup defined by the factor. 329 

The significance of gene set overlaps derived from the network analysis was determined using the 330 

hypergeometric test. Analyses were performed in the stated software or using R (38). 331 

 332 

Study approval.  333 

The PREDICT (NCT00256126) and PREDICT long-term follow-up (NCT00699855) studies were approved by the 334 

Scotland Medical Research and Ethics Committee (reference 05/MRE10/61) and the North West Research 335 
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Ethics Committee (reference 08/H1010/77), respectively. Informed consent was obtained from parents for all 336 

study participants. 337 
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 527 

 528 

Table 1. Patient characteristics. A) Growth response endpoints used over the duration of the study and B) 529 

baseline auxology for patients with growth hormone deficiency (GHD) and Turner Syndrome treated with 530 

recombinant human growth hormone (r-hGH).  531 

Condition Height Velocity 

at year of treatment 

Mean 

(± standard deviation) 

Median 

(min, max) 

N 

GHD HV1 8.9(±2.1) 8.7 (4.7, 14.3) 71 

HV2 7.4 (±1.6) 7.1 (3.4, 12.2) 65 

HV3 6.6 (±2.0) 6.5 (2.0, 11.4) 65 

HV4 6.1 (±2.3) 6.2 (0.9, 11.6) 60 

HV5 5.1 (±2.3) 5.2 (0.0, 10.8) 53 

TS HV1 7.6 (±1.4) 7.2 (5.3, 11.7) 43 

HV2 6.0 (±1.1)    6.1 (3.3, 8.0)    31 

HV3 5.3 (±1.5) 5.0 (1.9, 8.2) 40 

HV4 4.7 (±1.8) 4.8 (1.1, 8.1) 41 

HV5 3.7 (±1.6) 3.9 (1.0, 7.4) 33 

Clinical Characteristics GHD (N=70) TS (N=43) 

Male 45 (64.3)* 0 (0.0)* 

Female 25 (35.7)* 43 (100)* 

Age at baseline (years) 9.3 (6.0, 11.2) 9.9 (7.2, 11.8) 

Baseline height SDS –2.1 (–2.5, –1.7) –2.5 (–3.2, –1.9) 

Baseline BMI SDS –0.2 (–0.9, 0.3) 0.4 (–0.3, 1.2) 

MPH SDS –0.7 (–1.5, 0.0) –0.1 (–0.9, 0.6) 

GH peak response (μg/L) 3.9 (2.3, 5.6) - 

A 

B 

Height velocity (HV) at each year of therapy (cm/year), min = minimum value, max = maximum 
value, N = sample size (data were not available on all children at each year after the first year) 

Data are n (%) or median (Quartile 1, Quartile 3). *All were Tanner Stage 1 at baseline. BMI, body 
mass index; GH, growth hormone; GHD, growth hormone deficiency; TS, Turner syndrome; MPH, 
mid-parental height; SDS, standard deviation score. 
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Figures 532 

Figure 1. The association of whole blood gene expression at baseline with response to recombinant human 533 

growth hormone (r-hGH) over all five years of therapy in patients with growth hormone deficiency (GHD) 534 

and Turner syndrome (TS). Comparison of patient response to r-hGH using Discriminant Analysis of Principal 535 

Components (DAPC). Low quartile (green, LoQ) and high quartile (red, HiQ) of growth response over five years 536 

of therapy (cms grown) compared to the remaining patients (orange) in GHD (N= 50) and TS (N=22). 537 

Unsupervised transcriptomic data with no normalisation for phenotype are shown, GHD = 8875 & TS = 8455 538 

gene probesets. DAPC generates a discriminant function, a synthetic variable that optimises the variation 539 

between the groups whilst minimising the variation within a group. The frequency of the discriminant function 540 

of DAPC is plotted.  541 
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 Figure 2. Whole blood gene expression is associated with response to recombinant human growth hormone 543 

(r-hGH) over five years of therapy in patients with growth hormone deficiency (GHD) and Turner syndrome 544 

(TS). Partial least squares discriminant analysis (PLS-DA) of unsupervised transcriptome using three 545 

components. The low and high quartiles of growth response are shown for response to r-hGH (cm) over five 546 

years in A) GHD and B) TS. Star plot shows sample distance from the centroid, the arithmetic mean position 547 

of all the points in each group. 548 

 549 
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 550 

Figure 3. Distribution of Tanner stages over the study duration. Heat map of the Tanner stage of each patient 551 

(row) ordered by age (youngest at top). Y = year of study. 552 
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 563 
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 565 

 566 

 567 

Figure 4. Predictive value of whole blood gene expression associated with response to recombinant human 568 

growth hormone (r-hGH) in patients with growth hormone deficiency (GHD). Classification of low quartile 569 

(LoQ) and high quartile (HiQ) of growth response (height velocity, cm/year) over each of five years of therapy 570 

with r-hGH (Y1-Y5) was performed in GHD patients and TS patients. Gene expression associated with growth 571 

response was determined using rank regression (p<0.01) and Partial least squares discriminant analysis (PLS-572 

DA) with two components (X-variate 1 & 2) was used to visualise response groups; PLS-DA is an analytical 573 

approach that determines the similarity between individual patients whilst maximising the difference between 574 

patient groups. Low quartile (green) and high quartile (red) compared to the rest of the data (orange) is shown 575 

for first year growth response to r-hGH in GHD (N = 71, 330 gene probesets with rank regression p<0.01). 576 

Similarity between samples is represented by their proximity. The star plot shows sample distance from the 577 

centroid, the arithmetic mean position of all the points in each group.  578 
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 579 

Figure 5. Overlap of the core interactome models of height velocity related gene expression in GHD and TS. 580 

Interactome models were generated from the gene expression associated (p<0.01) with the height velocity at 581 

each year of the study. The functional hierarchy of gene interaction modules within the interactome models 582 

was determined using the Moduland algorithm and the core of the interactome model was defined as the 583 

unique sum of the top ten elements of the modules as ranked by network centrality. The overlap of the core 584 

of the interactome models between GHD and TS was then determined and visualised as a Venn diagram. 585 
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 611 

Figure 6. Network structure of the common core 
network module shared in patients with growth 
hormone deficiency (GHD) and Turner 
syndrome (TS) related to response to 
recombinant human growth hormone (r-hGH).  
A) Similarities in the interactome models of the 
response of GHD and TS to r-hGH were identified 
by overlap at each year of therapy. Genes were 
selected that were significantly related to growth 
response in either or both GHD and TS. The genes 
related to each year of therapy were combined 
into a set of 58 uniquely identified genes and this 
set was used to generate an interactome module 
(Reactome plugin for Cytoscape 3.6.0). Genes 
with a dark border also have a genetic 
association with growth response in either GHD 
or TS. Connecting lines represent known 
protein:protein interactions, size of the node is 
proportional to the number of connections 
made. 
B) The clustering coefficient of the group of 
genes in the network module associated with 
each year of therapy was determined and 
presented as a histogram (average ± standard 
error of the mean). The clustering coefficient 
measures the tendency of nodes to cluster 
together within a network. 
C) The correlation coefficient linking gene 
expression with growth response at each year of 
therapy was mapped to the network model, red 
= positive correlation, green = negative 
correlation. Genes with a thick border also have 
a genetic association with growth response in 
either GHD or TS. 
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 618 

 619 

Figure 7. Predictive value of an identical set of blood gene expression markers identified by network analysis 620 

in the classification of response to recombinant human growth hormone (r-hGH) in patients with growth 621 

hormone deficiency (GHD) and Turner syndrome (TS). First year growth response is used as an example. 622 

Similarities in the interactome models of the response of GHD and TS to r-hGH were identified by overlap at 623 

each year of therapy. Genes were selected that were significantly related to growth response in either or both 624 

GHD and TS, generating an identical set of gene probesets used for prediction of both high and low response 625 

in both GHD and TS. BORUTA, an all relevant feature selection wrapper random forest based algorithm, was 626 

used to confirm the importance of gene expression probe-sets used for classification of response to r-hGH. 627 

The BORUTA algorithm uses a 100-fold permutation to define the noise present in the data; the noise is 628 

modelled as shadow variables and used as a basis to assess confidence in the data. Green = confirmed gene 629 

probeset, yellow = tentative gene probeset, red = rejected gene probeset, blue = shadow variables (high, 630 

medium and low shadow variables are derived to define the noise within the dataset). Low quartile (left 631 

column- LoQ) and high quartile (right column- HiQ) are shown for first year growth response to r-hGH in GHD 632 

and TS. The same group of gene probesets are used in each case. 633 
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 642 

 643 

Figure 8. Gene level summary of DNA methylation in GHD patients is related to growth response as 644 

measured by Knemometry. Whole epigenome measurements of six GHD patients with growth response after 645 

4 days of r-hGH therapy measured by knemometry were available from previously published data (GSE57107). 646 

A gene level summary of DNA methylation was conducted using median values in Qlucore Omics Explorer 647 

(version 3.3) (n=20618). A) Rank regression of whole genome DNA methylation against growth response after 648 

4 days of r-hGH as measured by knemometry (p<0.01) found 497 genes with differential methylation the 649 

majority of which showed increased methylation at low rates of growth (negative correlation). B) Whole 650 

genome methylation in the six GHD patients ordered by growth response in the sets of genes identified as 651 

predicting response to r-hGH in the first year of therapy in both GHD and TS. 652 
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