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Abstract 

Recent behavioral studies suggest that attention samples space rhythmically (1-4). Oscillations in 

brain activity have been described as a possible mechanism supporting attentional processes (5, 6). 

However, the precise mechanism through which this rhythmic exploration of space is subserved by the 

prefrontal cortical regions at the source of attention control signals remains unknown. Here, we apply 

machine learning methods to ongoing monkey prefrontal multi-unit population activity, to decode in 

real-time the (x,y) location of the covert attentional spotlight (7), aka the mind’s eye. We demonstrate 

that this prefrontal attentional spotlight continuously explores space at an alpha 7-12 Hz rate. These 

oscillations determine both neuronal sensory processing, defining how much information is available in 

the prefrontal cortex about incoming sensory stimuli, and perception, determining whether these 

incoming sensory stimuli are prone to elicit an overt behavioral response or not. As a result, when 

sensory events are presented at a specific optimal phase with respect to these oscillations, sensory 

encoding is reliable and behavior is accurate. When sensory events are presented in anti-phase with 

respect to this optimal phase, both sensory encoding and behavioral performance are poor. We propose 

that this rhythmic prefrontal attentional spotlight activity can be viewed as a continuous exploration of 

space via alpha-clocked attentional saccades. We demonstrate that these attentional saccades are highly 

flexible, their pattern of space exploration depending both on within-trial and across-task contingencies. 

These results are discussed in the context of exploration and exploitation strategies and prefrontal top-

down attentional control. 

 

Highlights: 

• The decoded prefrontal attentional spotlight samples visual space in rhythmic cycles 

• This rhythmic attentional exploration predicts neuronal sensory processing accuracy 

• This rhythmic attentional exploration predicts overt behavioral accuracy 

• These rhythmic cycles define alpha-clocked attentional saccades 

• Space exploration by attentional saccades is highly flexible and under top-down control 
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Introduction 1 

The brain has limited processing capacities and cannot efficiently process the continuous flow of 2 

incoming sensory information. Selective attention allows the brain to overcome this limitation by 3 

filtering sensory information on the basis of its intrinsic salience (a child crossing the road in front of your 4 

car) or its extrinsic value (your old stained coffee mug which you know is somewhere on your crowded 5 

desk). Visual selective attention speeds up reaction times (8, 9), enhances perceptual sensitivity and 6 

spatial resolution (10–13) and distorts spatial representation up to several degrees away from the 7 

attended location (14). Visual selective attention modulates both neuronal baselines (15, 16) and the 8 

strength of visual responses (17), decreases neuronal response latencies(18), modifies the spatial 9 

selectivity profiles of the neurons (19, 20) and decreases shared inter-neuronal noise variability (21). 10 

Based on the early work of William James (1890), the spotlight theory of attention assumes that 11 

attention is focused at one location of space at a time (8, 22). In this framework, the spotlight is 12 

moderately flexible. It is shifted from one location to another, independently from eye position, under 13 

the voluntary control of the subject, and its size is adjusted to the region of interest very much like a 14 

zoom lens. Converging evidence demonstrate that the prefrontal cortex (PFC) is at the origin of the 15 

attentional control signals underlying the behavioral attentional spotlight (16, 23–26). Supporting this 16 

idea, we recently demonstrated that this attentional spotlight can be reconstructed and tracked from 17 

PFC neuronal population activity with a very high spatial and temporal resolution (7, 27). However, 18 

recent experimental work provides a completely different perspective onto selective attention, 19 

suggesting that spatial attention samples the visual scene rhythmically1,2,4,18–23. These studies report that 20 

target detection performance at an attended location fluctuates rhythmically very much like overt 21 

sampling processes, such as eye exploration in primates (28–31) or whisking in rodents (32, 33). The 22 

neural processes at the origin of this rhythmic sampling of space by attention are still poorly understood. 23 

Recent works (5, 6) propose that neural oscillations in the fronto-parietal network organize alternating 24 

attentional states that in turn modulate perceptual sensitivity.  25 

In the present study, we provide evidence reconciling these two seemingly contradictory views 26 

of spatial attention. Specifically, we demonstrate that the 2D (x,y) attentional spotlight decoded PFC 27 

activity explores space continuously, through a sequence of attentional saccades that are generated at a 28 

specific alpha 7-12 Hz rhythm. Crucially, we show that these oscillations of the attentional locus 29 

determine both neuronal sensory processing, defining how much information is available in the 30 

prefrontal cortex about incoming sensory stimuli, and perception, determining whether these incoming 31 
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sensory stimuli are prone to elicit an overt behavioral response or not. Using Markov chain probabilistic 32 

modelling, we further show that space exploration by alpha-clocked attentional saccades depends on 33 

both trial and task specific spatial contingencies, implementing an alternation between exploration and 34 

exploitation cycles. 35 

 36 

Material and methods 37 

Behavioral task and Experimental setup 38 

The task is a 100% validity endogenous cued target detection task (fig 1A). The animals were placed in 39 

front of a PC monitor (1920×1200 pixels and a refresh rate of 60 HZ), at a distance of 57 cm, with their 40 

heads fixed. The stimuli presentation and behavioral responses were controlled using Presentation 41 

(Neurobehavioral systems®, https://www.neurobs.com/). To start a trial, the bar placed in front of the 42 

animal’s chair had to be held by the monkeys, thus interrupting an infrared beam. The onset of a central 43 

blue fixation cross (size 0.7°×0.7°) instructed the monkeys to maintain eye position inside a 2°×2° 44 

window, defined around the fixation cross. To avoid the abort of the ongoing trial, fixation had to be 45 

maintained throughout trial duration. Eye fixation was controlled thanks to a video eye tracker (Iscan™). 46 

Four gray square landmarks (LMs - size 0.5°×0.5°) were displayed, all throughout the trial, at the four 47 

corners of a 20°x20° hypothetical square centered onto the fixation cross. Thus, the four LMs (up-right, 48 

up-left, down-left, down-right) were placed at the same distance from the center of the screen having an 49 

eccentricity of 14° (absolute x- and y-deviation from the center of the screen of 10°). After a variable 50 

delay from fixation onset, ranging between 700 – 1200 ms, a small green square (cue - size 0.2°×0.2°) 51 

was presented, for 350 ms, close to the fixation cross (at 0.3°) in the direction of one of the LM. Monkeys 52 

were rewarded for detecting a subtle change in luminosity of this cued LM. The change in target 53 

luminosity occurred unpredictably between 350 – 3300 ms from the cue off time. In order to receive a 54 

reward (drop of juice), the monkeys were required to release the bar in a limited time window (150 - 750 55 

ms) after the target onset (Hit trial). In order to make sure that the monkeys did use the cue instruction, 56 

on half of the trials, distractors were presented during the cue to target interval. Two types of distractors 57 

could be presented: (i) uncued landmark distractor trials (33% of trials with distractor); these 58 

corresponded to a change in luminosity, identical to the awaited target luminosity change, and could 59 

take place equiprobably at any of the uncued LMs; (ii) workspace distractor trials (67% of trials with 60 

distractor); these corresponded to a small square presented randomly in the workspace defined by the 61 
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four landmarks. The contrast of the square with respect to the background was the same as the contrast 62 

of the target against the LM; when presented at the same radial eccentricity as the LMs, the workspace 63 

distractor had the same size as the landmarks; for smaller eccentricities, the size of the workspace 64 

distractor was adjusted for cortical magnification such that it activated an equivalent cortical surface at 65 

all eccentricities. The monkeys had to ignore all of these distractors. Responding to any of them 66 

interrupted the trial. If the response occurred in the same response window as for correct detection 67 

trials (150 - 750 ms), the trial was counted as a false alarm (FA) trial. Failing to respond to the target 68 

(Miss) similarly aborted the ongoing trial. Overall, data was collected for 19 sessions (M1 10 Sessions, M2 69 

9 Sessions). The behavioral performance of each animal is presented in figure 1B, for hit, miss and false 70 

alarm trials. A two-position variant of the above described task was also presented to the monkey. In this 71 

task, while the four landmarks were present all throughout the task as previously, only two diagonally 72 

opposite positions amongst the four were cued all throughout the session. The pair of cued stimuli 73 

changed from one session to the next. 16 such sessions were recorded (8 sessions for M1, 8 sessions for 74 

M2). All else was as described for the main four position task.  75 

Electrophysiological recording 76 

Bilateral simultaneous recordings in the two frontal eye fields (FEF) were carried out using two 24 77 

contacts Plexon U-probes (fig. 1B). The contacts had an interspacing distance of 250 μm. Neural data was 78 

acquired with the Plexon Omniplex® neuronal data acquisition system. The data was amplified 400 times 79 

and digitized at 40,000 Hz. A threshold defining the multi-unit activity (MUA) was applied independently 80 

for each recording contact and each session before the actual task-related recordings started.  81 

Neuronal decoding procedure 82 

MUA recorded during the task were aligned on the cue presentation time and sorted according to the 83 

monkey’s behavioral response (Correct trials, misses trial, false alarm trials). As in Astrand et al. (7, 34), a 84 

regularized linear decoder was used to associate, on correct trials, the neuronal activity estimated on a 85 

given interval in the cue to target interval and the cued location. The decoder was trained on a random 86 

set of 70% of the correct trials at a specific time in the cue to target interval, then tested on the 30% 87 

remaining at all time after cue presentation. During training, the input to the classifier was a 48 elements 88 

by N-trial matrix corresponding to the average neuronal response on each recording channel for the time 89 

interval of interest for each of the N training trials. The imposed output of the classifier was the (x,y) 90 

coordinates of the cued landmark for each of these N training trials. During testing, the output of the 91 

classifier was estimated for a 48 element vector corresponding to the average neuronal response on 92 
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each recording channel for the time interval of interest on a testing trial, new to the classifier. This 93 

output can be read as a continuous (x,y) estimate of attention location (7) or as a class output, 94 

corresponding to one of the four possible visual quadrants (7, 34, 35). When seeking for a continuous 95 

(x,y) readout of attention location, we performed the training using the neuronal activities of Hits 96 

averaged over 50 ms immediately before target presentation, then we tested the decoder on neuronal 97 

activities averaged over 50 ms all throughout the cue to target interval. When taking a classification 98 

perspective, we performed cross-temporal decoding analyses (suppl. figure 1A-B), where successive 99 

classifiers were formed based on successive overlapping (every 10ms) time windows during the cue to 100 

target interval and tested on independent trials and successive overlapping time windows during the cue 101 

to target interval. Mean decoding performance was calculated along the testing axis as the number of 102 

correct classifications divided by the total number of classifications. This procedure was repeated 10 103 

times and the grand average over the 10 repeats are used for further analyses. Supplementary figure 1C-104 

H represents this cross-temporal decoding analysis performed onto a training and a testing time interval 105 

running from cue presentation to 1200 ms post-cue, when the classifiers are based on neuronal activity 106 

sampled over 300, 150, 100, 75, 50 or 25ms. As expected, overall classification performance drops with 107 

neuronal sampling window size (36). Importantly to the present paper, temporal variations in available 108 

content arise at lower sampling window sizes (fig. 2, suppl. Fig. 1F-H). The core analyses of the present 109 

paper were performed using a neuronal sampling window size of 50ms.  110 

Oscillations in behavioral performance 111 

Hits and Misses from M1 and M2 were compiled in time (aligned to cue presentation), and merged 112 

together across the 19 recording sessions. Behavioral performance, defined as the proportion of 113 

(hits/(hits +misses)) was then computed at every millisecond over. The spectral analysis of this time 114 

series was performed on detrended data using a Morlet Wavelet transform as in Fiebelkorn et al. (5), 115 

over the attentional period ranging from 500 ms post cue presentation to 2100ms. Standard error in the 116 

power spectrum corresponds to spectral variability during this time interval. Global power spectrum 1/f 117 

component was removed from the dataset using a *f normalization (figure 5). 118 

Signal frequency and phase analyses 119 

In the present paper, frequency and phase analyses were performed onto time series (inset in fig. 2A and 120 

in fig. 2B) representing attention information classification performance during cue to target interval, for 121 

a given training time, along a testing time running from 500 ms to 1200 ms from cue onset. Time series 122 

were evaluated at training times ranging from 500 ms to 1200 ms from cue onset, each time series 123 
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representing a data sample. Frequency and phase analyses were performed using Wavelet Transform 124 

Analyses, based on the Wavelet Coherence Matlab Toolbox (37). Specifically, for the time frequency 125 

analyses, Morlet wavelet transforms were independently applied to the original data time series (12 126 

Octaves per scale). The significance of peak frequency distributions in the range of interest (7 to 12 Hz) 127 

was assessed against the frequency content of time series generated by the random permutation (1000 128 

repetitions, fig. 2B, dashed line) of the MUA time series (prior to decoding). Power to frequency plots are 129 

represented with a low frequency cutoff at 4 Hz and normalized by maximal spectrum value. Phase of 130 

the signal with respect to cue presentation were obtained from the complex wavelet transform of the 131 

signal at the peak frequency of each session.  132 

Characterizing impact of population oscillations onto individual channel spiking activity 133 

For each trial, channel and session, spike trains were smoothed on a 50 ms sliding window over a -700 134 

ms pre-cue to 2000 ms post-cue time series. On the one hand, a Super MUA signal was computed by 135 

averaging the spiking activity of the 48 recording channels of each session and each trial. On the other 136 

hand, the initial individual channel continuous spiking activity was transformed to identify high-spiking 137 

(defined by a spiking rate above 65% of the maximum spiking regime of the individual channel, labelled 138 

as 1) and low-spiking (labelled as 0) epochs. The probability of individual channel firing as a function of 139 

the oscillatory cycles of the session’s Super MUA was then computed as follows. For each channel, for 140 

frequencies from 5 Hz to 15 Hz, the spiking probability was computed for the up (+/-π/2 around 141 

oscillation peak) and down (+/-π/2 around oscillation trough) oscillatory phases of the frequencies of 142 

interest over the entire time window. For each frequency, the analysis time window was adjusted to 1.5 143 

oscillatory cycle length and computations were performed over a minimum of 50 time bins. All further 144 

analyses on this metric were performed onto an attentional epoch running from 500 ms post-cue to 145 

2100 ms post-cue.  146 

Peak and trough classification 147 

In order to track whether the frequencies identified on the decoded attentional information causally 148 

reflected onto behavior, the following analysis was performed. For each session i, characteristic 149 

attention information oscillatory frequency F(i) and Phase P(i) determined using the above described 150 

wavelet transform analysis. The decoded classification attention information signal was modeled as a 151 

sinusoidal wave determined by the function MSi(t)=sin(2. π.F(i).t-P(i)). Using this modeled signal (MSi), 152 

and based on target time from cue presentation, trials were assigned to one of 10 possible phase 153 

intervals ranging from [–π +π] phase offset from the modeled sinusoidal wave For each of these subsets 154 
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of trials, decoding accuracy of target location (resp. distractor location) and percentage of hit trials (resp. 155 

FA trials) was extracted (fig. 3BC and 4BC). As sensory processing or behavioral outcome could be phase 156 

lagged with respect to signal oscillations, target time was progressively shifted using 5 ms steps, so that 157 

the phase interval associated with peak sensory processing or behavioral outcome coincided with phase 158 

0. This procedure was applied independently for each of the 18 recording sessions and the outcome of 159 

this analysis was then averaged over all sessions, so as to account for variations of F(i) and Phase P(i) 160 

from one session to the next. For a precise estimation of phase difference between oscillations in 161 

attention information classification decoding and oscillations in sensory processing or behavioral 162 

outcome, a circular mean of the corresponding wavelet transform continuous phase difference between 163 

the two signals at frequency F(i) was extracted.  164 

Markov chain modeling of spatial attentional exploration strategies 165 

Markov probabilistic chain models were used to characterize the spatial attention exploration strategy of 166 

each monkey from cue to target presentation. For each trial, (x,y) time series corresponding to the 167 

decoded spatial location of attention during the cue to target interval was collapsed onto the four 168 

possible screen quadrants, thus representing how attention moved from one quadrant to the other in 169 

time. Based on these discrete time series across all trials of a given session. A Markov chain model was 170 

used to estimate the probability that attention stayed in a given quadrant as well as the probabilities 171 

that it moved from the current quadrant to one of the three others. This model was performed using the 172 

Hmmestimate Matlab function of the Statistics and Machine Learning Toolbox. To compensate for 173 

possible idiosyncratic exploration biases of each monkey, the post-cue transition probabilities were 174 

normalized with respect to pre-cue spatial attention exploration transition probabilities. Transition 175 

probabilities were then normalized for each session and averaged over all sessions and both monkeys. 176 

This Markov chain modeling of spatial attentional exploration strategy was independently performed for 177 

both tasks: the four cued-location and the two-cued location tasks.  178 

 179 

Results 180 

In order to access FEF attentional content in time, we had monkeys perform a cued target-detection task 181 

requiring a manual response (fig. 1A) while we recorded the MUA bilaterally from their FEF neuronal ensembles, 182 

using two 24-contacts recording probes (fig. 1C). Distractors were presented during the cue-to-target interval and 183 

target luminosity was adjusted so as to make the task difficult to perform without orienting attention (fig. 1B). 184 

Previous studies demonstrate that PFC based decoding procedures allow to access in which quadrant (34, 35, 38) or 185 
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at which (x,y) location (7), attention is placed by the monkeys. In these studies, neuronal signals were averaged 186 

over time intervals ranging from 150 ms - 400 ms (7, 38). Larger averaging window sizes produce higher decoding 187 

accuracies (suppl. fig. 1), however, larger averaging windows are also expected to result in the smoothing of 188 

dynamic changes in the spatial position of attention, artificially reinforcing a static view of the attentional spotlight.  189 

 190 

Figure 1: Task design and associated behavioral performance. (A) 100% validity cued target detection 191 

task with temporal distractors. Monkeys needed to hold a bar and fixate a central cross on the screen 192 

for a trial to be initiated. The monkeys received a liquid reward for releasing the bar 150 - 750 ms after 193 

target presentation. Target location was indicated by a cue (green square, second screen). Monkeys 194 

had to ignore any uncued event. (B) Behavioral performance of monkeys M1 and M2 at detecting the 195 

target in the presence (w/) or absence (w/o) of a distractor (median % correct +/- median absolute 196 

deviations). (C) Recording sites. On each session, 24-contact recording probes were placed in each FEF. 197 

 198 

Prefrontal attention-related information oscillates at a 7-to-12 Hz alpha rhythm 199 

In the present study, we seek to characterize spatial attention dynamics in time. As a result, the 200 

continuous decoding of attention is performed onto neuronal responses averaged over 50 ms successive (1 ms 201 

time steps, suppl. fig. 1) time windows. At this temporal resolution, clear variations in the prefrontal attention-202 

related information are observed. Indeed, when a classifier is trained to decode attention at a given time from cue 203 

onset, and tested onto novel activities recorded during the cue to target interval (cross-temporal decoding analysis, 204 

fig. 2A). Fluctuations in instantaneous classification accuracies can be noted, at a distance from cue processing. 205 

These fluctuations are reliably associated with a distinct peak in the power spectrum relative to chance, in the 7 - 206 

12 Hz range. This is illustrated for an exemplar session in fig. 2B. The power spectrum was quantified using a Morlet 207 

wavelet transform analysis (WTA) performed onto independent session time series ranging from 700 – 1200 ms 208 

following cue onset (fig. 2B, inset), and assessed against the 95% confidence interval as defined by a random 209 
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permutation procedure (see methods, fig. 2B, red line). Peak frequency in the 7 - 12 Hz range is assessed using this 210 

method for each monkey and each session individually. For the exemplar session in fig. 2B, peak frequency is 211 

identified at 9.2 Hz. Overall, inter-individual and inter-session variability was low and prefrontal attention-related 212 

information oscillated, in monkey M1 (resp. M2), at an average frequency of 9 Hz (fig. 2C, resp. 8.6 Hz). A clear 213 

phase-locking between these attention-related oscillations and cue onset can be seen across both monkeys (fig. 2D, 214 

M1: -75°; M2 -65°). This rhythmic oscillation of the prefrontal attentional spotlight is phase reset by cue 215 

presentation and actually pre-exists to cue presentation (see below).  216 

 217 

 218 

 219 

Figure 2: Oscillation of prefrontal attention-related information. (a) Cross-temporal classification 220 

from 100 ms before to 1200 ms after cue presentation (step of 10ms, averaging window of 50ms) for 221 

an exemplar session. Each pixel represents mean decoding performance obtained over 1000 repeats 222 

of 70% training trials and 30% testing trials). White contour represents the 95% confidence interval as 223 

assessed from trial identity random permutation. Black contour represents inset in fig. 2B. (b) Inset: 224 

close-up of the cross-temporal classification (500 ms post-cue to 1150 ms post cue along testing time 225 

400 ms post-cue to 575 ms post cue along training time) and corresponding mean classification along 226 

testing time (black). Normalized power in this cross-temporal classification interval, as assessed with a 227 

wavelet transform analysis (red line: 95% confidence interval) for the exemplar session presented in 228 

(a). (c) Average +/- s.d. of peak power in a 7 - 12 Hz interval, over all sessions, for each monkey (M1: 229 
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black, M2: gray), in the 4-cued locations version of the task. (d) Circular distribution of signal phase 230 

with respect to cue onset, at identified peak frequency (mean phase: M1: black, -75°, M2: gray, -65°). 231 

 232 

Alpha rhythm paces FEF population code 233 

Oscillations in the attention-related population activity can either reflect a global rhythmic entrainment of 234 

the entire FEF population or changes in the FEF population code at a specific frequency. Fig. 3A represents, for one 235 

exemplar recording probe, on an exemplar trial, and for each recording channel, the time epochs at which spiking-236 

rate exceeds the 65% of the maximum spiking regime of the individual channel. The peaks of the alpha oscillations 237 

are identified on the super MUA of the same individual trial (39) (fig. 3B,) and plotted against the spiking probability 238 

changes represented in fig. 3A. The high spiking probability epochs of individual channels coincide with peak alpha 239 

oscillatory phases in the super MUA. This is captured by a spectral analysis of changes in spiking probability in a 240 

frequency range running from 5 to 15 Hz (see material & methods). Most channels of fig. 3A display a modulation 241 

of spiking probability in an 8 - 12 Hz frequency range (fig. 2C, color code matching fig. 2A). This holds true for all 242 

sessions (fig. 2D, mean+/-s.e.). However, this alpha rhythmic modulation of spiking probability does not reflect a 243 

global entrainment of the entire population. Rather, the channels with highest change in normalized spiking activity 244 

change from one super MUA alpha peak to the next, thus reflecting a change in the FEF population code. These 245 

variations correspond to changes in the spatial allocation of the attentional spotlight that will be described 246 

hereafter.  247 

 248 

Figure 3: Alpha rhythm paces FEF population code. (A) Individual channel spiking probability at a 249 

threshold of 65% (1 trial, 48 channels) as a function of time. (Cue is presented at 700ms. Grey vertical 250 

lines: peak of alpha cycles of the super MUA in (B).  Individual channels are ordered and color coded in 251 

a gradient of blue, as a function of the power of their alpha locking presented in (C). (B) Raw and alpha 252 
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filtered single trial population super MUA calculated over the 48 MUA channels.  Grey vertical lines: 253 

peak of alpha cycles of the super MUA. (C) Changes in individual channel spiking probability, across all 254 

trials, as a function of putative locking to frequencies from 5 to 15 Hz. Spiking probability is specifically 255 

affected in the alpha frequency. Channels are color coded in a gradient of blue, as a function of the 256 

power of their alpha locking. (D) Mean+/-s.e. phase frequency modulation of spiking activity across all 257 

sessions and all channels.  258 

 259 

Oscillations in prefrontal attention-related information predict prefrontal target encoding and target detection 260 

In order to quantify the relationship between prefrontal attention-related oscillations and both target 261 

processing and target detection, trials were classified, for each session, as a function of when the target or the 262 

behavioral response were presented relative to the prefrontal attention information oscillation peak (fig. 4A). To 263 

this aim, the oscillations in each session were modeled by a sinusoidal wave with the session’s specific oscillatory 264 

frequency and cue phase-shift. Targets were assigned to phase bins of width of 2π/10, thus covering an entire 265 

oscillation cycle.  266 

In a first step (fig. 4BC), we focused onto prefrontal target processing. For hit trials, we quantified how 267 

much information was available about the target in the prefrontal neuronal population as follows. Neuronal 268 

activities were averaged between 50 – 100 ms post-target and used to quantify the accuracy of a four-class 269 

classifier at assigning target location to the actual quadrant it was presented in, as compared to the other uncued 270 

quadrants. Classifier training and testing were performed onto independent trial subsets from the same category. 271 

For each session, target-related prefrontal decoding accuracy was then computed for each independent bin of 272 

target-to-attentional oscillation phase-relationship. To increase the resolution of this analysis, this operation was 273 

repeated with successive phase bins shifted by 5% of their width. The lag that generated the highest discrimination 274 

between maximum and minimum decoding accuracy in the cycle was used to define optimal phase-shift between 275 

sensory processing and attention signal oscillations (18) (fig. 4B). An average difference in peak and trough 276 

decoding accuracies of 10% can be noted when decoding accuracies are cumulated, across all sessions, at optimal 277 

phase-shift between sensory processing and signal oscillations (fig. 4B). This difference is highly systematic as 278 

illustrated is figure 4C for each session and each monkey independently. The average target decoding accuracy at 279 

peak for monkey M1 (resp. monkey M2) was of 54% +/- 4 (resp. 58%+/- 2). At trough, these values dropped to 44% 280 

+/- 3 (resp. 47%+/- 1.5). In contrast with the low degree of inter-session variability that we report for prefrontal 281 

attention information locking to cue onset (fig. 2D), phase lag between signal and optimal target processing was 282 

quite variable (fig. 4B, inset). This variability correlated with intersession behavioral variability in reaction times (fig. 283 

5, discussed below). Overall, these results demonstrate a direct modulation of FEF target encoding by the ongoing 284 

alpha oscillations that we characterize on the prefrontal attention information. 285 

 286 
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 287 

Figure 4: Prefrontal target related information and hit rates depend on when the TARGET is 288 

presented relative to attentional oscillation cycles. (A) Categorization schema of trials as a function of 289 

when the target (top) and the behavioral response (bottom) were presented relative to attentional 290 

oscillation cycles. (B) Target related information is significantly higher in trials presented at optimal 291 

phase with respect to the attentional oscillation cycles. Zero phase corresponds to optimal phase and 292 

not to zero phase-locking relative to the attentional signal, hence the observed phase shift distribution 293 

(inset: radial distribution of phase shifts relative to cue presentation, 18 sessions). (C) Peak (upper 294 

third of the distribution in B-) to trough (lower third of the distribution in B-) variations in target 295 

related information, for each monkey (M1: black, M2: gray), for each session. (D) Percentage of hits is 296 

significantly higher in trials presented at optimal phase with respect to the attentional oscillation 297 

cycles (inset: radial distribution of phase shifts relative to cue presentation, 18 sessions). (E) Peak to 298 

trough variations in percentage of hits, for each monkey (M1: black, M2: gray), for each session. 299 

 300 

In a second step (fig. 4DE), we used the same procedure as described above, in order to quantify, how 301 

target detection (hit rates) depended on target presentation time relative to the prefrontal attention information 302 

oscillation cycle. Again, as for target processing, the lag that generated the highest discrimination between 303 

maximum and minimum hit rates in the oscillatory cycle was used to define optimal phase-shifts between target 304 

detection and signal oscillations (fig. 4D, inset). An average difference in peak and trough decoding accuracies of 305 

10% can be noted when decoding accuracies are cumulated at optimal phase-shift between target detection and 306 

signal oscillations (fig. 4D). Again, this difference is highly systematic as illustrated in fig. 4E for each session and 307 

each monkey independently. The average target detection at peak for monkey M1 (resp. monkey M2) was of 75 +/- 308 

1.5 (resp. 52%+/- 2). At trough, these values dropped to 64.5% +/- 1.5 (resp. 41.5%+/- 2). As a result, when hit rates 309 
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are calculated, across all session and both monkeys, as a function of target presentation time with respect to cue 310 

onset (fig. 5A), two significant oscillatory peaks are observed onto behavior, one in the theta (3 to 5 Hz) frequency 311 

band, and one in the alpha (9 to 14 Hz) frequency band (fig. 5B), thus reproducing previous behavioral observations 312 

(1, 2, 4, 5, 40, 41). Overall, we show a direct modulation of behavioral target detection by the ongoing alpha 313 

oscillations in prefrontal attention information, mirroring our observations onto target processing by prefrontal 314 

cortex.  315 

 316 

 317 

 318 

Figure 5: Oscillations in cumulated behavioral performance. (A) Changes in hit rates (detrended mean 319 

+/- s.e.) as a function of time of target presentation relative to cue presentation. Behavioral data 320 

compiled across all recording sessions and both monkeys. (B) Complex Morlet Wavelet analysis of 321 

behavioral time series to extract power spectrum (mean +/- s.e.). Frequencies significantly modulating 322 

overall behavioral performance in dark gray (95%CI on random permutation of target timings).  323 

 324 

However, at a closer look, and as reported above for target processing, phase lag between signal and 325 

optimal target detection was quite variable from one session to the next (fig. 4D, inset). Phase-lag between optimal 326 

target processing and optimal target detection (fig. 6A) was also quite variable (fig. 6B). Importantly, these phase 327 

shifts positively correlated with median session reaction times (r
2
=0.252, p=0.033). In other words, this phase 328 

relationship was predictive of the monkey’s response speed in the sessions, and possibly reflects differences in 329 

global motor preparation or task engagement states from one session to the next, independently from the ongoing 330 

attentional oscillations.  331 

The above reported effects of prefrontal attention information oscillations onto target processing and 332 

behavioral outcome can either be interpreted in terms of modulations in attentional focus (i.e. the degree to which 333 
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attention is dedicated to sensory processing) or in terms of displacement of the attentional spotlight. In the 334 

following, we provide robust evidence in favor of attentional displacement.  335 

 336 

Figure 6: Phase lag between optimal target encoding and optimal target detection behavioral 337 

response (A) vary from one session to the next (B) and are positively correlated with median reaction 338 

times on each session (C).  339 

 340 

Oscillations in prefrontal attention-related information predict prefrontal distractor encoding and false alarm 341 

production 342 

Here, we explore the incidence of the oscillations in prefrontal attention-related information onto the 343 

processing of uncued distractors and the production of false alarms (fig. 7). Along the same experimental 344 

procedure used in the previous section to explore the incidence of the oscillations in prefrontal attention-related 345 

information onto the processing of cued targets and the production of hits. We first focused onto prefrontal 346 

distractor representation (fig. 7B). An average difference in peak and trough distractor decoding accuracies from 347 

prefrontal neuronal responses of over 30% can be noted when decoding accuracies are cumulated at optimal 348 

phase-shift between distractor sensory processing and signal oscillations (fig. 7B). This difference is highly 349 

systematic across sessions and monkeys (fig. 7C). The average distractor decoding accuracy at peak for monkey M1 350 

(resp. monkey M2) was of 45% +/- 2 (resp. 43%+/- 1.7). At trough, these values massively dropped to 14% +/- 3.5 351 

(resp. 7%+/- 3). As observed for target processing, phase lag between signal and optimal distractor processing was 352 

quite variable (fig. 7B, inset).  353 

In a second step, we quantified how responses to distractors (false alarm rate) depended on distractor 354 

presentation time relative to the prefrontal attention information oscillation cycle. An average difference in peak 355 

and trough false alarm rate of more than 10% can be noted when false alarms are computed at optimal phase-shift 356 

between distractor detection and signal oscillations (fig. 7D). This difference is highly systematic across sessions 357 

and monkeys (fig. 7E). The average distractor detection at peak for monkey M1 (resp. monkey M2) was of 45% +/- 358 
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1.5 (resp. 42%+/- 2). At trough, these values dropped to 36% +/- 2 (resp. 29%+/- 2.5). As seen for hit rates, phase 359 

lag between signal and optimal distractor detection was quite variable (fig. 7D, inset).  360 

 361 

 362 

 363 

Figure 7: Prefrontal distractor related information and false alarm rates depend on when the 364 

DISTRACTOR is presented relative to attentional oscillation cycles. (A) Categorization schema of trials 365 

as a function of when the distractor (top) and behavioral response (bottom) was presented relative to 366 

attentional oscillation cycles. (B) Distractor related information is significantly higher in trials 367 

presented at optimal phase with respect to the attentional oscillation cycles. (C) Peak to trough 368 

variations in distractor related information, for each monkey (M1: black, M2: gray), for each session. 369 

(D) Percentage of false alarms is significantly higher in trials presented at optimal phase with respect 370 

to the attentional oscillation cycles (inset: radial distribution of phase shifts relative to cue 371 

presentation, 18 sessions).  (E) Peak to trough variations in percentage of false alarms, for each 372 

monkey (M1: black, M2: gray), for each session. All else as in fig. 3. 373 

 374 

Overall, we thus show a direct modulation of how the PFC represents distractors as well as the overt 375 

behavioral responses to distractors by the ongoing prefrontal attention information alpha oscillations, mirroring 376 

our observations onto target processing and target detection. These observations support the hypothesis of a 377 

displacement of attention in space. In the following, we provide evidence for an explicit link between the above 378 

described oscillations in prefrontal attention information and exploration of space by a highly dynamic and 379 

rhythmic attentional spotlight operating in the alpha frequency range.  380 

 381 
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Attentional “saccades” 382 

 The above described analyses were performed on a quantification of the accuracy with which 383 

attention could be localized in one of the four visual quadrants, based on the observed prefrontal population 384 

neuronal response. In a previous study (7), we demonstrated that the continuous (x,y) readout of a linear classifier 385 

assigning neuronal activities to a spatial location of attention is a relevant proxy for a real-time access to the 386 

attentional spotlight represented in the PFC. Importantly, this continuous (x,y) readout of the prefrontal attention 387 

spotlight is predictive of behavior, both in terms of hit and false alarm rates. In the following, we apply the same 388 

approach to extract (x,y) attention spotlight trajectories in time before and after cue presentation, to the major 389 

difference that the readout is obtained at higher temporal resolution, from neuronal responses averaged over 50 390 

ms rather than on 150 ms as presented in the Astrand et al. (7) Movie 1 presents such prefrontal attention spotlight 391 

trajectories for an exemplar trials, during all the time of the trial. The attentional spotlight is not stable, nor is it 392 

hopping between the four most salient locations. Rather, it is exploring space through a succession of attentional 393 

“saccades” that bring the spotlight from one location in space to another, both around and away from the cue.  394 

 395 

 396 

 397 

Figure 8: The spatial oscillations in prefrontal attentional information map onto changes in 398 

attentional spotlight position in space. The (x,y) position of the attentional spotlight (A, left panel: x, 399 

red; y, gray) varies in time (A, middle panel) at a frequency (A, right panel, dotted black line, 95% 400 

confidence interval) that matches the frequency characterized in overall prefrontal attentional 401 

information (cf. figure 2). (B) Mean maximal power peak frequency of attentional spotlight trajectory 402 
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for M1 and M2, in x (red) and y (gray). (C) Distribution of amplitude of attentional displacement during 403 

the cue to target interval (500 to 1250 post cue), along the x (gray) and in y (red) dimensions. 404 

 405 

The projections of an exemplar prefrontal attention spotlight trajectory onto the x- and y-dimensions are 406 

presented in fig. 8A (middle panel), as well as their spectral power distribution (right panel). A systematic rhythm in 407 

attentional displacement can be identified on both x- and y-traces, on all trials and all sessions, for each monkey 408 

(fig. 8B, monkey M1: X=8.1 Hz+/ -1.6, Y=8.3 Hz+/-2; monkey M2: X=8 Hz+/-1, Y=8.4 Hz+/-2), in the same range as 409 

identified for the global attention population information. No statistical difference is observed between either the 410 

peak frequency in the 7-12 Hz range identified in either the x- and y- attentional traces and the peak frequency 411 

identified in the global attention information content (p= 0.49 and p= 0.87 respectively, data not shown), 412 

confirming a strong link between these measures. These prefrontal attention spotlight trajectories are exploring 413 

space homogenously. Interestingly, a significant difference was observed between the distributions of attentional 414 

displacement along the x- and y-axis (p<0.0001), indicating a larger exploration of space along the vertical 415 

dimension. In this last section, we will demonstrate that while the rhythmic exploration of space by the prefrontal 416 

attentional spotlight is both rhythmic and continuous, how space is being explored is determined by task-related 417 

top-down contingencies.   418 

 419 

Task-contingencies define where rhythmic attention is deployed in space 420 

During cued target detection tasks, the cue serves to orient attention towards the spatial location where 421 

the target is expected to be presented. The absolute distance between two successive attentional saccades does 422 

not vary between before (fig. 9A, black) and after cue presentation (fig. 9A, grey, Kolmogorov-Smirnov test p>0.99). 423 

However, the spatial distribution of these attentional saccades vary significantly between pre-cue and post-cue 424 

epochs. Specifically, fig. 9B represents the heat maps of the spatial distribution of the decoded attentional spotlight 425 

during the pre-cue interval (-500 to –200 ms, contour 1) and the post-cue interval (500 - 1200ms, contour 2), for 426 

each category of cued trials (T1, T2, T3 and T4). During the pre-cue epoch, the heat maps are centered onto the 427 

fixation point (median 0.9°+/-0.07°), exploration being confined within the 10.7° central degrees. During the post-428 

cue epoch, the heat maps shift towards the cued landmark by, on average, 3.6° (+/-0.2). For all cued conditions, 429 

attentional exploration, extends up to 14.5° towards the cued location (exploration probability threshold of 60%). 430 

As a result, rhythmic attention is deployed onto the spatial map changes as a function of within trial task-431 

contingencies.   432 
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 433 

 434 

Figure 9: Attentional spotlight exploration is an endogenous process affected by task event (CUE). (A) 435 

Distribution of amplitude of attentional displacement between one prefrontal attentional position and 436 

the next, in the pre-cue period (black) and in the cue-to-target interval (gray). (B) Heat maps of the 437 

spatial distribution of the decoded attentional spotlight between preCue (1) and postCue (2) epochs. 438 

 439 

To further explore the influence of task contingencies onto the spatial deployment of rhythmic attention, 440 

we used Markov chain probabilistic modelling to describe how the decoded prefrontal attentional spotlight 441 

explores space in two different versions of a cued target detection task: a first version (the one used up to now), in 442 

which the cue could orient attention to one of the four possible quadrants (18 sessions), and a second version in 443 

which the cue oriented attention to only two possible quadrants, placed along the diagonal one with respect to the 444 

other (16 sessions).  For both monkeys, oscillations in the prefrontal attention information did not depend on the 445 

task being performed by the animals (fig. 10A). In contrast, how the rhythmic attentional signal was deployed onto 446 

space as inferred from the decoded attentional spotlight was drastically different between the two tasks. This is 447 

captured by the Markov chain probabilistic modelling of the probability of the spotlight to stay in the cued 448 

quadrant when already there, or to shift to one of the uncued quadrants (fig. 10B, see methods). Indeed, while 449 

during the two types of task configurations, the probability that the decoded attentional spotlight remained at the 450 

cued location was highest (probabilities of 0.55 and 0.47 respectively), the pattern of probability of attention 451 

transitioning from the cued location to one of the uncued quadrants was very distinct. Specifically, during the four 452 

position task, virtually no transitions between the cued quadrant and the diagonally opposite quadrant can be 453 

observed (fig. 10B, grey, probability of transition of 0; for comparison, probability of transition from cued location 454 

to position 2: 22%; to position 3: 23%). This is exemplified in figure 10C, which represents the decoded attention 455 

spotlight trajectory during the cue to target interval in a representative trial of a four position task. In contrast, 456 

during, the two position task, transitions between the cued quadrant and the diagonally opposite quadrant, the 457 
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second most relevant spatial location in the task, become dominant with respect to the other two uncued 458 

quadrants (fig. 10B, red, probability of transition of 22%; for comparison, probability of transition from cued 459 

location to position 2: 16%; to position 3: 15%). This is exemplified in fig. 10D, which represents the decoded 460 

attention spotlight trajectory during the cue to target interval in a representative trial of a two position task.  461 

Finally, we provide evidence to the effect that the prefrontal attentional spotlight explores space at an 462 

alpha that remains stable within trials and across tasks. In addition, we show that how this decoded spotlight 463 

explores space depends on both within-trial and across-task task contingencies. 464 

 465 

 466 

 467 

 468 

Figure 10: How prefrontal attentional spotlight rhythmically explores space depends on task context. 469 

(A) 7-12 Hz oscillation peak in prefrontal attention information in a four (gray) or two (red) cued 470 

positions target detection task, for monkeys M1 (black) and M2 (gray), over all sessions.  (B) Markov 471 

chain probability of the attentional spotlight to stay at the cued quadrant (C), to transition to the same 472 

hemifield uncued quadrant (2), to transition to the opposite hemifield uncued quadrant (3) or to 473 

transition to the diagonally opposite uncued quadrant (4), in the four (gray) or two (red) cued 474 

positions target detection task. (C) Single trial example of prefrontal attentional spotlight exploration 475 

(10 ms resolution) during the cue to target interval, in a four cued positions target detection task, 476 
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superposed onto the Markov chain probability map for this cued condition. Cue was presented in the 477 

upper right quadrant. (D) Same as in (C) for a two cued positions target detection task. 478 

 479 

Discussion 480 

Overall, we show that the attentional spotlight, decoded from cortical prefrontal FEF activities at 481 

high temporal resolution, explores space rhythmically. This rhythmic exploration takes place in the 6-12 482 

Hz (alpha) frequency range, independently of the ongoing task. Importantly, these oscillations of the 483 

attentional locus determine both neuronal sensory processing, defining how much information is 484 

available in the PFC about incoming sensory stimuli, and perception, determining whether these 485 

incoming sensory stimuli are prone to elicit an overt behavioral response or not. From the spatial 486 

perspective, this exploration of space corresponds to attentional saccades. These attentional saccades 487 

explore space biased by both within-trial and across-task contingencies, implementing an alternation 488 

between exploration and exploitation cycles.  489 

The prefrontal attentional spotlight explores space rhythmically  490 

Converging behavioral evidence indicates that attention and perception are not anchored at a 491 

specific location in space, but rather exhibit a temporal alpha rhythmicity (42).  This rhythmic sampling of 492 

space is phase-reset and entrained by external events of interest. It can also be observed spontaneously 493 

(43), and is proposed to organize the tracking of task-relevant spatial locations by attention in time (2, 4, 494 

40–42, 44–46). It has been proposed that, when prior information is available, such a rhythmic sampling 495 

of information is more efficient than a continuous sampling of space (47). These observations have led to 496 

reconsider the model of a continuously active attention spotlight in favor of a rhythmic sampling of 497 

attention at relevant spatial locations, including during sustained attention states (2, 42).  498 

Our present findings reconcile these two models, describing a dynamic prefrontal attentional 499 

spotlight that continuously explores space at a specific rhythm. This rhythmic exploration shares major 500 

characteristics with previous behavioral reports on attentional rhythms: (1) these oscillations are 501 

ongoing and can be identified independently of the intervening task events, (2) they are reset by 502 

relevant external events such as spatial cues and (3) they occur in a well-defined functional alpha 503 

frequency range. However, even if attentional exploration targets task relevant locations, as reflected by 504 

the rhythmic enhancement of neuronal sensory processing and behavioral performance at the cued 505 

target location, exploration is not restricted to these locations. Rather, space exploration by the 506 
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attention spotlight extends to un-cued a priori task irrelevant spatial locations, as reflected by the 507 

rhythmic enhancement of neuronal sensory processing and behavioral overt report at un-cued 508 

unpredictable distractor locations.  509 

The phase between the attentional spotlight ongoing oscillations and a given stimulus 510 

presentation accounts from 10% (in the case of the target) to 30% (in the case of distractors) of the 511 

accuracy with which prefrontal neuronal populations encode the location of this stimulus. In other terms 512 

these oscillations – i.e. where the attention spotlight falls in space- critically impact the sensory 513 

processing of incoming stimuli. Tracing down this effect all throughout the visual system would be 514 

extremely relevant. Neuronal responses to low-salience task-relevant stimuli has been shown to arise 515 

earlier in the PFC than in the parietal cortex (Ibos et al. 2013). As a result, one predicts that this 516 

dependence of sensory processing onto attention spotlight oscillations will be found at all stages of the 517 

visual system. However, phase relationships between local neuronal and stimulus presentation is 518 

expected to vary, reflecting a top-down cascade of influences, in agreement with the role of the FEF in 519 

attentional control (16, 24–26, 48, 49) .  520 

These oscillations also determine overt behavioral perceptual outcome, accounting from 10% (in 521 

the case of false alarm production) to 30% (in the case of correct target identifications) of stimulus 522 

detection. This is globally higher than the range of reported oscillatory changes in behavioral hit rates (1, 523 

2, 5),  highlighting the high predictive power of these neuronal population oscillations.  524 

Overall, this suggests the existence of perceptual cycles (42) that organize as a rhythmic 525 

alternation between exploitation and exploration states of space sampling by attention.  526 

Exploring versus exploiting space by attention   527 

Two models have been proposed to account for the spatial deployment of attention (50–54) a 528 

parallel processing model, driven by bottom-up information, dominating when visual search is easy; and 529 

a serial processing model, driven by top-down mechanisms, dominating in difficult visual search (40). In 530 

the context of this latter model, it has been hypothesized that the brain controls an attentional spotlight 531 

that scans space for relevant sensory information. In a previous study (7), we assessed, based on the 532 

(x,y) decoding of the neuronal population activity of the FEF, the tracking of this attentional spotlight in 533 

time (7). Here, we show that this prefrontal attentional spotlight explores space serially both at relevant 534 

(cued) and irrelevant (un-cued) locations, alternating between the exploitation and the exploration of 535 

the visual scene (42). The activity of the parietal (19) and prefrontal (55) cortical regions has been shown 536 
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to change drastically between exploitation and exploration behavior. In particular, exploration is 537 

associated with faster though less accurate oculomotor behavior (19) and a disruption of prefrontal 538 

control signals (55). This is proposed to facilitate the processing of unexpected external events (19), the 539 

expression of novel behavior and learning through trial and error (55).  540 

Our observations strongly indicate that exploration and exploitation dynamically alternate within 541 

trials. This alternation of exploration and exploitation of space by the attentional spotlight thus appears 542 

to optimize subject’s access to incoming information from the environment by a continuous exploration 543 

strategy, very much like is described for overt exploration behaviors such as saccadic eye movements, 544 

whisking or sniffing (1, 56, 57). This covert exploration of the environment by attention however takes 545 

place at a slightly higher frequency than the typical theta exploration frequency described for overt 546 

exploration. This is probably due to energetic and inertial considerations in controlling the remote 547 

effector during overt exploration (e.g. eye, whisker or nose muscles). Interestingly, the rhythm at which 548 

this prefrontal exploration/exploitation alternation takes place coincides with the rhythm at which 549 

attention behaviorally explores the different part of a given object (2). Overall, this leads us to postulate 550 

the existence of attentional saccades that can either be directed towards specific items for exploitation 551 

purposes, or deployed onto the entire visual field for exploration purposes.   552 

Continuous attentional sampling and attentional saccades  553 

Covert exploration of space by attention is more energy efficient than overt exploration by the 554 

eyes and the former serves to inform and guide the latter. In an initial “premotor theory of attention”, 555 

these two processes, namely attentional selection and saccadic eye movements, have been suggested to 556 

rely on identical cortical mechanisms. This theory hypothesizes that attentional displacements or 557 

saccades of the mind, mirror saccades of the eyes except for the recruitment of the extra-ocular muscles 558 

(58). Since then, several studies have contributed to a functional dissociation between these two 559 

processes (59–64), and rhythmic attentional sampling has been shown to be independent from 560 

microsaccade generation (5, 65, 66). Our observations support a continuous exploration of space by the 561 

prefrontal attentional spotlight organized thanks to a rhythmic re-orientation of the attentional spotlight 562 

taking place at an alpha rhythm. This framework leads to an interesting set of experimental predictions. 563 

For instance, attentional capture and distractibility by an intervening distracting item is expected to 564 

coincide with an ongoing attentional re-orienting towards this item (7). Likewise, inhibition of return 565 

(67–70), is expected to reflect as an under-exploration of previously visited locations with respect to 566 

unexplored locations. This covert saccade-like exploration is proposed to be an intrinsic property of 567 
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attention, taking place irrespectively of the ongoing behavior and building onto a rhythmic alpha clock. 568 

Its spatial pattern, that is to say the portion of space that is being explored by these attentional saccades, 569 

as well as the frequency at which task-relevant items are explored are however expected to be under 570 

top-down control.  571 

Top-down control 572 

 Numerous studies indicate that the PFC and specifically the FEF play a crucial role in attention 573 

orientation and attention control (16, 24–26, 34, 48, 49). As a result, one expects that the exploration of 574 

space by the prefrontal attention spotlight be strongly biased by top-down voluntary control. Confirming 575 

this prediction, we show that task goals significantly affect attentional space exploration strategy. 576 

Specifically, we observe that, the locations where the prefrontal attentional spotlight explores space are 577 

modulated both 1) within trials, by the expected position of the target after cue presentation, and 2) 578 

across tasks, by the general expectations about sensory events. In other words, relevant task items are 579 

more explored than irrelevant locations, where relevance concatenates information relative to the 580 

ongoing trial and task design. This is in agreement with prior behavioral observations reporting that the 581 

attentional sampling rate observed at the behavioral level decreases as the number of task relevant 582 

items increases (3, 41). Overall, this indicates that the rhythmic exploration of space by attention, is an 583 

intrinsic, default-mode state of attention, that can be spatially modulated by task context and internal 584 

expectations. A strong prediction is that this rhythmicity in attentional spatial processing will directly 585 

impact attention selection processes in lower level cortical areas, through long-range feedback processes 586 

(65), possibly mediated by NMDA receptors (71).  587 

Conclusion 588 

Overall, our work describes for the first time the spatial and temporal properties of the 589 

population prefrontal attention spotlight. Specifically, it demonstrates a continuous exploration of space, 590 

that is mediated by attentional saccades that unfold at an alpha 7-12 Hz rhythm and that accounts for 591 

both neuronal sensory processing reliability and overt behavioral variability. Importantly, it bridges the 592 

gap between behavioral evidence of attentional rhythmic space sampling and local field attention 593 

related oscillatory mechanisms (5, 6, 42), revealing the neuronal population dynamics associated with 594 

rhythmic attentional sampling.  595 
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Supplementary figure 

 

Figure S1: Cross temporal decoding and the impact of averaging time windows. (a) Data structure on a 
given trial: MUA activity is recorded onto 48 channels, in time (1 ms resolution), aligned with respect to 

the cue, and averaged over time windows of length Win. (b) Cross-temporal decoding matrices are 
obtained by training a decoder on activities from the 48-channels, collected at a given time t, averaged 

over ATW ms, on a subset of trials (random 70%) and testing this decoder on activities from the 48-
channels, collected, averaged over ATW ms, at all possible times (resolution of 10ms), on the remaining 

30% test trials. This procedure is repeated over and over by moving reference time t by 10 ms each time, 
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from 0 ms to 1200 ms from cue presentation. (c-h) Cross-temporal decoding matrices with different 
averaging time windows from 300 ms (c), to 150 ms (d), to 100 ms (e) , to 75 ms (f) , to 50 ms (g) , to 25 

ms (h) averaging window. 50 ms averaging windows reveals oscillations in the decoding performance 
along the testing time dimension (x-axis). These oscillations can already be seen at Win=75 ms 
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