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Abstract

 

Regulatory T cells (Treg) are crucial in the proper balance of the immune system. A better 

characterization of Treg-specific genes should extend our knowledge on their complex 

biology. However, to date there is no consensual Treg signature in the literature. Here, we 

extracted a molecular Treg meta-signature relative to CD4+ conventional T cell from 8 different

but comparable publicly available microarray datasets. We confirmed the validity of our result 

using the much larger but less stringent Immuno-Navigator database. However, many genes 

of the Treg meta-signature were also expressed at the protein level by other immune cell 

subsets, as assessed by mass cytometry, with the noticeable exceptions of Il2ra, Ctla4, and 

Tnfrsf9. Surprisingly, the proenkephalin (Penk) gene was a prominent member of this 

restricted Treg meta-signature. Further analysis of public datasets and of our own RNA 

sequencing experiments confirms that Penk was over expressed by Treg in various murine 

tissues, including thymic Treg. Interestingly, Penk expression was increased in intra tumoral 

Treg whereas it was down modulated in the central nervous system of mice suffering from 

EAE. Finally, we propose a mechanistic model linking TNFR signaling and the transcription 

factor Batf in the regulation of Penk expression in Treg.  Altogether, our results provide the 

first Treg meta-signature in mice and identifies Penk as a novel and unexpected Treg marker.
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Introduction

 

Proper number and function of regulatory T cells (Treg) are essential for a well-

balanced immune system: too few of these cells leads to autoimmunity and too much 

prevents an efficient immune response, with harmful consequences for anti-tumor immunity, 

for instance. Treg are a subset of CD4+ T cells that express the transcription factor (TF) Foxp3

and the alpha chain of the interleukin-2 receptor CD25, both indispensable for suppressive 

functions and proper homeostasis. Probably the best example illustrating the crucial role for 

Foxp3-expressing cells in the homeostasis of the immune system is given by the lethal auto 

immune syndrome seen in patients bearing mutations in the FOXP3 gene, the IPEX 

syndrome (1). Like most CD4+ T cells, Treg are generated in the thymus upon MHC-driven 

selection based on affinity of the T cell receptor for self antigens (2). A sizable proportion of 

those cells are also induced in the periphery (pTreg) from CD4+ T cells precursors, but those 

pTreg are reported not to express Helios or Neuropilin-1, contrary to thymic-derived Treg 

(tTreg) that are positive for those markers (3). Known pTreg inducers in the periphery can be 

byproducts of bacterial metabolism (4,5) but it is likely that inflammation per se is a main 

driver for pTreg differentiation (6). Thus, finding ways of manipulating Treg for therapeutic 

purposes in the auto immunity field has become a major endeavor for immunologists 

worldwide. Moreover, recent results linking the presence of Treg to a bad prognostic in some 

cancers extended their potential clinical applications from autoimmunity to cancer 

immunotherapy (7). In the case of cancer, one would want to get rid of Treg to wake up a dim 

immune response to tumors. An example of this powerful approach has been recently 

illustrated by Treg-depleting CTLA-4 or CD25-specific mAb (8,9). However, this weak 

response to tumors is part of a natural tolerance process, preventing the immune system to 

attack self-tissues. Thus, breaking immune tolerance by removing Treg is not without 

consequences on the integrity of healthy tissues. This is illustrated by studies showing that 

Ipilimumab (anti-CTLA-4), a powerful anti-cancer drug affecting Treg, indeed help the immune

system to fight tumors at the expense of a generalized auto immunity in treated patients (10). 

A better knowledge of Treg biology will be crucial for preserving therapeutic efficacy without 

severe adverse events. 
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This knowledge has been mostly collected from mice due to their ease of use, their 

versatility and the thousands of genetic models available to answer mechanistic questions.  

To that end, hundreds of investigators have pursued the quest for specific Treg markers, 

revealing molecules and pathways that can be targeted by monoclonal antibodies or 

pharmacological compounds. However, there are still confusions about these specific 

markers, since the comparisons are often made across unrelated studies employing different 

technologies. Moreover, a characteristic of Treg is their ability to adapt to the cellular 

environment in which they are present. This mechanism, referred as to effector class control 

few years ago (11), deeply affect cell surface phenotype and thus presumably, gene 

expression patterns. In addition, there are evidences that pTreg, contrary to tTreg, might be 

relatively unstable (12), meaning that pTreg may acquire some pro-inflammatory effector 

functions. Furthermore, it appears that tissue Treg also differ from Treg of lymphoid organs at 

the molecular level, with the TF BACH2 repressing expression of tissue-specific genes 

(13) whereas the TF BATF induced expression of these genes (14). One can immediately 

realize that providing a common definition of Treg across this diversity of phenotype and 

function represents a difficult challenge. Furthermore, Treg specific markers should ideally 

mark Treg only or should be minimally expressed by other cells of the immune system or 

other non-immune cells. This has been an overlooked issue since most of the so-called “Treg 

signatures” are established relative to CD4+ T conventional cells (Tconv), and not looking 

outside of Tconv (not mentioning major phenotypic differences used to define Treg and 

Tconv). Safety and efficacy of Treg-based therapies will surely benefit from targeting 

molecules and/or pathways truly specific to Treg. 

In an attempt to resolve some of these issues, we reasoned that digging out a Treg 

meta-signature (TMS) from available datasets comparing well-defined Treg and Tconv should 

lead to a more robust signature than studies taken separately. As a starting point, we decided 

to focus our investigation in Mus Musculus, because many databases and tools are available 

in mice. We also focused our analysis on resting Treg freshly isolated ex vivo, taken from non 

inflammatory lymphoid organs, to avoid bias due to T cell activation and/or tissue localization. 

This naive approach led to the first description of a “universal” Treg signature, which includes 

several known Treg specific markers but also new ones, such as the pro-enkephalin gene 

Penk, indicating a function for the endogenous opioid pathway in immunoregulation.
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Methods 

Extraction of Treg meta-signatures

The datasets used were selected based on a “Treg* AND (Tconv* OR Teff*) AND Mus 

Musculus” search in the GEO dataset web site (https://www.ncbi.nlm.nih.gov/gds). GEO 

datasets were manually inspected for inclusion of studies comparing fresh Treg with fresh 

Tconv from lymphoid organs. Only GSE17580 (15), GSE24210 (16), GSE37532 (17,18), 

GSE40685 (19), GSE42021 (20), GSE7852 (21),  GSE50096 (22), and GSE15907 (ImmGen 

Project (23)) were selected and a list of genes significantly up regulated in Treg compared to 

Tconv was determined for each dataset using GEO2R with an adjusted p.value cutoff of 0.05 

(False Discovery Rate). The commonality within gene sets was determined using the online 

tool from the Bioinformatics Evolutionary Genomics department form the Ghent University 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). The Treg signature from Immuno 

Navigator (https://genomics.virus.kyoto-u.ac.jp/immuno-navigator/?) was generated by 

extracting 634 CD4 T cell samples and 240 Treg samples from the database. Differential gene

expression was determined using Qlucore v3.4 with optimal variance set at 0.5 and False 

Discovery Rate <0.05. All but one dataset (GSE37532) where the Affymetrix Mouse Gene 1.0 

ST Array was used, were generated using the Affymetrix Mouse Genome 430 2.0 Array.

Analysis of the TMS

All network analysis and visual representations were performed with Cytoscape v3.7 (24) 

(https://cytoscape.org).  For enrichment analysis, we used ClueGO v2.5.5 and CluePedia 

1.5.5 that integrates several ontology and pathway databases and creates a functionally 

organized network of GO/pathway terms (25,26). To represent PPI networks, we used the 

GeneMania (27) or STRING (28) Cytoscape applications, with embedded enrichment 

analysis. Expression of Penk in various tissues is represented by the graphical tool 

embedded in GEO2R, the Jamovi software (29) or Prism v8.3 (Graphpad). Putative regulators

of Penk mRNA in mice was generated with Ingenuity Pathway Analysis (Qiagen) 

Mice

All mice were on a C57Bl/6J background.  Foxp3-IRES-GFP (Foxp3-GFP) knock-in mice 

were kindly given by Dr Bernard Malissen (CIML, Marseille). Mice were housed under specific
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pathogen-free conditions. All experimental protocols were approved by the local ethics 

committee and are in compliance with European Union guidelines.

Mass Cytometry

For labelling of antibodies, Maxpar Antibody Labeling Kit (Fluidigm) was used according to the

manufacturer instructions. Briefly, lanthanide was loaded with metal and antibody was 

reduced, in parallel, using TCEP solution (Thermo Scientific). Then, loaded lanthanide was 

added to reduced antibody before incubation for 90min at 37°C, Finally, the metal-conjugated 

antibody was diluted in 100uL in Antibody Stabilizer (CANDOR® Bioscience). Up to 5.106 live 

cells were stained with Cell-ID Cisplatin (Fluidigm) for 10min at RT. Fc receptor were blocked 

with anti-CD16/32 (clone 2.4G2) for 10min before staining with extracellular antibodies in PBS

1X Ca- Mg- for 25min at 4°C. Before intracellular staining, cells were fixed using 2% para-

formaldehyde for 15min at 4°C. Then, True Nuclear Transcription Factor Buffer set 

(Biolegend) was used and cells were incubated with antibodies for intracellular staining during

40min at 4°C. Finally, cells were incubated with Cell-ID Intercalator-Ir (Fluidigm) in 2% PFA for

16 hours before freezing at -80°C until acquisition on Helios cytometer and CyTOF software 

version 6.0.626 (Fluidigm) at the Cytometry Pitié-Salpétrière core (CyPS). Dual count 

calibration, noise reduction, cell length threshold between 10 and 150 pushes, and a lower 

convolution threshold equal to 10 were applied during acquisition. Data files were normalized 

with the MatLab Compiler software normalizer using the signal from the 4-Element EQ beads 

(Fluidigm) as recommended by the software developers. To normalize the variability between 

mice for supervised (i.e 2D plots) and unsupervised (i.e tSNE) analysis, cell samples from 3 

mice were pooled before stainings.

Generation of tSNE plots

tSNE plots were generated with FlowJo v10.6.1 using 1000 iterations, a perplexity of 30 and 

an eta of 665 for the periphery and 881 for the tumor. The clustering was done in manually 

gated CD45+ cells with CD3, CD4, CD8a, Foxp3, B220, IA/IE, TCRb, CD11b, CD11c, Ly6G, 

Ly6C and NK1.1 as tSNE parameters.  Immune subsets were defined as follow: B cells, 

B220+IA/IE+CD11b-CD3-; CD4 T cells, CD3+CD4+TCRb+; CD8 T cells, CD3+CD8+TCRb+; 

gamma-delta T cells, CD3+NK1.1-TCRb-; Monocytes/Macrophages, CD11b+Ly6G-NK1.1-; 

Neutrophils, CD11b+Ly6G+; NK cells, NK1.1+CD3-; NKT cells, NK1.1+CD3+
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Induction of EAE

To induce EAE, C57BL/6J mice were injected subcutaneously in the flanks with 100 µg of 

MOG35-55 peptide (Polypeptide) emulsified in 100 µl of CFA (Sigma-Aldrich) supplemented 

with 50 µg of heat-killed Mycobacterium tuberculosis H37Ra (BD Biosciences). Animals were 

additionally injected intravenously with 200 ng of Bordetella pertussis toxin (Enzo) at day 0 

and 2 of EAE induction.

Tumor models

For CyTOF analysis, mycoplasma-free MC38 (colon carcinoma) cells were grown in RPMI 

media supplemented with 10% FCS, L-glutamine and antibiotics (Penicillin/Streptomycin). 13 

weeks-old C57/BL6J mice were injected subcutaneously with 5.105 tumor cells or PBS 1X. At 

day 26, mice were sacrificed and spleen, axillary, brachial and inguinal lymph nodes and 

tumors were harvested. For RNA-Seq experiments, a similar protocol was used except that 

the MCA fibrosarcoma cell line was used. 

Tissue preparation and cell sorting

For CNS analysis, the spinal cord and the brain were harvested from mice. CNS samples 

were digested in type IV collagenase (1 mg/ml) and DNase I (100 µg/ml) for 30 min at 37°C. 

Tumors and peripheral lymphoid organs were digested with 0.84mg/mL of collagenase IV and

10μg/mL DNAse I (Sigma Aldrich) for 40min at 37°C with an intermediate flushing of the 

tissue. To eliminate dead cells and debris, cell suspensions were isolated on a Percoll 

gradient (40/80). Rings were collected, washed, and cell pellets were resuspended in PBS 

3% SVF before counting. Tregs were purified after enrichment of CD25+ cells using 

biotinylated anti-CD25 mAb (7D4) and anti-biotin microbeads (Miltenyi Biotec), followed by 

CD4 staining (RM4.5) and cell sorting using the BD FACSAria II. Tconvs were purified after 

enrichment of CD25- cells using biotinylated anti-CD25 mAb (7D4) or of CD8- CD19- CD11b- 

cells using biotinylated anti-CD8 (53-6.7), CD19 (1D3) and CD11b (M1/70) mAbs and anti-

biotin microbeads (Miltenyi Biotec), followed by CD4 staining (RM4.5) and cell sorting using 

the BD FACSAria II.

TNFR agonists in vitro stimulation
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The protocol has been described in details elsewhere (30). Briefly, purified Treg were sorted 

from Foxp3-GFP mice and 1,5.105 cells were cultured in 96-flat-well plates with anti-CD3/anti-

CD28 (both coated at 2mg/ml) and IL-2 (10ng/ml). The following soluble TNFRSF agonists 

were used to co-stimulate Tregs: anti-4-1BB mAb (10 µg/ml, 3H3, BioXcell), OX40L (100 ng/

ml, AdipoGen), and the TNFR2 agonist TNC-sc(mu)TNF80 (STAR2) (12 ng/ml).

RNA-Seq analysis

RNA was extracted from sorted cells using the NucleoSpin RNA XS kit from Macherey-Nagel, 

quantified using a ND-1000 NanoDrop spectrophotometer (NanoDrop Technologies) and 

purity/integrity was assessed using disposable RNA chips (Agilent High Sensitivity RNA 

ScreenTape) and an Agilent 2200 Tapestation (Agilent Technologies, Waldbrunn, Germany). 

mRNA library preparation was performed following manufacturer’s recommendations 

(SMART-Seq v4 Ultra Low Input RNA Kit, TAKARA Bio). Final samples pooled library prep 

was sequenced on Nextseq 500 ILLUMINA with HighOutPut cartridge (2x400Millions of 75 

bases reads), corresponding to 2 times 23 x 106 reads per sample after demultiplexing. Poor 

quality sequences were trimmed or removed with Trimmomatic software (31) to retain only 

good quality paired reads. Star v2.5.3a were used to align reads on reference genome mm10 

using standard options. Quantification of gene and isoform abundances were done with 

RSEM 1.2.28, prior to normalization on library size with DESEq2 bioconductor package. 

Absolute counts per million reads (CPM) were retrieved to quantify Penk transcript 

abundance in our experimental datasets.
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Results

 Analysis of the GEO Treg meta-signature

As a starting point, we searched for a common Treg signature (that is a list of genes 

differentially expressed in Treg compared to conventional T cells (Tconv)) across publicly 

available datasets retrieved from the GEO web site. We manually selected 8 datasets based 

on subjective criteria explicited below, and availability of the GEO2R analytical tool for the 

dataset. We deliberately limited the search to cells isolated from peripheral lymphoid tissues 

at steady state. Among the 8 datasets, 4 had been generated from lymph node cells, 3 from 

spleens and 1 from the bone marrow, 7 had been generated in C57BL/6 and one in BALB/c 

mice. Various ages and sexes were present in the datasets (range: 6-36 weeks-old). Various 

Treg sorting strategies were also used, from classical CD25+ sorting to isolation of GFP+ cells 

from Foxp3-GFP transgenic mice. So we believe that the 8 chosen datasets were 

representative of typical Treg profiles found in many studies. For each dataset, we generated 

a list of differentially expressed genes with a cutoff based on a false discovery rate inferior to 

0.05 and a log2 fold change superior to 1. We then established a list of differentially 

expressed genes common to the 8 datasets: 58 genes were found to be common to all 8 

datasets. To gain biological insights from this list of genes, we generated a network of putative

protein-protein interactions (PPI), protein-DNA and genetic interactions, pathways, reactions, 

gene and protein expression data, protein domains and phenotypic screening profiles from 

the Treg meta-signature (TMS) using the Genemania Cytoscape application, linking nodes of 

the network based on a score aggregating experimental and literature-based interactions (27)

(Figure 1A). We represent the mean fold-change as a color code and the numbers of 

neighbors connected to each node (degree) as the size of the node to highlight some 

noticeable facts: Foxp3 and Il2ra were the most differentially expressed genes and were also 

among the most connected genes to other members of the network, as expected from the 

sorting Treg strategy used to generate these datasets. The well described Treg marker Ctla-4 

was also highly differentially expressed and connected to other members of the network. Only

Tnfrsf4 (OX40) was more connected to the network but had a slightly lower fold change, 

much like Tnfrsfr9 (4-1BB) and Tnfrsf1b (TNFR2). Genes with high fold-change but lower 

degree were Itgae (CD103), Rgs1, Klrg1, Ikzf2 (HELIOS), Nrp1 and surprisingly Penk, a gene
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coding for the proenkephalin, precursor of Met-enkephalin, an important mediator of 

peripheral nociception (pain perception). This in silico isolation of many known Treg markers 

confirms the validity of our approach and suggest that novel molecules isolated by this 

method, such as Penk, could be considered as reliable Treg “markers”.

To gain further biological insights from the TMS, we performed an enrichment analysis 

using the ClueGO plugin in Cytoscape which interrogates several ontology/pathways 

databases simultaneously and produce a network of ontologies/pathways terms according to 

the statistical significance of the enrichment (26) (Figure 1B). As expected, most of the 

significant GO/pathway terms revolved around T cell proliferation and its regulation. Among 

the TMS, only few genes belong to several pathways at the same time and Foxp3 was the 

most prominent one. Surprisingly, Slamf1 (CD150) and Prnp (CD230) were also connected to 

several related ontologies. Of note is that TNF-related ontologies were enriched given the 

presence of 3 members of the TNF Receptor Superfamily in the TMS. 

Analysis of the Immuno-Navigator Treg meta-signature. 

To confirm and extend the findings, we then turned to the Immuno-Navigator database,

a batch-corrected collection of RNA quantification across numerous studies and many 

samples and cell types in mice and humans (32). We compare 634 samples of CD4 T cells, 

that include many types of CD4+ T cell subsets with 240 samples of purified Treg, also 

defined in various ways and from various origins, including gene-deficient animals. Once 

variables with low variances were filtered out, a Principal Component Analysis (PCA) showed 

that the CD4 and Treg samples segregated well apart, with PC1 recapitulating 72% of the 

variance (Figure 2A), showing that the remaining variables in the datasets could discriminate 

the two subsets with high accuracy. This was also visible in the clustered heatmap, where 

Treg samples clearly segregated from CD4 samples (Figure 2B). A list of 56 up regulated 

genes in Treg filtered on the FDR and the fold change also establish a dense network of 

putative PPI, although many members were not connected (Figure supplemental 1). The 

topology of the network was very similar to the one of the TMS (Figure 1), with Foxp3, Il2ra 

and Ctla4 being both highly differentially expressed and most connected to other members of 

the network. Of note is that Cpe, coding for Carboxypeptidase E, responsible with other 

convertases for processing proenkephalin into biologically active MENK peptides (33) , was 
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present in this signature. To go further, we next investigated the overlap between the Immuno-

Navigator signature and the TMS. There was a 50% overlap in genes differentially expressed 

in CD4 and Treg from the Immuno-Navigator database relative to our more stringent TMS 

(Figure 2C). A list of 31 common genes was then projected into a network of PPI to search for

enrichment for some biological functions (Figure 2D). Most members of this list were 

expressed at the plasma membrane and were involved in signal transduction. Interestingly, 

the list contains well-known markers of Treg (Foxp3, Il2ra, Ctla4, etc) but also some 

unexpected genes, including Penk, Cst7, or CD83. Thus, we propose that this condensed 

network constitute a “core” set of genes that defines Treg, and that Penk is a reliable Treg 

marker. 

Mass cytometry analysis of the TMS

We next sought to determine whether this “core” set of genes was really restricted to 

Treg at the protein level relative to other immune cell subsets beyond Tconv. For that, we 

established the expression profile of some markers of the TMS in various immune cell 

subsets with a 38-parameters mass cytometry panel in peripheral lymphoid organs and in a 

syngeneic tumor model (Table supplemental 1). We manually defined the main immune 

subsets (CD4 and CD8 T cells, B cells, gd T cells, NK and NKT cells and various subsets of 

myeloid cells) in gated CD45+ cells according to expression of lineages markers on a tSNE 

plot for the periphery (Figure 3A) and from the tumor (Figure 3B). In the periphery, a discrete 

cluster of FOXP3+CD25+CTLA-4+HELIOS+CCR6+4-1BB+CD103+ cells was visible in CD4+ T 

cells, presumably representing Treg. But in contrast to the first 4 molecules which were 

restricted to a subset of CD4+ T cells, CCR6 was also highly expressed by B cells, 4-1BB by 

a subset of NK cells and CD103 by a subset of CD8+ T cells, showing that these were not 

reliable Treg markers in the periphery. In tumor-infiltrating cells, a discrete cluster of 

FOXP3+CD25+CTLA-4+4-1BB+CD103+ could be observed. In contrast, HELIOS and CCR6 

were expressed by other subsets, neutrophils and B cells/monocytes/macrophages, 

respectively. Of note is that Treg were positive for both KI67 and pRb, signing active 

proliferation in the periphery and the tumor (Figure Supplemental 2). Also, we observed that 

TNFR2, a member of the TMS, poorly segregated in Treg at the cellular level beyond the 

comparison with Tconv. Finally, other proteins known to mark Treg but not present in the TMS,

such as PD-1 or ICOS, were also over expressed by Treg in the periphery. However, PD-1 
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was not a reliable Treg marker in the tumor whereas ICOS was highly expressed by Treg in 

the tumor. Likewise, GITR efficiently marked Treg in the periphery and in the tumor (Figure 

Supplemental 2) despite being absent from the TMS. Thus, among the proteins of the TMS 

that were investigated, only FOXP3, CD25, and CTLA-4 truly defined Treg across various 

immune subsets in the periphery and the tumor. Moreover, some proteins that were not in the 

TMS, such as GITR or ICOS, were restricted to Treg in the periphery and the tumor, 

highlighting the limitations of translating molecular data to the protein level.

Penk expression by Treg in various tissues and inflammatory conditions

Following on the surprising observation that Penk was a highly specific Treg genetic 

marker, we wanted to confirm this observation at the protein level. Deceptively, PENK was not

listed in 2 different databases reporting the proteomes of murine Treg and Tconv, preventing 

any differential expression analysis to be performed (34,35). Furthermore, a monoclonal 

antibody to murine PENK is currently not available, preventing direct detection by cytometry. 

Then, we asked whether Penk mRNA over expression could be limited to peripheral lymphoid

organs, since most of the data analyzed so far were generated in spleens or lymph nodes. A 

rapid survey of studies examining gene expression in Tconv and Treg in various tissues 

showed that Penk was found to be over expressed by Treg in the thymus (21) and in several 

tissues, including fat (17,18), and muscle (22) (Figure 4A). We also independently verified 

over expression of Penk in Treg relative to Tconv in our own set of RNA-Seq data from lymph 

nodes of normal mice (Figure 4B). Finally, we investigated whether Penk mRNA could be 

modulated in Treg in various inflammatory conditions (Figure 4C). In the CNS of mice 

undergoing Experimental Autoimmune Encephalitis (EAE), we observed that Penk was down 

modulated compared to non-inflamed lymph nodes. In contrast, we observed massive up 

regulation of Penk mRNA in Treg of the tumor relative to the draining LN. 

Analysis of the genes most correlated to Penk mRNA

In order to gain mechanistic insights into the regulation of Penk expression in Treg, we 

first established a network linking the genes most correlated to Penk mRNA from the Immuno-

Navigator database in all cell types combined (Figure 5A). This network included several 

members of the TMS, including Foxp3, Ikzf4, Ncmap, Ctla-4, or Gpr83, showing that Penk 

was highly correlated with some genes of the TMS defined above. The high correlation 
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between Foxp3 and Penk is illustrated in figure 5B, where the co expression of Foxp3 and 

Penk in Treg is also clearly visible. We next interrogated the Immuno-Navigator database to 

establish a network of the genes most correlated to Penk specifically in Treg (Figure 5C). 

Penk was highly correlated to 4 TNFR members (Tnfrsf1b (TNFR2), Tnfrsf4 (OX40), Tnfrsf9 

(4-1BB) and Tnfrsf18 (GITR)), and to the TF Batf (illustrated in figure 5D), suggesting that 

Penk expression in Treg might be regulated by TNFR signaling and BATF.  

 Penk mRNA expression is regulated by TNFR signaling and BATF-AP-1

To investigate this possibility, we turned to our own set of data establishing in vitro the 

transcriptome of TNFR-stimulated Treg by RNA sequencing (30). Indeed, Penk expression 

was increased relative to controls with TNFR2, OX40 and 4-1BB agonists and this was more 

marked at 36h post stimulation (Figure 6A). Furthermore, the expression of Batf was also 

increased by TNFR agonists relative to controls and at an earlier time point than Penk (Figure

6B), showing that up regulation of Batf preceded up regulation of Penk, consistent with a 

model in which the TF BATF positively regulated Penk mRNA transcription. A prediction of 

that model would imply a reduction in Penk mRNA in BATF-KO Treg. Indeed, GEO2R 

analysis of the transcriptome of BATF-KO Treg (36) showed a dramatic decrease in Penk 

expression relative to control Treg (Figure 6C). Finally, BATF was reported to control several 

immune regulatory networks through AP-1 members JUN or FOS (37). Interestingly, members

of the AP-1 TF were listed as potential regulators of Penk mRNA according to the Ingenuity 

database (Figure 6D). Altogether, our results point to a model in which TNFR signaling 

regulates Penk expression in Treg through modulation of the BATF-AP-1 complex. 
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Discussion

To our knowledge, the present report is the first attempt to define a “universal” Treg 

signature in mice by a meta analysis of published and available datasets. Our TMS provide a 

more solid appreciation of Treg-specific genes relative to the Immuno-navigator database 

which includes many types of heterogeneous samples. Our unbiased approach confirms that 

the genes belonging to the interleukin-2 signaling pathway (Il2ra, Il2rb) and of the TNF 

receptor super-family (Tnfrsf4, Tnfrsf9) are central to their identity. Our gene ontology 

enrichment analysis of the TMS also confirms that the “core” set of genes belongs to 

biological processes important for Treg function; regulation of T cell proliferation and cytokine 

signaling pathway. Finally, the preferred cellular localization of the TMS gene products at the 

cell surface highlights the dependency of Treg to external stimulus for their function and to 

preserve their identity. This is a view supported by functional plasticity of Treg (effector class 

control), and possible acquisition of effector functions in some inflammatory conditions. One 

point of caution for the interpretation of PPI networks is that mRNA expression may or may 

not be correlated with protein expression, and thus with biological functions. For instance, a 

recent study has found strong discrepancies between mRNA and protein levels in human 

Treg (38). This low correlation between mRNA and protein levels was also observed in human

Treg induced in vitro (39) but surprisingly not in murine “natural” Treg (34). Whether this is a 

true specie-specific difference or whether it is related to technical issues remains to be 

investigated. This is an important matter since it relates to the more general question of 

inferring biological insights from a list of differentially expressed genes. Collecting a proteomic

Treg meta-signature from all available proteomic studies in mice, properly normalized and 

corrected for batch effect, will bring essential informations to that matter.  

A few genes stand out to be highly enriched in Treg relative to other immune subsets at

the protein level and some significant differences were noted when the periphery and the 

tumor were compared. Everything combined, we established that, relative to Foxp3+ cells, 

CD25, CTLA-4, 4-1BB, GITR and ICOS were the most reliable Treg markers in our panel. It is

interesting to note that some of those were not present in the TMS, indicating that they may 

have been filtered out during differential expression analysis or that their mRNA expression 
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does not faithfully reflect their expression at the protein level, as described above. 

Nevertheless, these molecules and their ligands should probably concentrate the efforts for 

therapeutic targeting of Treg. The former is already in the clinics (Ipilimumab) with great 

efficacy to affect Treg but with possible severe adverse events whereas 4-1BB agonists are 

currently being tested in clinical trials (40). IL-2 has been a long standing history for cancer 

immunotherapy but its propensity to enhance Treg function makes it a difficult candidate to 

use as is. Based on our observations, we suggest that combination therapy targeting CD25, 

GITR, ICOS and/or 4-1BB might represent the most effective mean to affect Treg 

preferentially over Tconv while leaving other immune cells untouched. Indeed, intra-tumoral 

Treg depletion by monoclonal antibodies to CD25 (9), GITR (41), 4-1BB (42) or ICOS (43) 

was shown to be an efficient strategy for cancer immunotherapy. 

A surprising and serendipitous finding in the quest for a “universal” Treg signature was 

the presence of the Penk gene in the “core” set of genes defining Treg. Enriched Penk 

expression by Treg has been reported before in Treg clones derived from TCR-transgenic 

mice (44) and in brain Treg of mice recovering from stroke (45). Our analysis significantly 

extends these observations by showing that Penk expression by Treg is consubstantial of 

their generation in the thymus, independent of their localization, and can be modulated in the 

tissues during inflammation. Based on our own and previously published datasets, we 

propose a model in which TNFR signaling regulate Penk mRNA transcription through 

modulation of the Batf/AP-1 complex. Interestingly, Penk was down modulated in Treg in the 

EAE model, where Treg are defective, whereas it was up regulated in Treg of the tumor, 

where Treg are suppressors, suggesting an immunosuppressive role for Penk-derived opioid 

peptides. This has been clearly established in vitro on PHA-activated murine T cells (46). 

Accordingly, EAE was less severe after in vivo injection of the MENK peptide and that 

correlated with reduced numbers of T cells in the draining lymph nodes (47,48). However, 

mice deficient for PENK were also protected from EAE, in contradiction with a protective role 

for MENK in EAE (49). These discrepancies might be explained by the fact that PENK is also 

expressed by cells of the CNS with unknown impact on the development of the disease. To 

our knowledge, there is to date no studies looking for a role of immune-derived MENK on 

EAE physiopathology.  Similar hypothesis for an immunosuppressive role of MENK was 

drawn from studies in another autoimmune setting, namely colitis induced by transfer of 
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PENK-sufficient or deficient T cells in immunodeficient hosts (50). Finally, a modest impact of 

MENK peptides on tumor growth has been reported to be mediated by dendritic cells and 

possibly Treg (51). To date, there is to our knowledge no studies assessing tumor growth in 

animals deficient for PENK only in the immune system, precluding any firm conclusions on 

the role of endogenous MENK to be drawn. Based on enriched Penk expression in Treg, we 

would like to speculate that peripheral nociception might be intermingled with immune 

regulation at the Treg level, a novel hypothesis testable in wet lab experiments. It will be 

particularly crucial to analyze mice specifically deficient for Penk in Treg to determine the 

positive or negative impact of Penk on the immune response and how that relates to 

peripheral nociception.
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Figure legends

Figure 1: Analysis of the GEO Treg meta-signature. (A) The size of the node is proportional 

to the degree (number of connections to other nodes) of each node. The color indicate the 

mean fold change between Tconv and Treg across the 8 datasets (range: 0.9-4.7). The edge 

color (link between nodes) indicate the nature of the interaction, as detailed in the legend. 

Interaction network of the Treg-meta-signature (TMS) was generated with Genemania in 

Cytoscape.  (B) Listed are the genes of the TMS common to different pathways and their 

associated ontology. The size of each node is proportionnal to the number of genes enriched 

in that node and the color indicate the statistical significance of the enrichment (Benjamini-

Hochberg correction), as detailed in the legend. Enrichment analysis of the TMS was 

performed with ClueGO/Cluepedia in Cytoscape. 

Figure 2: Analysis of the Immuno-Navigator Treg meta-signature. (A) Principal Component 

Analysis of CD4+ (yellow balls) and Treg (red balls) associated variables (mRNA transcript 

quantification) after filtration on the variance (0.5), the FDR (<0.05) and the fold change (>2). 

For more details on the structure of the Immuno-navigator dataset, please refer to (32). (B) 

Heatmap representing the z-score of differentially expressed genes in Treg relative to CD4+ 

cells with the same filters than in (A). Variables were sorted on the y-axis based on fold 

changes whereas samples were sorted by hierarchical clustering. Analysis in (A) and (B) were

performed with Qlucore v3.4. (C) Venn diagram representing the intersection of the TMS with 

the Immuno-navigator Treg signature. (D) Putative Protein-Protein-Interaction network of the 

31 common genes extracted from (C). The GO terms associated to each node is represented 

by a donut (color coded in the legend with the associated FalseDiscoveryRate). The PPI 

network was generated with STRING in Cytoscape. 

Figure 3: Mass cytometry analysis of the TMS. (A) Immune cell subsets identification on a 

tSNE plot gated on murine CD45+ cells in peripheral lymphoid organs and the projected 

expression of the indicated molecules. (B) Same as in (A) for the tumor tissue. Expression 

levels of each protein are depicted from green (negative to low) to red (moderate to high) 

except in the top left panels in A and B.
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Figure 4: Penk mRNA expression in various tissues and in inflammatory conditions. (A) Penk 

expression in Treg relative to Tconv in the thymus, Visceral Adipose Tissue (VAT), muscle in 

the indicated GSE datasets. Treg are highlighted in light blue, Tconv in light red. (B) RNA Seq 

analysis of Penk mRNA expression in Tconv and Treg from lymphoid organs of normal mice. 

(C) RNA-Seq analysis of Penk mRNA expression in Treg in the indicated conditions (CNS, 

central nervous system of EAE mice; LN, draining LN in EAE and tumor bearing mice, Tumor,

Tumor-infiltrating Treg in the MCA model). Each dot is a mouse. EAE and tumor mice were 

different and their RNA-Seq was performed in different runs. No statistical analysis was 

performed given the large differences in the means between the groups. 

Figure 5: Analysis of the genes most correlated to Penk mRNA. (A) The genes most 

correlated to Penk in all cell types combined. The Pearson correlation values were extracted 

from the Immuno-Navigator database and integrated into Cytoscape. Each node is a gene 

linked by edges with width proportional to the Pearson correlation. All were greater than 0.7 

(range: 0.774-0.936). (B) Illustration of the correlation between Penk and Foxp3 in all cell 

types listed in the legend. (C) Same as in (A) for the genes most correlated to Penk in Treg 

only (edge range: 0.538-0.758). (D) Illustration of the correlation between Penk and Batf in 

Treg. Each dot is a sample from the Immuno-Navigator database.

Figure 6: Penk mRNA expression is regulated by TNFR signaling and BATF-AP-1. Penk (A) 

and Batf (B) mRNA expression after in vitro stimulation of purified Treg with the indicated 

TNFR agonists prior (0), and at 18 and 36hrs after stimulation. Each dot is a biological 

replicate from a single experiment. (C) GEO2R analysis of the GSE89656 dataset for Penk 

mRNA variations between wild type control Treg (WT) and BATF-KO Treg. (D) Direct and 

indirect regulators of Penk mRNA were extracted from the Ingenuity Pathway Analysis 

database according to their cellular localization indicated in the figure. AP-1 TF are 

highlighted.
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