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Abstract 

 

Background: To develop therapeutics for Alzheimer’s disease, early detection of patients 

awakes new hope. Circulating small non-coding RNAs are among the prominent candidates for 

a blood-based diagnosis, requiring however growing cohort sizes.  

Methods: We determined abundance levels of 21 known circulating microRNAs in 465 

individuals encompassing Alzheimer’s patients and controls recruited in US and Germany. We 

computed models to assess the relation between microRNA-expression and phenotypes, 

gender, age and disease severity (Mini-Mental State Examination MMSE).  

Results: 20 of 21 miRNAs were consistently dys-regulated in the US and Germany. 18 were 

significantly correlated to neurodegeneration (adjusted p<0.05) with highest significance for 

miR-532-5p (adjusted p=4.8x10-30). Ten miRNAs were significantly correlated with MMSE, in 

particular miR-26a/26b-5p (adjusted p=0.0002). Machine learning models reached an AUC 

value of 87.6% in differentiating AD patients from controls.  

Conclusions: Our data provide strong evidence for the relevance of circulating non-coding 

RNAs to detect Alzheimer’s from a blood sample.  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 14, 2019. ; https://doi.org/10.1101/638213doi: bioRxiv preprint 

https://doi.org/10.1101/638213


Introduction 
 

Alzheimer’s disease (AD) represents one of the most demanding challenges in healthcare[1, 2]. 

In light of demographic changes and failures in drug development[3], early detection of the 

disease offers itself as one of the most promising approaches to improve patients’ outcome on 

the mid- to long term. Therefore, circulating biomarkers are a major research topic towards the 

aim of early detection of AD.  

The importance of minimal invasive molecular markers for AD is reflected by over 3,000 

original manuscripts and reviews related to AD diagnosis from blood, serum or plasma samples 

published and indexed in PubMed. Among the promising approaches are plasma proteomic 

markers measured by mass spectrometry[4], metabolic patterns[5], gene expression profiles[6], 

DNA methylation[7] , and small non-coding RNAs[8]. However, cohort sizes of such studies 

are often limited and larger validation cohorts frequently did not always match the original 

results[9]. One of the major challenges is the complexity of signatures that is often required to 

reach high specificity and sensitivity. 

In previous research we performed deep sequencing to measure blood-borne Alzheimer’s 

disease miRNA signatures in a cohort of 54 AD patients and 22 controls from the United 

States[8]. In a second study using the same technique, we tried to validate the results in a patient 

cohort collected in Germany that included 49 AD cases, 55 controls and 110 disease controls 

[10]. The results of both studies were largely consistent with a correlation between both studies 

of 0.93 (95% confidence interval 0.89-0.96; p<10-16).  

Although deep-sequencing applications are increasingly introduced into clinical care, they are 

mostly performed for the analysis of DNA. RNA profiling, however, is mostly achieved by 

microarray and RT-qPCR based approaches. In the present study, we provide further evidence 

that blood-borne miRNA signatures that can be measured by standard RT-qPCR are valuable 

tools for the minimally-invasive detection of AD. From our above-mentioned studies, we 

selected a set of 21 miRNAs and determined the abundance of these miRNAs in the blood of 

465 individuals. These were subsequently analyzed by biostatistical-, machine- and deep-

learning methods.  
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Methods 
 

Overview on the study: In the current study we included patients from the US[8] and 

Germany[10] that were partially collected within the longitudinal TREND study. The studies 

were approved by the institutional review boards of Charité - Universitätsmedizin Berlin 

(EA1/182/10) or the ethical committee of the Medical Faculty of the University of Tuebingen 

(Nr. 90/2009BO2), respectively. All subjects gave written informed consent. Besides AD 

patients and unaffected controls (HC), patients with other neurological disorders such as 

Parkinson’s disease, Schizophrenia or Bipolar Disorder were included and grouped together, 

termed “other non-dementia diseases” (OND). Further, patients with Mild Cognitive 

Impairment (MCI) were included to evaluate the specificity of the miRNA markers for AD. For 

each of the four cohorts – and separately for the US and German – total number, age, gender 

distribution, and result of the Mini Mental State Examination (MMSE) are presented in Table 

1. Moreover, from one individual, 11 technical replicates were measured continuously during 

the project as process control. 

 

Table 1 

 AD MCI HC OND 

USA [n] 79 17 23 50 

GER [n] 66 21 191 18 

USA Gender [f/m] 40/39 8/9 11/12 16/34 

GER Gender [f/m] 36/30 10/11 92/99 7/11 

USA Age [y] 73,2 72,8 67,4 48,2 

GER Age [y] 72,5 70,6 69,1 81,7 

USA MMSE 19 25,6 29,4 NA 

GER MMSE 21 NA 28,8 18,8 

AD = Alzheimer‘s Disease; MCI = Mild Cognitive Impairment; HC = healthy Control; OND 

= Other Neurological Disorders; MMSE = Mini Mental State Examination; m = male; f = 

female 

 

miRNA marker set selection: From our two previous studies[8, 10] we selected the top 

miRNAs, that were concordant between the two studies and also checked for evidence that the 

miRNAs are associated with AD in literature. A final set of 21 miRNAs was selected: ten 

miRNAs from the original 12-miRNA marker signature of Leidinger et al.8 nine miRNAs from 
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the second study by Keller et al.10 and two miRNAs with additional evidence from a literature 

search. 

 

RNA extraction & Quality control: Total RNA from PAX-Gene Blood Tubes was isolated 

using the Qiacube robot with the PAXgene Blood miRNA Kit (Qiagen, Hilden, Germany) 

according to manufacturer’s instructions. RNA quantity and quality were assessed using 

Nanodrop (ThermoFisherScientific) and RNA Nano 6000 Bioanalyzer Kit (Agilent 

Technologies, Santa Clara, CA, USA). Mean RIN value of the RNA samples was 7.5 (STDEV 

1.4). 

 

RT-qPCR: Quantification of miRNAs was performed using miScript PCR system and custom 

miRNA PCR arrays (all reagents from Qiagen, Hilden, Germany). Custom miRNA PCR arrays 

were designed in 96-well plates to measure the expression of 21 human miRNAs and RNU48 

as endogenous control in duplicates. Two process controls (miR-TC for RT efficiency, PPC for 

PCR efficiency) were included as single probes. A total of 100 ng total RNA was used as input 

for reverse transcription reaction using miScriptRT-II kit according to manufacturer’s 

recommendations in 20µl total volume. Subsequently, 1ng cDNA was used per PCR reaction. 

PCR reactions with a total volume of 20µl were setup automatically using the miScript SYBR 

Green PCR system in a Qiagility pipetting robot (Qiagen, Hilden, Germany) according to 

manufacturer’s instructions. Data from samples that failed the quality criteria for the process 

controls was excluded, leaving expression data from 465 samples available for analysis. For 

process control over the course of the project, eleven technical replicates of one cDNA sample 

were measured throughout the course of the project to estimate technical reproducibility. We 

computed 55 pair-wise correlation coefficients between any pair of the replicates and found a 

median correlation of 0.996, indicating high technical reproducibility of our assay.  

 

Statistical approaches: From the Cq values, delta Cq values in relation to the endogenous 

control (RNU48) were computed. Mean delta Cq value per individual was scaled to zero. 

Missing values were not imputed. As estimate of the expression on a linear scale, 2-deltaCq values 

were computed. For multi group comparisons, Analysis of Variance (ANOVA) was performed. 

For pair-wise comparisons, both t-test and Wilcoxon Mann-Whitney test were calculated. If not 

mentioned explicitly and where applicable, all p-values were adjusted for multiple testing by 

the Benjamini-Hochberg approach. Target analysis was performed using online databases and 

tools (miRTarBase, miRTargetLink). 
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Machine Learning: A prediction model based on the RT-qPCR Cq values was developed using 

gradient boosted trees from the LightGBM framework. Since not all miRNAs were consistently 

measured for all patients, tree-based methods are particularly suited for this task, as they can 

handle missing values and no imputation is required. The performance of the model was 

assessed using five repetitions of stratified ten-fold cross-validation. Gradient boosted trees 

outperformed other tree-based methods such as random forests, or classifiers as Support Vector 

Machines or Neural Networks (data not shown). 

 

Data availability 

The data is available as Supplemental Table 1. 

 
 

 

Results 
 

miRNAs in Alzheimer’s disease & Neurodegeneration 

In total, 465 participants have been analyzed by RT-qPCR. The abundance levels of 18 of the 

21 miRNAs were significantly different between the four groups considered, i.e. AD, MCI, 

OND, and HC. With an adjusted p-value of 4.8x10-30, the most significant miRNA was miR-

532-5p, which showed markedly increased levels in AD patients, and slightly increased levels 

in patients with OND and MCI (Figure 1A). The abundance levels of miR-17-3p, the miRNA 

with the second lowest p-value (p=8.8x10-28), showed a similar pattern as miR-532-5p (Pearson 

correlation coefficient >0.9). The overall correlation matrix between the 21 miRNAs showed 

three large clusters of miRNAs with similar expression in the following referred to as Clusters 

A, B, and C (Figure 1B). The third and fourth most significant miRNAs in ANOVA, i.e. miR-

103a-3p and miR-107 (p=2.4x10-18 and p=3.6x10-15, respectively), came from Cluster C, like 

miR-532-5p and miR-17-3p. MiR-1468-5p (Cluster A, p=6.2x10-12; Figure 1C) shows an 

opposite expression pattern, i.e. a lower abundance in AD patients as compared to HC. The 

boxplots in Figure 1A/1C also underline that the deregulation of these miRNAs is strongest in 

AD compared to the HC. There is, however, a deregulation in MCI or OND, but to a lesser 

extent, such that the altered abundance is at least partially specific for AD. This result is 

consistent with our previous work based on high-throughput sequencing.  

For a more detailed understanding of the miRNAs and their correlation to AD and other factors, 

we next assessed whether the abundance levels were correlated to age or gender, or, in case of 
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AD and MCI with the MMSE results (Table 2). As Table 2 highlights, none of the miRNAs 

was associated with gender and five miRNAs were weakly associated with age of patients. 

Following adjustment for multiple testing, 14 miRNAs showed a significant differential 

expression in AD patients compared to controls (i.e. HC, MCI and OND combined). The above 

mentioned miR-532-5p and miR-17-3p were again the most significant markers for AD. 

Furthermore, ten miRNAs were significantly correlated with the MMSE value. Interestingly, 

all three miRNAs of Cluster B (Figure 1B), i.e. miR-26a, 26b-5p and let-7f-5p, showed the 

highest significance for the correlation to MMSE (p < 0.005). 

 

 

 

Table 2 

 
Comparison between US and German cohorts 

It is essential to understand whether biomarkers can be concordantly determined in different 

cohorts, at best with different ethnicity. We thus compared the profiles measured from German 

and US patients. As the German cohort was about twice as large as the US cohort and p-values 

depend on the number of individuals in each cohort, a comparison based only on p-values is 

potentially biased. Therefore, we computed the fold changes (on a logarithmic scale) between 
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AD and controls (Figure 2). In this plot miRNAs in the upper right quadrant are up-regulated 

and miRNAs in the lower left quadrant are downregulated in AD compared to controls 

concordantly in both cohorts. Of 21 miRNAs, only miR-4482-3p was upregulated in the 

German, but down-regulated in the US cohort. The differences in abundance levels of this 

miRNA in AD compared to controls were, however, not significant, neither in the German nor 

in the US cohort, nor in the combined analysis. Thus, miR-4482-3p likely represents a single 

false positive marker from the initial deep-sequencing based miRNA discovery study. In 

contrast, the results for the remaining 20 miRNAs were concordant between the US and the 

German cohort. Furthermore, eleven of these miRNAs were nominally significant in both 

cohorts, when analyzing the US cohort and the German cohort separately, and remained 

significant in the combined analysis. These significant miRNAs include miR-103a-3p, miR-

107, miR-1285-5p, miR-139-5p, miR-1468-5p, miR-17-3p, miR-28-3p, miR-361-5p, miR-

5006-3p, miR-5010-3p, miR-532-5p. 

 

Diagnosis using Machine Learning 

To obtain more accurate diagnostic results, molecular markers can be considered as “weak 

learners” that can be combined by machine learning approaches. For our present data set, we 

explored common statistical and deep learning approaches including support vector machines, 

decision trees, neural networks and gradient boosted trees and others using five repeated runs 

of a ten-fold cross validation. While the performance of all approaches was similar (data not 

shown), the best results were obtained by gradient boosted trees. Compared to other classifiers, 

gradient boosted trees have the additional advantage that missing values do not have to be 

imputed. In the classification, two scenarios were modeled: First, the diagnosis of AD patients 

with unaffected controls (HC) as background group, and second, the diagnosis of AD patients 

with all controls, i.e. HC, OND and MCI combined, as background group. In the first and 

apparently less complex scenario the gradient boosted tree model reached an AUC of 87.6% 

(Figure 3A). For the second and more complex case, an AUC of 83.5% was reached (Figure 

3B). A further advantage of the gradient boosted tree models is that sensitivity and specificity 

can be well balanced and traded-off. Depending on whether a diagnosis trimmed for sensitivity 

or for specificity is required e.g. in screening tests, as confirmatory tests or tests for enrollment 

for clinical studies, a sensitive or a specific model can be chosen.  
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Function and relevance of miRNAs 

To get insights into the targeting of the dysregulated miRNAs, we performed a miRNA 

Enrichment analysis[11]. Following adjustment for multiple testing, we identified three 

categories to be significantly enriched including “Dys-regulation in AD” (p=4.8x10-8), “Up-

regulation in AD” (p=0.00018) and “Age” (p=0.02). Two of three categories were directly 

related to AD, as to be expected for miRNAs that were known to be associated with AD. In 

addition, these miRNAs are negatively correlated with age. Although this was a weak 

correlation, it still suggests that the abundances of these miRNAs are lower in older patients. In 

contrast, these miRNAs are mostly up-regulated in AD. Performing an enrichment analysis for 

each of the three miRNAs clusters indicated in Figure 1B, we found cluster A to be especially 

enriched with miRNAs that are “up-regulated in AD” (p=4.9x10-6) while for cluster B the only 

significant category was “down-regulated in AD” (p=0.04).  

For most miRNAs in our signature, target genes that have been experimentally validated are 

known. A target network analysis highlighted a very dense network. This network was 

significantly enriched for genes associated with AD including ABCA1, DAPK1, IGF1R, and 

VEGFA according to the national institute of aging (NIA). The strongest enrichment was 

discovered for “DNA damage response” represented by CCND1, CCNE1, CCNE2, CDK6, 

MYC, RAD51 and RB1.  
 

 
Discussion 
 

In the current study we present results of our ongoing efforts to develop a diagnostic test for 

AD patients based on circulating miRNA profiles extracted from blood cells. The current 

outcomes are consistent with our previous studies in the US and Germany on smaller cohorts. 

In contrast to the previous studies relying on deep sequencing, we here applied RT-qPCR as 

molecular profiling technique that can be more easily driven towards application in clinical 

care. In the context of the known variability and the bias introduced by sample integrity and 

sample treatment[12-14] in deep sequencing data, RT-qPCR offers a promising alternative for 

routine application. But also for RT-qPCR experiments, there is a debate whether RNA samples 

with low integrity, i.e. low RIN values, compromise miRNA expression data[15, 16]. In our 

study, we also measured RIN as quality criterion for RNA integrity of the samples.  
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The results of the two cohorts from the US and from Germany were highly concordant. As to 

be expected by the selection of AD-associated miRNAs for this study, the miRNAs and the 

target genes of the miRNAs were both significantly associated with the development of AD. 

Our test that is highly reproducible can be applied with a model based on specificity, sensitivity 

or trimmed for overall performance. The quality of the results is indicated by an AUC of 87.6% 

for the comparison between AD and unaffected controls, and an AUC of 83.5% for a 

comparison between AD and a combined group of unaffected controls, MCI patients and 

patients with other neurological disorders. In that, the performance of our diagnostic solution 

compares well to recently developed other tests such as the plasma amyloid marker introduced 

by Nakamura and co-workers[4]. While already such single “omics” tests have a large potential, 

the targeted combination of few representatives from different “omics” classes can add even 

more diagnostic information, supporting clinicians in detecting AD patients in time.  

 

As for other “-omics” types, confounders including age and gender potentially influence also 

the results of miRNA biomarker studies[17]. To minimize the influence of such confounders, 

our cohorts largely show similar age and gender distribution (Table 1). In addition, we 

investigated the influence of the age and gender on the miRNA profiles. Except for a very 

modest influence of age, we found no evidence for an influence of these confounders on the 

miRNA pattern. Notably, miRNAs that are up-regulated in AD were partially expected to be 

lower expressed with increasing age in a normal population. 

 

Among the many different candidates for minimally-invasive and potentially early stage tests 

for AD, our study indicates that circulating miRNAs likely in combination with other blood-

born ”OMICS” profiles will contribute to stable tests applicable to specific diagnostic questions 

with regard to this highly complex disease. 

 
 
Acknowledgements: We appreciate the support of the AFI in funding this project.  
 
Competing interests: The authors have no conflict with respect to the data in this 
manuscript.  
 
Funding Sources: The study has been funded by the AFI and Saarland University.   
 
 
Key Words: Early detection, biomarkers, microRNA, liquid biopsy, machine learning 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 14, 2019. ; https://doi.org/10.1101/638213doi: bioRxiv preprint 

https://doi.org/10.1101/638213


Figure Legends:  

 
Figure 1A: Expression of miR-532-3p. The boxes display the 2nd and 3rd quartile of expression values 

for miR-532-3p in unaffected controls (HC), patients with Alzheimer´s disease (AD), patients with mild 

cognitive impairment (MCI) and patients with other non-dementia neurological diseases (OND). The 

range of expression values in the four groups is indicated by the error bars with outliers represented by 

unfilled dots. Median expression of miR-532-3p is indicated as thick black line.  

 

Figure 1B: Correlation of miRNA expression. This correlation matrix graphically represents the pair-

wise correlation coefficient for all miRNAs tested. According to the color scale on the right side of the 

matrix, positive correlation is indicated in shades of blue, negative correlations in shades of red. Pearson 

correlation coefficient is given for each pair-wise correlation.  

Three clusters of miRNAs with highly similar expression patterns are indicated as Clusters A, B, C on 

the left side.  

 

 Figure 1C: Expression of miR-1468-5p. The boxes display the 2nd and 3rd quartile of expression values 

for miR-1468-5p in unaffected controls (HC), patients with Alzheimer´s disease (AD), patients with 

mild cognitive impairment (MCI) and patients with other non-dementia neurological diseases (OND). 

The range of expression values in the four groups is indicated by the error bars with outliers represented 

by unfilled dots. Median expression of miR-1468-5p is indicated as thick black line.  

 

 

Figure 2: Comparison of differential miRNA expression in German and US cohort. The x- and y-

axis represent the fold change between AD and controls on a log2 scale for the US and German patient 

cohort, respectively. Each miRNA is represented by one dot. The dashed orange line is the segregation 

between up- and down-regulation. MiRNAs in the upper right or lower left quadrant are concordantly 

up- or downregulated in AD compared to controls in both cohorts, respectively. 

 

 

Figure 3: Diagnostic Performance of the miRNA classifier. ROC curves and AUC values for the two 

classification models. Panel A presents the ROC/AUC for the diagnosis of AD patients compared to 

unaffected controls (HC) and panel B for the diagnosis of AD patients compared to all controls 

combined (HC, MCI and OND). The black line indicates the median ROC value of the 5x10-fold cross-

validation, the gray area represents the 95% confidence interval. Mean AUC values are given for each 

scenario. 
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