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 The Psychological and Physiological Part of 
Emotions: Multimodal Approximation for 
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Abstract— In order to develop more precise and functional affective applications, it is necessary to achieve a balance between 
the psychology and the engineering applied to emotions. Signals from the central and peripheral nervous systems have been 
used for emotion recognition purposes, however, their operation and the relationship between them remains unknown. In this 
context, in the present work we have tried to approach the study of the psychobiology of both systems in order to generate a 
computational model for the recognition of emotions in the dimension of valence. To this end, the electroencephalography 
(EEG) signal, electrocardiography (ECG) signal and skin temperature of 24 subjects have been studied. Each methodology has 
been evaluated individually, finding characteristic patterns of positive and negative emotions in each of them. After feature 
selection of each methodology, the results of the classification showed that, although the classification of emotions is possible at 
both central and peripheral levels, the multimodal approach did not improve the results obtained through the EEG alone. In 
addition, differences have been observed between cerebral and physiological responses in the processing emotions by 
separating the sample by sex; though, the differences between men and women were only notable at the physiological level. 

Index Terms— affective valence scale, EEG, emotions, gender differences, HRV, skin temperature  

——————————      —————————— 

1 INTRODUCTION
MOTIONS are understood as a complex set of neural 
and hormonal interactions that could become in affec-

tive experiences (bodily sensations); generate cognitive 
processes (feelings, conscious emotions); imply physio-
logical adjustments to adapt to them; and lead to adaptive 
behaviors and/or decision making [1]. Emotions are an 
important evolutionary factor that allow survival and 
breeding through adaptation to the environment. How-
ever, the mechanisms of emotional processes and the 
modeling of human emotions are still fairly unknown. 
Many efforts have been made to unmask the psychobiol-
ogy of emotions, since a century and a half ago Darwin 
proposed the first theory that tried to explain its origin 
[2]. Still, this is a complicated task by the fact that, even 
today, there is no consensus regarding the functioning, 
structure and classification of emotions. One of the most 
spread theories is the Dimensional model of emotions [3], 
[4], which sustains that emotions can be explained mainly 
by two dimensions, valence (pleasure/displeasure) and 
arousal (calm/excited). Depending on the level of activa-
tion and polarity of this bi-phasic dimensions, motiva-
tional systems of approach (survival and pleasure) and 
withdrawal (fight or flight responses) are activated with 

the intention of adapting behavior to an emotional stimu-
lus [5]. Beyond the evidence founded at the brain level, 
this theory has increased its popularity due to the affec-
tive computing research [6]. While affective neuroscience 
main objective has focused on the study of the neurobiol-
ogy of emotions, affective computing branch has been 
much more pragmatic, leaving aside the biology behind 
and concentrating on its recognition and classification. 
Nevertheless, neglecting the psychological theories of 
emotions has filled the affective computing studies and 
applications with assumptions that undermine its own 
credibility and effectiveness; therefore, for the develop-
ment of functional affective interfaces it is necessary to 
contextualize engineering goals based on psychological 
principles [7].   

In order to successful adaptation to the environment, 
emotions are integrated with the central nervous system 
(CNS) - psychological phenomena and the autonomic 
nervous system (ANS) - physiological part; leading to 
goal-directed behaviors. The fact that emotions have a 
psychological and a physiological part, has motivated the 
study of the different signals involved both in their pro-
cessing and in their response to try to find patterns that 
allow to identify them.  

 At CNS level, the fMRI technique, due to its spatial 
resolution, is the most used for the study of the neural 
substrates that underlie emotions; however, the low tem-
poral resolution, high cost and the impossibility of using 
it in normal life environments and situations, separate it 
from the picture of affective computing applications [8]. 
On the other hand, the temporal resolution, usability, 
low-cost and wireless nature of the EEG, make it the suit-
able technique for emotion recognition [9]. In order to 
find the neural structures implied in the emotional pro-
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cess and describe the way in which they work and inter-
act, specific frequency in the EEG spectrum, electrode 
location and temporal window have been studied. How-
ever, the fact that a theoretical consensus does not exist 
made this task complicated due to the high variability 
between studies and, therefore, the difficulty of compar-
ing results. Nevertheless, asymmetry patterns across 
hemispheres have been observed and it is widely accept-
ed that left hemisphere activation over frontal and pre-
frontal regions is linked with positive affect experience 
and therefore to the approach motivational system; and 
contrary the right hemisphere presents higher activity 
when processing negative affective or withdrawal stimuli 
[10]. 

  Regarding the physiological part of emotions, the 
main structure that regulates and controls the vegetative 
auto-regulatory processes in order to meet behavioral 
demands  is the ANS [11], which is closely linked with the 
CNS emotional part [12]; and it is believe to be involved 
in the generation of the physiological arousal of an emo-
tional stimulus. Moreover, it is thought to be related with 
the arousal dimension but not with the valence scale [13] 
[14]. The ANS has two branches, the sympathetic nervous 
system (SNS), which becomes dominant, increasing the 
physiological arousal, when either psychological or phys-
ical stress is taking place; and, on the other hand, the 
parasympathetic nervous system (PNS) which dominates 
during periods of rest or safety, maintaining a low degree 
of physiological arousal. These systems are related with 
the approach and withdrawal motivational systems since 
they are responsible of the body response [15]; however, 
the degree and functionality of the process is still diffuse. 
The traditional view of the ANS activation stands for 
specific patterns of activation regarding the stimulus [16]; 
nevertheless, more evidences supports the undifferentiat-
ed arousal theory [17], suggesting that all emotions pre-
sent the same or at least similar ANS activation pattern 
when high arousal stimuli take place. Several techniques 
have been used for emotion recognition based on bodily 
responses, such as heart rate, galvanic skin response, 
respiration, skin temperature and behavioral measures 
[7]. Interest in behavioral measures such as facial expres-
sions, voice, and body language emerged because of simi-
larities between cultures found in emotional expression 
[18], however these methods have a high cost and require 
long training time of the system and modelling of the 
subject [19]; therefore, physiological measures are pre-
ferred. The SNS mediated responses for negative emo-
tions and PNS for positives have been described by sev-
eral authors and measures as heart rate [20], [21], skin 
temperature [22], [23] and galvanic skin response [24]. 
However, the same problem regarding the comparison of 
the EEG studies apply for the ANS emotional patterns.  

Each modality or physiological signal used for emotion 
recognition has its own pros and cons and an extensive 
literature behind. Calvo et al. [7] have proposed a set of 
factors to evaluate the effectivity of a modality to serve as 
a way for affective computing interfaces. First, the validi-
ty of the signal to represent the emotional process. Brain 
signals are preferred to physiological signals since the 

latter can be consciously modified and are more unspecif-
ic. Second, the reliability of the signal in real-life applica-
tions. In general, brain signals have obtained better classi-
fication results at the valence scale whereas physiological 
signal did for the arousal [25], [26]; suggesting that both 
types of signals measure different, but complementary 
aspects of the emotional state and therefore bringing up 
the idea of combining the modalities for better perfor-
mances. Finally, the time resolution, cost and invasively 
for the user also have to be taken into account. Although 
EEG technology is now advancing in the development of 
more accessible and user-friendly devices, its complexity 
and discomfort is greater than that needed to measure 
physiological signals, which can be acquired at time 
through a simple bracelet [27]. 

On previous studies [28], [29], we have evaluated some 
of the technical parameters necessary for emotion recog-
nition based on the EEG signal, but without delving 
deeper into its biological implications. In the present 
work, in addition to studying neuronal substrates under-
lying our computational model for the recognition of 
emotions based on the cerebral electrical signal; we want 
to study the response of the ANS and its contribution to 
emotion recognition on the valence scale. For this end, we 
have recorded the EEG, ECG and skin temperature sig-
nals of 24 subjects during stimulation using videos with 
positive and negative emotional content. Each biological 
modality has been studied individually, in a subject de-
pendent (SD) and independent (SI) way, to finally per-
form a multimodal classification.  

2 METHODS 
 

2.1 Experimental Procedure and data analysis 
 A total of 24 subjects (mean age: 23.12; range: 19–37; six-
teen men and eight women) were emotionally stimulated 
while EEG brain activity; cardiac activity and skin tem-

Fig. 1. Experimental setup and multimodal approach for emo-
tion classification   
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perature were recorded. The stimuli consisted on 14 vide-
os, 7 of them labelled as positive and the other 7 as nega-
tives depending on the emotional content. The audiovis-
ual stimuli were rated by the subjects at the valence and 
arousal scales, obtaining valence scores of 7.51 (s.d. 1.6) 
and 2.91 (s.d. 0.98) for the positive and negative catego-
ries, respectively. In the arousal scale, positive stimuli 
were rated with a mean arousal of 3.76 (s.d. 1.62) and 5.47 
(s.d. 1.35) were rated for the negatives. The clips, with 
durations between 43 and 78 seconds, were selected from 
the internet, edited with the software Camtasia Studio 8 
and presented randomly and counterbalanced to the sub-
jects, in alternation with a 30 seconds black screen that 
also serves as the initial baseline. The subjects were right-
handed, had no personal history of psychiatric or neuro-
logical disorders, normal or corrected vision and audi-
tion, and were not under medication during the devel-
opment of the study. They also provided their written 
consent, supervised by the Ethics Committee of the Uni-
versity Miguel Hernandez.  
 
2.1.1 EEG 
64 Ag-AgCl electrode cap was used for the electrical brain 
recording according to the International 10/10 System 
[30]. Data were amplified and registered through a Neu-
roScan SynAmps EEG amplifier (Compumedics, Char-
lotte, NC, USA), keeping the impedance for every elec-
trode under 25kΩ [31], and with a sampling rate of 
1000Hz. Data were filtered through a high-pass and low-
pass filters, 0.5Hz and 45Hz respectively, and electrodes 
were re-referenced to a Common Average Reference 
(CAR), by Curry 7 software (Compumedics, Charlotte, 
NC, USA). For artifact rejection corresponding to electri-
cal non-brain origin signals as eye-blinking, heart rate 
and muscle activity, the Matlab toolbox EEGLAB [32] was 
used; artifacts were selected by means of Independent 
Component Analysis (ICA) [33] by means of visual in-
spection. Detailed data collection and pre-processing 
steps could be founded in previous work [28]. 

In our previous work [29], a set of 20 features were 
specified as the most informative in terms of positive and 
negative emotion classification; however, few could be 
said about the theoretical interpretation of this results. 
Therefore, in the present work, the study of cerebral 
asymmetries was performed. From the 20 frequency-
location variables corresponding to Alpha, Beta1, Beta2 
and Gamma frequencies at both PreFrontal (PF) left and 
right locations; Beta 1 and Gamma at Frontal midline 
(Fm); Alpha and beta1 at Central midline (Cm); Beta1 and 
Beta2 at Parieto-Occipital midline (POm); Gamma at both 
Central (C) left and right hemispheres; Gamma at Parietal 
(P) right; and Beta1. Beta2 and Gamma at occipital (O) 
right; only those which localize in one or both of the hem-
ispheres were used to study cerebral asymmetries 
through the classical method [34]. The asymmetry index 
(AI) is calculated for the spectral power of a specific 
bandwidth on homologous hemispheric regions, accord-
ing to the formula (1). 

  (1)                                                                        

Pairs corresponding to midline regions were not in-
cluded in the analysis; therefore, 9 combinations of fre-
quencies and locations were evaluated. The AI was calcu-
lated for every frequency-location feature in each indi-
vidual subject. However, in order to look for significant 
differences between hemispheres and emotional catego-
ries, data from all subjects were assessed together. Mann-
Whitney test was used for the statistical analysis [35] 
between the AI of the positive and negative emotions; 
and with the power spectral values themselves for the 
comparison between homologous hemispheric regions 
with either positive and negative categories. The asym-
metry analysis was performed in the Matlab environment 
(The MathWorks Inc.). 

 
2.1.2 ECG 
Two electrodes were placed, one on the right side of the 
sternum and the other on the intercostal space between 
fifth and sixth rib, using lead II configuration in order to 
record ECG activity. The recording sampling rate was 
1000Hz and, as for the EEG signal, was performed with 
Curry 7 technology (Compumedics, Charlotte, NC, USA). 
After recording, ECG data were resampled to 256Hz for 
further analysis. Data from subjects 1, 9, 17, 19 and 22 
were not properly recorder, therefore these subjects were 
excluded from the analysis. Freely available stand-alone 
Artiifact 2.09 software [36] was used to accomplish the 
HRV analysis. HRV analysis was performed for every of 
the 24 subjects individually. A high-pass filter with the 
cut-off frequency at 10Hz was applied to ECG data in 
order to extract the interbeat interval (IBI) data from eve-
ry trail. Artifact detection and elimination was carried out 
through cubic spline interpolation. Finally, we performed 
time (Mean RR, Median RR, SDNN, RMSSD, NN50, 
pNN50) and frequency (VLF, LF, HF, LF/HF; frequency 
bands 0-0.04, 0.04-0.15, 0.15-0.4, respectively. Values for 
the different bandwidths were obtained as a percentage, 
absolute values and normalized units only for the LF and 
HF measures) domain HRV measures. On the other hand, 
the Matlab environment was used to assess non-lineal 
methods as the Poincare plot (SD1, SD2, SD1/SD2) [37], 
[38], [39], [40]. See Table 1 for a detailed explanation of 
each HRV variable. Geometrical methods have not been 
included in the analysis because a minimum time period 
of 20 minutes’ recording is necessary to ensure feasible 
results [41]. As expected on healthy young people, no 
abnormalities on the ECG signal as tachycardia, arrhyth-
mias or bundle branch block were found.    

Each of the 19 variables evaluated was z-scored and 
tested for normal distribution with the One-sample Kol-
mogorov-Smirnov test, resulting in non-normal data dis-
tribution. Mann-Whitney test was carried out to test if 
positive and negative data came from the same distribu-
tion at both SD and SI approximations. We have also 
analyzed the data separating men and women. Finally, 
simulated annealing optimization method was used to 
select the most informative features with K-nearest 
neighbors (KNN) with 5 neighbors and quadratic discri-
minant analysis (QDA) classifiers, at the SI approach. right leftAI

right left
−

=
+
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Fig. 2. P-value results for the differences between positive and 
negative emotions at all the HRV variables and for all subjects.   
 

 
Time Domain Mean RR: mean interbeat interval 
 SDNN: standard deviation on NN (normal-

to-normal) intervals 
 RMSSD: square of the root of MSSD (mean 

square difference of successive NN intervals) 
 NN50: the number of pairs of adjacent NN 

intervals differing by more than 50ms 
 pNN50: the proportion derived by dividing 

the NN50 by the total number of NN inter-
vals 

 RMSSD, NN50, and pNN50 are thought to 
represent parasympathetically mediated 
HRV [41]. 

Frequency 
Domain 

VLF: very-low-frequency component (0.003-
0.04Hz) 

 LF: low-frequency component (0.04-0.15Hz). 
There is controversy on whether the LF com-
ponent reflects SNS activity, is a product of 
both SNS and PNS [42], [41] or instead it is 
also mainly determined by the PNS [43]. 

 HF: high-frequency component occurs at the 
frequency of adult respiration (0.15-0.4Hz), 
primarily reflects cardiac parasympathetic 
influence due to respiratory sinus arrhyth-
mia. 

 LF/HF ratio: This rate is interpreted as an 
index of sympathovagal balance [44]. 

Poincare Plot SD1: standard deviation of the instantaneous 
(short-term) beat-to-beat RR interval variabil-
ity. As vagal regulation over the sinus node 
are known to be faster than  the sympatheti-
cally mediated effects, Sd1 is considered a 
parasympathetic index [45]. 

 SD2: standard deviation of the continuous 
long-term RR interval variability. There is 
evidence of both parasympathetic and sym-
pathetic tones influenced on this index [38].  

 SD1/SD2 ratio: ratio between the short and 
long interval variation. 

 
2.1.3 Skin Temperature 
Skin temperature signal was recorded at the right wrist of 
the volunteers through the ActTrust bracelet (Condor 
Instruments Ltda., Brazil). Due to problems during the 
experimentation, the data of subjects 1 and 15 could not 
be included in the analysis, therefore 22 subjects from the 
total of 24 enter into the analysis. Data were segmented in 
trials of 28 seconds length, corresponding to every video 
clip. Values more than three scaled median absolute devi-
ations from the median were consider as outliers and 
replaced by the mean value. One-sample Kolmogorov-
Smirnov test was used for evaluating data normal distri-
bution, resulting as non-normal distributed data. In order 
to look for differences between the two categories of emo-
tions and the neutral state, the statistical Mann-Whitney 
test was performed [35], in the SD and SI approximations. 
Gender differences were also assessed with the same 
statistical test.   

2.2 Multimodal Approximation 
In our previous work [29], we have proposed an EEG-
based model for the classification of positive and negative 
emotions; in the present work we have evaluated the 
relevance that physiological signals could have in classifi-
cation performance. In order to obtain same length seg-
ments of each type of signal, temperature data was down-
sampled and ECG data was up-sampled to match EEG 
data. Moreover, a total of 6 subjects (numbers 1, 9, 15, 17, 
19 and 22) were eliminated from the analysis due to they 
were missing one of the data inputs. Final classification 
stage was performed with the 20 variables coming from 
the EEG analysis, 1 variable corresponding to skin tem-
perature, and the significant variable resulting from the 
ECG analysis. KNN with 5 neighbors, and QDA classifi-
ers were selected based on former work, and applied in a 
SD and SI approximations. As there is evidence of gender 
differences in physiological signals, we also performed 
classification by splitting the sample by gender. Experi-
mental procedure could be overviewed on Fig. 1.         

3 RESULTS 
3.1 ECG 

Looking at the statistical differences between positive and 
negative emotions at the studied HRV variables, no sig-
nificant differences were found at the SI level. Contrary, 
significant differences appeared at the SD level for some 
of the variables and subjects (Fig. 2); however, no clear 
general patterns that allow conclusions to be drawn about 
the population, were found. As HRV gender differences 
are demonstrated in young people, we have assessed 
differences at the SI level for women and men. Significant 
differences were found between positive and negative 
emotions at the SD2 variable (p-value = 0.0498) for wom-
en; and at the NN50 variable (p-value = 0.0382) for men. 
The negative emotional category had higher values of the 
SD2 index than the positive category. And on the contra-
ry, the positive emotional category presented higher val-
ues of NN50 than the negative one. This fact can be inter-
preted as meaning that there is greater variability be-
tween contiguous beats in the positive condition, but in 

TABLE 1 
HRV VARIABLES 
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Fig. 4. AI for the 9 studied frequency-location pairs at positive 
and negative emotions for all subjects. The bracket with the 
asterisk above, which joins two bars of the histogram, indicates 
those pairs that have shown significant differences (p-
value<0.05) between the positive-negative conditions. Asterisks 
on the bars indicate significant differences (p-value<0.05) 
between interhemispheric, intra-condition (positive-positive or 
negative-negative). 
 
 

Fig. 3. Mean temperature values for every positive and nega-
tive audiovisual stimulus used. Videos are ranked from lowest 
to highest score on the valence scale. 
 

the long term the variability is greater in the negative one. 
Statistical analyses have revealed that making common 

inferences for the population based on differences in HRV 
measures for positive and negative emotions is not an 
easy task. When classifying positive and negative emo-
tions based on all the HRV measures, performances be-
low the value of chance were obtained for both QDA and 
KNN classifiers, with f1 scores equal to 0.355 ± 0.161; and 
0.497 ± 0.153, respectively. After simulated annealing 
optimization, performance improve up to 0.57 ± 0.17 for 
the QDA classifier, and 0.616 ± 0.125 for KNN; through 
using 5 (Mean RR, RMSSD, NN50, pNN50 and VLF) and 
6 (Median RR, SDNN, NN50, LF [absolute values], HF 
[absolute values] and SD2) HRV variables, respectively, 
as inputs for the sorter. Although after feature selection, 
classification performance improved, the selected features 
were not shared by the classifiers, with the exception of 
the NN50 index. In this context, selecting those variables 
that best allow discrimination between positive and nega-
tive emotions seems complicated, since the results ob-
tained from classification, although favorable, left too 
much margin for error. However, since our objective was 
to perform a multimodal classification to evaluate the 
contribution of the central and peripheral nervous sys-
tems in the recognition of emotions in the valence scale, 
we have selected NN50 variable to form part of the final 
classification, since it was the only common variable in 
both optimization groups, although it has only shown 
significant differences in the men group.   

3.2 Skin Temperature 

Results comparing positive and negative recordings re-
sulted in significant differences (p-value under 0.05) for 
all subjects in the SD approximation. Moreover, positive 
and negative corresponding data were also significantly 
different than the baseline period; except for subject 14 at 
both comparisons positive vs baseline and negative vs 
baseline. At the SI approximation, there were also signifi-
cant differences between the means of the positive vs 
negative (p-value = 1.56e-31), positive vs baseline (p-
value = 3.79e-06) and negative vs baseline (p-value = 
3.79e-06) emotional groups. Mean values corresponding 
to positive, negative and baseline skin temperature were 
28.767ºC (s.d. 1.515), 28.847ºC (s.d. 1.486) and 27.087ºC 
(s.d. 1.552), respectively. Temperature values for negative 

emotions were slightly higher than for the positive, re-
flecting an opposite pattern of the expected vasoconstric-
tor sympathetic regulation in front of adverse stimuli [23].   

Looking at gender differences, skin temperature values 
for positive emotions showed no significant differences 
between women and men samples (p-value = 0.1502), but 
negative emotions did (p-value = 0.0017) (Fig. 3). If we 
disaggregate the population sample by gender, significant 
differences were presented in the women positive vs 
negative emotions (p-value = 1.7237e-42). Contrary, no 
differences were found for men (p-value = 0.7738). 

3.3 EEG Asymmetries 

 
 All  

population 
Women Men 

QDA  
classifier 

0.524 
(s.d. 0.082) 

0.463 
(s.d. 0.082) 

0.483 
(s.d. 0.076) 

KNN  
classifier 

0.522 
(s.d. 0.092) 

0.499 
(s.d. 0.041) 

0.474 
(s.d. 0.065) 

*Data coming from previous study [29]  
 
No differences were found between genders when classi-
fying emotions based on EEG data (Table 2), therefore, 
asymmetry studies were performed with the whole popu-
lation. We have studied the interhemispheric asymme-

tries of the 20 frequency-location pairs, in order to have a 
better overview of the positive and negative emotional 
brain processes underlying the proposed model. This 
analysis has been done with either SD and SI approaches. 
With respect to the SD approximation, none of the AI 

TABLE 2 
SI CLASSIFICATION F1 SCORES BASED ON OUR EEG MODEL* 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 20, 2019. ; https://doi.org/10.1101/638239doi: bioRxiv preprint 

https://doi.org/10.1101/638239


6  

 

Fig. 5. Mean distribution of the spectral power of the 
frequencies that compose our computational model, for 
both emotional categories in the valence scale, in the 
temporal window of our model. 
 
 
 

Fig. 6. F1 scores for the SD approach at the different multimodal classifications performed with the KNN 
and QDA classifiers 
 
 

measures had resulted as having significant differences 
between the positive and negative conditions in all sub-
jects, this fact demonstrates once more the inter-subject 

brain variability present in the emotional processing. 
Therefore, in this case, performing the evaluation of the 
state of the frequency-location pairs would be more fruit-
ful with a SI approach, trying to focus only on the com-
monalities between subjects instead of the differences. 

When comparing the AI of positive and negative emo-
tional conditions, we have found differences in 5 of the 9 
interhemispheric variables studied: PF-alpha (lateralized 
towards the left hemisphere at positive emotions and 
toward right on negative), PF-beta2 (presented the same 
lateralization pattern as PF-alpha), P-gamma (at both 
contditions lateraliaztion occurs towards the left hemi-
sphere, however for positive emotions power spectral 
density is higher than for negatives), O-beta1 (positive 
emotions lateralized towards the right hemisphere and 
negatives towards the left) and O-gamma (same laterali-
zation pattern as the presented on the PF region). If we 
look at the individual interhemispheric differences of 
each emotional category, we found significant differences 
in positive emotions at the PF-beta1 pair lateralizing to-
wards the left hemisphere, the PF-beta2 lateralizing to-
wards the left too, and O-beta2 pair lateralizing this time 
towards de right hemisphere. For the negativae emotions, 
O-beta1 and O-beta2 pairs presented significant differ-
ences, both lateralized towards the left hemisphere. Fig. 4 
and 5 represent the relation between the AI and power 
spectral frequency at the studied frequency-location fea-
tures.     

3.4 Multimodal Approximation 
After the assessment of the differences between positive 
and negative emotion categories at the ECG and skin 
temperature variables, we wanted to evaluate their con-
tribution to the classification of emotions, assessing if it is 
better to take into account the central nervous system or 
autonomic nervous system by themselves or if it is better 
to use all the information, mind and body. To this end, we 
have performed a SD and SI classification with the KNN 
and QDA classifiers using different inputs. Figure 6 
shows the f1 scores for the SD classification, and Figure 7 
presents the SI results. 

With reference to the SD classification, at both classifi-
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ers the T+ECG condition presented the worst perfor-
mance. This result suggested that, although autonomic 
nervous system data per se could be used to differentiate 
positive and negative emotions, it is less effective than 
using central nervous system data alone or in combina-
tion with it. All other classifications showed similar re-
sults on both classifiers. As the performance obtained 
with the EEG data alone, was almost perfect, it is difficult 
to say if the addition of the autonomic nervous system 
data improves the recognition of emotions, but at least we 
could conclude that it does not worsen performance.    

In the case of the SI classification, we continued having 
the same inter-subject variability problem observed in our 
previous work [29]. So that, possible inferences from the 
results are not conclusive. 

Although EEG data did not shown differences between 
genders, physiological signals did, therefore SI classifica-
tion regarding gender was performed with all variables. 
The results obtained for the QDA classifier did not im-
prove the ones obtained for the whole population (0.5231 
s.d. 0.0756), the f1 scores were 0.4925 (s.d. 0.1563) for 
women and 0.5103 (s.d. 0.0975) for men. Contrary, classi-
fication performance improved when segregating by 
gender with the KNN classifier which reached f1 scores of 
0.5293 (s.d. 0.1007) for the entire population, 0.5853 (s.d. 
0.0558) for the women group and 0.5327 (s.d. 0.1086) for 
men. Although mean classification performance im-
proved, the differences between groups were not signifi-
cant.    

4 DISCUSSION 
Understanding the psychophysiology of emotional pro-
cesses, i.e. the relationship between body and mind, is 
key to the design of effective and reliable aBCI applica-
tions. Knowing which are and how are the activation 
patterns of the neuronal substrates involved in the pro-
cessing of emotions would allow to design more precise 
computational models and reduce the preparation and 
training times of the subjects. At the same time, being able 

to distinguish the emotional physiological responses and 
understand the performance of the ANS mechanisms 
responsible for them would allow a more complete emo-
tional approach and the possibility of developing simpler 
and more accessible systems. 

The believe that emotions are encoded in subcortical 
and limbic structures whereas cognition is encoded in the 
cortical level has been dismissed, as new evidences, com-
ing from affective neuroscience studies, have supported 
the statement that emotion and cognition display or over-
lap along the same cortical nets [46]. In the meta-analysis 
conducted by Kober et al. [47], they tried to identify pat-
terns of co-activation of brain regions and its functional 
organization in emotional neuroimaging studies without 
labeling the underlying emotions, i.e. without semantical-
ly defining the emotional category, thus overcoming the 
problem of lack of consensus on emotional theory. They 
defined six functional groups; lateral occipital or visual 
association group, medial posterior group, cogni-
tive/motor group, lateral paralimbic group, medial pre-
frontal cortex group and the core limbic group; of which 
the prefrontal, occipital and central-motor cortical lobes 
should be highlighted. Most of these functional groups 
were found as relevant regions in our emotional model, 
thus relating the emotional process with a whole brain 
network, more than specific isolated areas. Moreover, 
another important fact revealed by the meta-analysis of 
Kober et al. was that all cortical structures involved in 
emotional processing showed co-activation with subcorti-
cal structures as the limbic system and the brainstem. The 
EEG only allows us to assess cortical brain activity, and 
therefore, it is important to note, that we are trying to 
classify emotions by missing an important part of the 
puzzle. It is thus interesting and necessary to know the 
body-mind relationships to have a more complete vision 
of the process and therefore, define emotions more accu-
rately. 

In the case of the frequency domain aspect of emo-
tions, at positive ones, alpha and both beta frequencies 
seemed relevant at the left prefrontal hemisphere; and 
both beta1 and beta2 bandwidths increase its activation at 
the occipital right hemisphere. On the other hand, nega-
tive emotions presented a lateralization pattern towards 
the right prefrontal cortex and highlight the presence of 
beta1 and beta2 frequencies towards the left hemisphere 
over occipital regions. These results seem to point to a 
reverted lateralization pattern of frontal and posterior 
cortex when processing emotions. Our results agree with 
the frontal EEG asymmetry theory, described by Da-
vidson et al. [5], [48], reflecting the activation of motiva-
tional systems of approach and withdrawal, also verified 
by other authors [49], [50], [51], [52]. In essence, we can 
conclude that there are interhemispheric differences in 
the processing of emotions; that this lateralization is also 
different depending on the emotional category; and that 
the processing of emotions not only falls on the prefrontal 
cortex, but rather there seems to be a neural network that 
expands along the entire cortex [53], and at all spectrum, 
excluding the low frequencies of the EEG [54], [53], [29]. 
The similarity on the scalp distribution of the different 

Fig. 7. F1 scores for the SI approach at the different multimodal 
classifications performed with the KNN and QDA classifiers. The 
black dotted line corresponds to value of chance. 
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frequencies involved in the processing of positive and 
negative emotions suggests that, at least at the cortical 
level, there are no separate neural pathways for pro-
cessing positive and negative emotions, but there is a 
network of cortical structures in charge of processing the 
valence, whose activity varies depending on the polarity 
of the emotion. Yet, a more in-depth study of the relation-
ships between regions and emotional conditions is neces-
sary in order to draw meaningful conclusions.   

Peripheral psychophysiological reactions constitute 
important source of emotional information, therefore, 
researchers have focused on the different ANS measures. 
However, if the PNS and SNS are linked with the posi-
tive/approach and negative/withdrawal responses [55], 
respectively, is more diffuse. As for HRV measures, both 
our results and those of other authors, showed differences 
in their response to either emotional dimensions [56], [20] 
and discrete emotions [57], [58], [21]. These differences 
are present in all levels of the HRV analysis, the time 
domain, the frequency domain and the Poincare plot. 
Nevertheless, and as it is customary in the study of emo-
tions, there is no consensus as to which are the HRV vari-
ables most representative of the emotional state. In our 
case, no significant differences were found in any variable 
with the SI approach, and although there were differences 
at SD level, they did not show clear patterns between 
individuals. Nor have different random classification 
results been achieved using all HRV measures to differen-
tiate positive and negative emotions; and although after 
feature selection, precisions of around 60% were reached, 
these values are far from the percentages achieved by 
Guo et al. [56] or Goshvarpour et al. [20], of 71.4% and 
100%, respectively. Nevertheless, when separating the 
sample by gender, significant differences were found 
between positive and negative emotions in the Poincare 
variable SD2 in women and in the time variable NN50 in 
men, corroborating the existence of gender differences in 
young subjects [59], [60]. The results suggest that in men 
the differences are more evident in the short term, re-
sponding with greater intensity to positive stimuli; and 
on the contrary, women respond with greater intensity to 
negative stimuli although the difference is observable in 
the longer term. This may indicate a greater readiness of 
men for immediate response and greater adaptability to 
emotional stimulation in women. The variables found as 
informative, SD2 and NN50, are both regulated by both 
components of the ANS, so conjectures about the in-
volvement or role that each division plays in the emo-
tional response are not possible.     

In general, it has been proven that skin temperature 
measure could be used for positive and negative emotion 
discrimination [22], [23]. The accepted explanation of the 
role of the skin temperature in the emotional process 
point out to vasoconstriction responses in order to mobi-
lize blood into the muscular system to allow reaction to 
an aversive stimulus. Therefore, it seems that the dichot-
omy between the activation of the approach and with-
drawal systems apply at the skin temperature level, how-
ever, both vasoconstriction and cooling and vasodilation 
and warming responses, are mediated by the SNS [23], 

pointing to the arousal scale. Therefore, although there 
are different patterns of response when it comes to pro-
cessing positive and negative emotions, the functional 
organization of the activity of the ANS components re-
mains unclear [14]. Nevertheless, our results showed an 
opposite pattern of the commonly accepted response [61], 
obtaining higher temperatures for negative than for posi-
tive emotions. Regarding gender, although there are dif-
ferences in the thermoregulation of women and men [62], 
[63], our results indicate that there are no gender differ-
ences at the skin blood volume regulation response when 
processing positive emotions, but, differences exist while 
negative stimuli occur; suggesting that women react more 
intensely to negative emotions than men.   

Although the responses of the CNS and ANS systems 
to emotional stimuli and the relationships that exist be-
tween them are not known exactly; in both systems, inde-
pendently, it is able to differentiate between positive and 
negative emotions. Koelstra et al. [26] used the detection 
of facial expressions and the EEG signal to classify emo-
tions on the valence and arousal scales, demonstrating 
that classification performance improved when the two 
signals were combined, reaching percentages of 67.1% 
and 71.5%, respectively. Torres et al. [25] evaluated the 
combination of several biosignals for the detection of 
emotions on the valence and arousal scales. In the arousal 
scale, the best classification, 75%, was obtained after the 
combination of the EEG with physiological signals (heart 
rate, GSR, respiration and skin temperature); however, on 
the valence scale, the results of the combination of modal-
ities did not improve the percentage achieved by the EEG 
alone, 58.75%. Our results conclude that CNS per se 
(0.988 f1-score classification result for the KNN classifier) 
is most informative than ANS data (HRV + skin tempera-
ture, 0.943 f1 score) in order to classify emotions regard-
ing the valence dimension; and that the combination of 
the modalities (0.989 f1 score) does not significantly im-
prove the results reached by the EEG alone. 

Regarding the gender factor in the classification of 
emotions, we found differences at the level of response of 
the peripheral nervous system, but not at the CNS. This 
suggests that emotions are processed in the same way for 
men and women at the brain level, but the physiological 
response is different [64]. However, one of the main 
drawbacks of our study is that women and men samples 
were not balanced, being considerably less number of 
women than men, and moreover, although our sample of 
24 subjects is more than acceptable for this kind of stud-
ies, when splitting it into gender, the sample size is not 
representative of the population for SI analysis regarding 
the minimum size of 15 subjects stablished for proper 
classifications [65]. Therefore, although our results are 
encouraging, it would be necessary to enlarge the sample 
size in order to obtain more reliable results in terms of 
gender differences. 

At the peripheral level, it seems that there were differ-
ences between the responses to stimuli of opposing emo-
tional valence. However, they did not seem to follow the 
expected pattern of ‘fight or flight’ or ‘calm or safety’ 
associated with the motivational systems of approach and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 20, 2019. ; https://doi.org/10.1101/638239doi: bioRxiv preprint 

https://doi.org/10.1101/638239


JENNIFER SORINAS ET AL.:  THE PSICOLOGICAL AND PHYSIOLOGICAL PART OF EMOTIONS: MULTIMODAL APPROXIMATION FOR VALENCE CLAS-
SIFICATION 9 

 

withdrawal, that are believed to act at the level of the 
prefrontal EEG asymmetries. The components of the ANS 
are not activated in an ‘all-or-none’ fashion, rather each 
tissue is innervated differently by the sympathetic and 
parasympathetic pathways, which act independently of 
each other [14]. It is therefore difficult to attribute ap-
proaching or rejecting responses to specific components 
of the ANS. At this point, it is worth asking if motivation-
al systems represent the same as the dimension of affec-
tive valence or if, on the contrary, they are different pro-
cesses that do not always go hand in hand [66]. Converse-
ly, it is probable that the arousal is influencing the physio-
logical response, since although there were no significant 
differences in the arousal rating in the population, polari-
ty existed in specific individuals.  

5 CONCLUSION 
We have assessed the activation states of the CNS, 
through EEG data, and ANS, through HRV and skin 
temperature measures, at positive and negative categories 
of the dimensional valence of emotion. Population differ-
ences were found at the frequency domain of electrical 
cortical signals showing a lateralization pattern toward 
the left hemisphere for the positive emotions and towards 
the right hemisphere for negative at anterior regions, and 
the inverse pattern at posterior regions. Physiological 
differences were also found at the skin temperature re-
sponse, suggesting that valence dichotomy is also present 
at the peripheral level. Moreover, gender differences 
presented at both ANS measures but not at the CNS sug-
gest distinct mechanisms at the central and peripheral 
systems and different gender predisposition. However, 
the multimodal classification approach did not seem to 
benefit emotion recognition in comparison with the exist-
ing EEG computational models. Our results bring more 
clarity to the debate between the theory-psychology and 
practice-engineering of emotions; but, more efforts are 
needed to finish solving the riddle of the psychobiology 
of emotional processes.  
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