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Mutation is a critical mechanism by which evolution explores the
functional landscape of proteins. Despite our ability to experimen-
tally inflict mutations at will, it remains difficult to link sequence-
level perturbations to systems-level responses. Here, we present a
framework centered on measuring changes in the free energy of the
system to link individual mutations in an allosteric transcriptional re-
pressor to the parameters which govern its response. We find the
energetic effects of the mutations can be categorized into several
classes which have characteristic curves as a function of the inducer
concentration. We experimentally test these diagnostic predictions
using the well-characterized LacI repressor of Escherichia coli, prob-
ing several mutations in the DNA binding and inducer binding do-
mains. We find that the change in gene expression due to a point
mutation can be captured by modifying only a subset of the model
parameters that describe the respective domain of the wild-type pro-
tein. These parameters appear to be insulated, with mutations in
the DNA binding domain altering only the DNA affinity and those in
the inducer binding domain altering only the allosteric parameters.
Changing these subsets of parameters tunes the free energy of the
system in a way that is concordant with theoretical expectations. Fi-
nally, we show that the induction profiles and resulting free energies
associated with pairwise double mutants can be predicted with quan-
titative accuracy given knowledge of the single mutants, providing
an avenue for identifying and quantifying epistatic interactions.
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Thermodynamic treatments of transcriptional regulation
have been fruitful in their ability to generate quantitative

predictions of gene expression as a function of a minimal set of
physically meaningful variables (1–13). These models quantita-
tively describe numerous properties of input-output functions,
such as the leakiness, saturation, dynamic range, steepness
of response, and the [EC50] – the concentration of inducer at
which the response is half maximal. The mathematical forms
of these phenotypic properties are couched in terms of a min-
imal set of experimentally accessible variables, such as the
inducer concentration, transcription factor copy number, and
the DNA sequence of the binding site (10). While the amino
acid sequence of the transcription factor is another controllable
variable, it is seldom implemented in quantitative terms con-
sidering mutations with subtle changes in chemistry frequently
result in unpredictable physiological consequences. In this
work, we examine how a series of mutations in either the DNA
binding or inducer binding domains of a transcriptional repres-
sor influence the values of the biophysical parameters which
govern its regulatory behavior.

We first present a theoretical framework for understanding
how mutations in the repressor affect different parameters and
alter the free energy of the system. The multi-dimensional pa-
rameter space of the aforementioned thermodynamic models
is highly degenerate with multiple combinations of parameter
values yielding the same phenotypic response. This degeneracy
can be subsumed into the free energy of the system, transform-
ing the input-output function into a one-dimensional descrip-
tion with the form of a Fermi function (14, 15). We find that
the parameters capturing the allosteric nature of the repressor,
the repressor copy number, and the DNA binding specificity
contribute independently to the free energy of the system with
different degrees of sensitivity. Furthermore, changes restricted
to one of these three groups of parameters result in characteris-
tic changes in the free energy relative to the wild-type repressor,
providing falsifiable predictions of how different classes of mu-
tations should behave.

Next, we test these descriptions experimentally using the
well-characterized transcriptional repressor of the lac operon
LacI in E. coli regulating expression of a fluorescent reporter.
We introduce a series of point mutations in either the inducer
binding or DNA binding domain. We then measure the full
induction profile of each mutant, determine the minimal set
of parameters that are affected by the mutation, and predict
how each mutation tunes the free energy at different inducer
concentrations, repressor copy numbers, and DNA binding

Summary

We present a biophysical model of allosteric transcriptional reg-
ulation that directly links the location of a mutation within a re-
pressor to the biophysical parameters that describe its behavior.
We explore the phenotypic space of a repressor with mutations
in either the inducer binding or DNA binding domains. Using the
LacI repressor in E. coli, we make sharp, falsifiable predictions
and use this framework to generate a null hypothesis for how
double mutants behave given knowledge of the single mutants.
Linking mutations to the parameters which govern the system
allows for quantitative predictions of how the free energy of
the system changes as a result, permitting coarse graining of
high-dimensional data into a single-parameter description of
the mutational consequences.
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strengths. We find in general that mutations in the DNA bind-
ing domain only influence DNA binding strength, and that
mutations within the inducer binding domain affect only the
parameters which dictate the allosteric response. The degree
to which these parameters are insulated is notable, as the very
nature of allostery suggests that all parameters are intimately
connected, thus enabling binding events at one domain to be
"sensed" by another.

With knowledge of how a collection of DNA binding and
inducer binding single mutants behave, we predict the induc-
tion profiles and the free energy changes of pairwise double
mutants with quantitative accuracy. We find that the energetic
effects of each individual mutation are additive, indicating that
epistatic interactions are absent between the mutations exam-
ined here. Our model provides a means for identifying and
quantifying the extent of epistatic interactions in a more com-
plex set of mutations, and can shed light on how the protein
sequence and general regulatory architecture coevolve.

Results

This work considers the inducible simple repression regulatory
motif [depicted in Fig. 1(A)] from a thermodynamic perspective
which has been thoroughly dissected and tested experimentally
(4, 6, 10). While we direct the reader to the SI text for a complete
derivation, the result of this extensive theory-experiment dia-
logue is a succinct input-output function [schematized in Fig.
1(B)] that computes the fold-change in gene expression relative
to an unregulated promoter. This function is of the form

fold-change =

✓
1 +

RA
NNS

e�bD#RA

◆�1
, [1]

where RA is the number of active repressors per cell, NNS is the
number of non-specific binding sites for the repressor, D#RA is
the binding energy of the repressor to its specific binding site
relative to the non-specific background, and b is defined as 1

kBT
where kB is the Boltzmann constant and T is the temperature.
While this theory requires knowledge of the number of active
repressors, we often only know the total number R which is
the sum total of active and inactive repressors. We can define
a prefactor pact(c) which captures the allosteric nature of the
repressor and encodes the probability a repressor is in the ac-
tive (repressive) state rather than the inactive state for a given
inducer concentration c, namely,

pact(c) =

⇣
1 + c

KA

⌘n

⇣
1 + c

KA

⌘n
+ e�bD#AI

⇣
1 + c

KI

⌘n . [2]

Here, KA and KI are the dissociation constants of the inducer
to the active and inactive repressor, D#AI is the energetic differ-
ence between the repressor active and inactive states, and n is
the number of allosteric binding sites per repressor molecule
(n = 2 for LacI). With this in hand, we can define RA in Eq. (1)
as RA = pact(c)R.

A key feature of Eq. (1) and Eq. (2) is that the diverse phe-
nomenology of the gene expression induction profile can be
collapsed onto a single master curve by rewriting the input-
output function in terms of the free energy F [also called the
Bohr parameter (16)],

fold-change =
⇣

1 + e�bF
⌘�1

, [3]

where

F = �kBT log pact(c)� kBT log
✓

R
NNS

◆
+ D#RA. [4]

Hence, if different combinations of parameters yield the same
free energy, they will give rise to the same fold-change in gene
expression, enabling us to collapse multiple regulatory scenar-
ios onto a single curve. This can be seen in Fig. 1(C) where
eighteen unique inducer titration profiles of a LacI simple re-
pression architecture collected and analyzed in Razo-Mejia et al.
2018 (10) collapse onto a single master curve. The tight distribu-
tion about this curve reveals that fold-change across a variety
of genetically distinct individuals can be adequately described
by a small number of parameters. Beyond predicting the induc-
tion profiles of different strains, the method of data collapse
inspired by Eq. (3) and Eq. (4) can be used as a tool to identify
mechanistic changes in the regulatory architecture (14). Similar
data collapse approaches have been used previously in such
a manner and have proved vital for distinguishing between
changes in parameter values and changes in the fundamental
behavior of the system (14, 15).

Assuming that a given mutation does not result in a non-
functional protein, it is reasonable to say that any or all of the
parameters in Eq. (1) can be affected by the mutation, changing
the observed induction profile and therefore the free energy. To
examine how the free energy of a mutant F(mut) differs from
that of the wild-type F(wt), we define DF = F(mut) � F(wt),
which has the form

DF = �kBT log

 
p(mut)

act (c)

p(wt)
act (c)

!
� kBT log

 
R(mut)

R(wt)

!

+ (D#
(mut)
RA � D#

(wt)
RA ).

[5]

DF describes how a mutation translates a point across the
master curve shown in Fig. 1(C). As we will show in the coming
paragraphs [illustrated in Fig. 2], this formulation coarse grains
the myriad parameters shown in Eq. (1) and Eq. (2) into three
distinct quantities, each with different sensitivities to paramet-
ric changes. By examining how a mutation changes the free
energy changes as a function of the inducer concentration, one
can draw conclusions as to which parameters have been modi-
fied based solely on the shape of the curve. To help the reader
understand how various perturbations to the parameters tune
the free energy, we have hosted an interactive figure on the
paper website which makes exploration of parameter space a
simpler task.

The first term in Eq. (5) is the log ratio of the probability of a
mutant repressor being active relative to the wild type at a given
inducer concentration c. This quantity defines how changes
to any of the allosteric parameters – such as inducer binding
constants KA and KI , or active/inactive state energetic differ-
ence D#AI – alter the free energy F, which can be interpreted
as the free energy difference between the repressor bound and
unbound states of the promoter. Fig. 2 (A) illustrates how
changes to the inducer binding constants KA and KI alone alter
the induction profiles and resulting free energy as a function of
the inducer concentration. In the limit where c = 0, the values
of KA and KI do not factor into the calculation of pact(c) given
by Eq. (2), meaning that D#AI is the lone parameter setting the
residual activity of the repressor. Thus, if only KA and KI are
altered by a mutation, then DF should be 0 kBT when c = 0,
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Fig. 1. A predictive framework for phenotypic and energetic dissection of the simple repression motif. (A) The inducible simple repression architecture. When in the active state,
the repressor (gray) binds the cognate operator sequence of the DNA (red box) with high specificity, preventing transcription by occluding binding of the RNA polymerase to the
promoter (blue rectangle). Upon addition of an inducer molecule, the inactive state becomes energetically preferable and the repressor no longer binds the operator sequence
with appreciable specificity. Once unbound from the operator, binding of the RNA polymerase (blue) is no longer blocked and transcription can occur. (B) The simple repression
input-output function for an allosteric repressor with two inducer binding sites. The key parameters are identified in speech bubbles. (C) Fold-change in gene expression
collapses as a function of the free energy. The input-output function in (B) can be re-written as a Fermi function with an energetic parameter F which is the energetic difference
between the repressor bound and unbound states of the promoter. Top panel shows induction profiles reported in Razo-Mejia et al. 2018 (10) of eighteen different strains over
twelve concentrations of the gratuitous inducer Isopropyl b-D-1-thiogalactopyranoside (IPTG). Upon calculation of the free energy, the data collapse onto a single master curve
(bottom panel) defined by F.

illustrated by the overlapping red, purple, and grey curves in
the right-hand plot of Fig. 2(A). However, if D#AI is influenced
by the mutation (either alone or in conjunction with KA and
KI), the leakiness will change, resulting in a non-zero DF when
c = 0. This is illustrated in Fig. 2 (B) where D#AI is the only
parameter affected by the mutation.

It is important to note that for a mutation which perturbs
only the inducer binding constants, the dependence of DF on
the inducer concentration can be non-monotonic. While the
precise values of KA and KI control the sensitivity of the repres-
sor to inducer concentration, it is the ratio KA/KI that defines
whether this non-monotonic behavior is observed. This can
be seen more clearly when we consider the limit of saturating
inducer concentration,

lim
c!•

log

 
p(mut)

act

p(wt)
act

!
⇡ log

2

664

1 + e�bD#(wt)
AI

✓
K(wt)

A

K(wt)
I

◆n

1 + e�bD#(wt)
AI

✓
K(mut)

A

K(mut)
I

◆n

3

775 , [6]

which illustrates that DF returns to zero at saturating inducer
concentration when KA/KI is the same for both the mutant
and wild-type repressors, so long as D#AI is unperturbed. Non-
monotonicity can only be achieved by changing KA and KI
and therefore serves as a diagnostic for classifying mutational
effects reliant solely on measuring the change in free energy.

The second term in Eq. (5) captures how changes in the re-
pressor copy number contributes to changes in free energy. It
is important to note that this contribution to the free energy
change depends on the total number of repressors in the cell,

not just those in the active state. This emphasizes that changes
in the expression of the repressor are energetically divorced
from changes to the allosteric nature of the repressor. As a con-
sequence, the change in free energy is constant for all inducer
concentrations, as is schematized in Fig. 2(C). Because magni-
tude of the change in free energy scales logarithmically with
changing repressor copy number, a mutation which increases
expression from 1 to 10 repressors per cell is more impactful
from an energetic standpoint (kBT log(10) ⇡ 2.3 kBT) than an
increase from 90 to 100 (kBT log(100/90) ⇡ 0.1 kBT). Appre-
ciable changes in the free energy only arise when variations in
the repressor copy number are larger than or comparable to an
order of magnitude. Changes of this magnitude are certainly
possible from a single point mutation, as it has been shown
that even synonymous substitutions can drastically change
translation efficiency (17).

The third and final term in Eq. (5) is the difference in the
DNA binding energy between the mutant and wild-type re-
pressors. All else being equal, if the mutated state binds more
tightly to the DNA than the wild type (D#

(wt)
RA > D#

(mut)
RA ), the

net change in the free energy is negative, indicating that the re-
pressor bound states become more energetically favorable due
to the mutation. Much like in the case of changing repressor
copy number, this quantity is independent of inducer concen-
tration and is therefore also constant [Fig. 2(D)]. However, the
magnitude of the change in free energy is linear with DNA
binding affinity while it is logarithmic with respect to changes
in the repressor copy number. Thus, to change the free energy
by 1 kBT, the repressor copy number must change by a factor of
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Fig. 2. Parametric changes due to mutations alter the free energy. The first column schematizes the changed parameters and the second column reflects which quantity in
Eq. (5) is affected. The third column shows representative induction profiles from mutants which have smaller (red) and larger (purple) values for the parameters than the
wild-type (grey). The fourth and fifth columns illustrate how the free energy is changed as a result. Purple and red arrows indicate the direction in which the points are translated
about the master curve. Three concentrations (points labeled 1, 2, and 3) are shown to illustrate how each point is moved in free energy space.

⇡ 2.3 whereas the DNA binding energy must change by 1 kBT.
The unique behavior of each quantity in Eq. (5) and its sen-

sitivity with respect to the parameters makes DF useful as a
diagnostic tool to classify mutations. Given a set of fold-change
measurements, a simple rearrangement of Eq. (3) permits the
direct calculation of the free energy, assuming that the under-
lying physics of the regulatory architecture has not changed.
Thus, it becomes possible to experimentally test the general
assertions made in Fig. 2.

DNA Binding Domain Mutations. With this arsenal of analytic
diagnostics, we can begin to explore the mutational space of
the repressor and map these mutations to the biophysical pa-
rameters they control. As one of the most thoroughly studied
transcription factors, LacI has been subjected to numerous crys-
tallographic and mutational studies (18–21). One such work
generated a set of point mutations in the LacI repressor and
examined the diversity of the phenotypic response to different
allosteric effectors (5). However, experimental variables such
as the repressor copy number or the number of specific bind-
ing sites were not known, making precise calculation of DF as
presented here not tractable. Using this dataset as a guide, we
chose a subset of the mutations and inserted them into our ex-
perimental strains of E. coli where these parameters are known
and tightly controlled (4, 10).

We made three amino acid substitutions (Y20I, Q21A, and
Q21M) that are critical for the DNA-repressor interaction. These
mutations were introduced into the lacI sequence used in Garcia
and Phillips 2011 (4) with four different ribosomal binding site

sequences that were shown (via quantitative Western blotting)
to tune the wild-type repressor copy number across three orders
of magnitude. These mutant constructs were integrated into
the E. coli chromosome harboring a Yellow Fluorescent Protein
(YFP) reporter. The YFP promoter included the native O2 LacI
operator sequence which the wild-type LacI repressor binds
with high specificity (D#RA = �13.9 kBT). The fold-change in
gene expression for each mutant across twelve concentrations
of IPTG was measured via flow cytometry. As we mutated
only a single amino acid with the minimum number of base
pair changes to the codons from the wild-type sequence, we
find it unlikely that the repressor copy number was drastically
altered from those reported in (4) for the wild-type sequence
paired with the same ribosomal binding site sequences. In
characterizing the effects of these DNA binding mutations, we
take the repressor copy number to be unchanged. Any error
introduced by this mutation should be manifest as a larger than
predicted systematic shift in the free energy change when the
repressor copy number is varied.

A naïve hypothesis for the effect of a mutation in the DNA
binding domain is that only the DNA binding energy is altered.
This hypothesis appears to contradict the core principle of al-
lostery in that ligand binding in one domain influences binding
in another, suggesting that changing any parameter modifies
them all. The characteristic curves summarized in Fig. 2 give
a means to discriminate between these two hypotheses by ex-
amining the change in the free energy. Using a single induction
profile (white-faced points in Fig. 3), we estimated the DNA
binding energy using a Bayesian approach, the details of which
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Fig. 3. Induction profiles and free energy modifications of DNA
binding domain mutations. Each column corresponds to the
highlighted mutant at the top of the figure. Each strain was
paired with the native O2 operator sequence. White-faced points
correspond to the strain for each mutant from which the DNA
binding energy was estimated. (A) Induction profiles of each
mutant at four different repressor copy numbers as a function
of the inducer concentration. Points correspond to the mean
fold-change in gene expression of six to ten biological replicates.
Error bars are the standard error of the mean. Shaded regions
demarcate the 95% credible region of the induction profile gen-
erated by the estimated DNA binding energy. (B) Data collapse
of all points for each mutant shown in (A) using only the DNA
binding energy estimated from a single repressor copy number.
Points correspond to the average fold-change in gene expres-
sion of six to ten biological replicates. Error bars are standard
error of the mean. Where error bars are not visible, the relative
error in measurement is smaller than the size of the marker.
(C) The change in the free energy resulting from each mutation
as a function of the inducer concentration. Points correspond
to the median of the marginal posterior distribution for the free
energy. Error bars represent the upper and lower bounds of
the 95% credible region. Points in (A) at the detection limits of
the flow cytometer (near fold-change values of 0 and 1) were
neglected for calculation of the DF. The IPTG concentration is
shown on a symmetric log scale with linear scaling ranging from
0 to 10�2 µM and log scaling elsewhere.

are discussed in the Materials and Methods as well as the SI text.
The shaded red region for each mutant in Fig. 3 represents the
95% credible region of this fit whereas all other shaded regions
are 95% credible regions of the predictions for other repressor
copy numbers. We find that redetermining only the DNA bind-
ing energy accurately captures the majority of the induction
profiles, indicating that other parameters are unaffected. One
exception is for the lowest repressor copy numbers (R = 60
and R = 124 per cell) of mutant Q21A at low concentrations
of IPTG. However, we note that this disagreement is compara-
ble to that observed for the wild-type repressor binding to the
weakest operator in Razo-Mejia et al. 2018 (10), illustrating that
our model is imperfect in characterizing weakly repressing ar-
chitectures. Including other parameters in the fit (such as D#AI)
does not significantly improve the accuracy of the predictions.
Furthermore, the magnitude of this disagreement also depends
on the choice of the fitting strain (see SI text).

Mutations Y20I and Q21A both weaken the affinity of
the repressor to the DNA relative to the wild type strain
(�9.9+0.1

�0.1 kBT and �11.0+0.1
�0.1 kBT, respectively). Here we report

the median of the inferred posterior probability distribution
with the superscripts and subscripts corresponding to the upper
and lower bounds of the 95% credible region. These binding en-
ergies are comparable to that of the wild-type repressor affinity
to the native LacI operator sequence O3, with a DNA binding
energy of �9.7 kBT. The mutation Q21M increases the strength
of the DNA-repressor interaction relative to the wild-type re-
pressor with a binding energy of �15.43+0.07

�0.06 kBT, comparable
to the affinity of the wild-type repressor to the native O1 opera-
tor sequence (�15.3kBT). It is notable that a single amino acid
substitution of the repressor is capable of changing the strength
of the DNA binding interaction well beyond that of many single
base-pair mutations in the operator sequence (4, 22).

Using the new DNA binding energies, we can collapse all
measurements of fold-change as a function of the free energy

as shown in Fig. 3(B). This allows us to test the diagnostic
power of the decomposition of the free energy described in Fig.
2. To compute the DF for each mutation, we inferred the ob-
served mean free energy of the mutant strain for each inducer
concentration and repressor copy number (see Materials and
Methods as well as the SI text for a detailed explanation of the
inference). We note that in the limit of extremely low or high
fold-change, the inference of the free energy is either over- or
under-estimated, respectively, introducing a systematic error.
Thus, points which are close to these limits are omitted in the
calculation of DF. We direct the reader to the SI text for a de-
tailed discussion of this systematic error. With a measure of
F(mut) for each mutant at each repressor copy number, we com-
pute the difference in free energy relative to the wild-type strain
with the same repressor copy number and operator sequence,
restricting all variability in DF solely to changes in D#RA.

The change in free energy for each mutant is shown in Fig.
3(C). It can be seen that the DF for each mutant is constant
as a function of the inducer concentration and is concordant
with the prediction generated from fitting D#RA to a single
repressor copy number [red lines Fig. 3(C)]. This is in line with
the predictions outlined in Fig. 2(C) and (D), indicating that
the allosteric parameters are "insulated", meaning they are not
affected by the DNA binding domain mutations. As the DF for
all repressor copy numbers collapses onto the prediction, we
can say that the expression of the repressor itself is the same
or comparable with that of the wild type. If the repressor copy
number were perturbed in addition to D#RA, one would expect
a shift away from the prediction that scales logarithmically with
the change in repressor copy number. However, as the DF is
approximately the same for each repressor copy number, it can
be surmised that the mutation does not significantly change the
expression or folding efficiency of the repressor itself. These
results allow us to state that the DNA binding energy D#RA is
the only parameter modified by the DNA mutants examined.
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Fig. 4. Induction profiles and free energy differences of inducer binding domain mutants. White faced points represent the strain to which the parameters were fit, namely the
O2 operator sequence. Each column corresponds to the mutant highlighted at the top of the figure. All strains have R = 260 per cell. (A) The fold-change in gene expression as
a function of the inducer concentration for three operator sequences of varying strength. Dashed lines correspond to the curve of best fit resulting from fitting KA and KI alone.
Shaded curves correspond to the 95% credible region of the induction profile determined from fitting KA , KI , and D#AI . Points correspond to the mean measurement of six to
twelve biological replicates. Error bars are the standard error of the mean. (B) Points in (A) collapsed as a function of the free energy calculated from redetermining KA , KI , and
D#AI . (C) Change in free energy resulting from each mutation as a function of the inducer concentration. Points correspond to the median of the posterior distribution for the
free energy. Error bars represent the upper and lower bounds of the 95% credible region. Shaded curves are the predictions. IPTG concentration is shown on a symmetric log
scaling axis with the linear region spanning from 0 to 10�2 µM and log scaling elsewhere.

Inducer Binding Domain Mutations. Much as in the case of the
DNA binding mutants, we cannot safely assume a priori that a
given mutation in the inducer binding domain affects only the
inducer binding constants KA and KI . While it is easy to asso-
ciate the inducer binding constants with the inducer binding
domain, the critical parameter in our allosteric model D#AI is
harder to restrict to a single spatial region of the protein. As
KA, KI , and D#AI are all parameters dictating the allosteric re-
sponse, we consider two hypotheses in which inducer binding
mutations alter either all three parameters or only KA and KI .

We made four point mutations within the inducer binding
domain of LacI (F164T, Q294V, Q294R, and Q294K) that have
been shown previously to alter binding to multiple allosteric
effectors (5). In contrast to the DNA binding domain mutants,
we paired the inducer binding domain mutations with the three
native LacI operator sequences (which have various affinities
for the repressor) and a single ribosomal binding site sequence.
This ribosomal binding site sequence, as reported in (4), ex-
presses the wild-type LacI repressor to an average copy number
of approximately 260 per cell. As the free energy differences
resulting from point mutations in the DNA binding domain
can be described solely by changes to D#RA, we continue under
the assumption that the inducer binding domain mutations do
not significantly alter the repressor copy number.

The induction profiles for these four mutants are shown in
Fig. 4(A). Of the mutations chosen, Q294R and Q294K appear
to have the most significant impact, with Q294R abolishing the

characteristic sigmoidal titration curve entirely. It is notable
that both Q294R and Q294K have elevated expression in the
absence of inducer compared to the other two mutants paired
with the same operator sequence. Panel (A) in Fig. 2 illustrates
that if only KA and KI were being affected by the mutations,
the fold-change should be identical for all mutants in the ab-
sence of inducer. This discrepancy in the observed leakiness
immediately suggests that more than KA and KI are affected
for Q294K and Q294R.

Using a single induction profile for each mutant (shown
in Fig. 4 as white-faced circles), we inferred the parameter
combinations for both hypotheses and drew predictions for
the induction profiles with other operator sequences. We find
that the simplest hypothesis (in which only KA and KI are
altered) does not permit accurate prediction of most induction
profiles. These curves, shown as dotted lines in Fig. 4(A), fail
spectacularly in the case of Q294R and Q294K, and undershoot
the observed profiles for F164T and Q294V, especially when
paired with the weak operator sequence O3. The change in
the leakiness for Q294R and Q294K is particularly evident as
the expression at c = 0 should be identical to the wild-type
repressor under this hypothesis. Altering only KA and KI is not
sufficient to accurately predict the induction profiles for F164T
and Q294V, but not to the same degree as Q294K and Q294R.
The disagreement is most evident for the weakest operator O3
[green lines in Fig. 4(A)], though we have discussed previously
that the induction profiles for weak operators are difficult to
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Table 1. Inferred values of KA, KI , and D#AI for inducer binding mu-
tants

Mutant KA KI D#AI [kBT] Reference

WT 139+29
�22 µM 0.53+0.04

�0.04 µM 4.5 (10)

F164T 165+90
�65 µM 3+6

�3 µM 1+5
�2 This study

Q294V 650+450
�250 µM 8+8

�8 µM 3+6
�3 This study

Q294K > 1 mM 310+70
�60 µM �3.11+0.07

�0.07 This study

Q294R 9+20
�9 µM 8+20

�8 µM �2.35+0.01
�0.09 This study

accurately describe and can result in comparable disagreement
for the wild-type repressor (10, 22).

Including D#AI as a perturbed parameter in addition to KA
and KI improves the predicted profiles for all four mutants. By
fitting these three parameters to a single strain, we are able to
accurately predict the induction profiles of other operators as
seen by the shaded lines in Fig. 4(A). With these modified pa-
rameters, all experimental measurements collapse as a function
of their free energy as prescribed by Eq. (3) [Fig. 4(B)]. All four
mutations significantly diminish the binding affinity of both
states of the repressor to the inducer, as seen by the estimated
parameter values reported in Tab. 1. As evident in the data
alone, Q294R abrogates inducibility outright (KA ⇡ KI). For
Q294K, the active state of the repressor can no longer bind in-
ducer whereas the inactive state binds with weak affinity. The
remaining two mutants, Q294V and F164T, both show dimin-
ished binding affinity of the inducer to both the active and
inactive states of the repressor relative to the wild-type.

Given the collection of fold-change measurements, we com-
puted the DF relative to the wild-type strain with the same
operator and repressor copy number. This leaves differences
in pact(c) as the sole contributor to the free energy difference,
assuming our hypothesis that KA, KI , and D#AI are the only
perturbed parameters is correct. The change in free energy can
be seen in Fig. 4(C). For all mutants, the free energy difference
inferred from the observed fold-change measurements falls
within error of the predictions generated under the hypothesis
that KA, KI , and D#AI are all affected by the mutation [shaded
curves in Fig. 4(C)]. The profile of the free energy change ex-
hibits some of the rich phenomenology illustrated in Fig. 2(A)
and (B). Q294K, F164T, and Q294V exhibit a non-monotonic
dependence on the inducer concentration, a feature that can
only appear when KA and KI are altered. The non-zero DF at
c = 0 for Q294R and Q294K coupled with an inducer concentra-
tion dependence is a telling sign that D#AI must be significantly
modified. This shift in DF is positive in all cases, indicating
that D#AI must have decreased, and that the inactive state has
become more energetically favorable for these mutants than
for the wild-type protein. Indeed the estimates for D#AI (Tab.
1) reveal both mutations Q294R and Q294K make the inactive
state more favorable than the active state. Thus, for these two
mutations, only ⇡ 10% of the repressors are active in the ab-
sence of inducer, whereas the basal active fraction is ⇡ 99% for
the wild-type repressor (10).

Taken together, these parametric changes diminish the re-
sponse of the regulatory architecture as a whole to changing in-

ducer concentrations. They furthermore reveal that the param-
eters which govern the allosteric response are interdependent
and no single parameter is insulated from the others. How-
ever, as only the allosteric parameters are changed, one can say
that the allosteric parameters as a whole are insulated from the
other components which define the regulatory response, such
as repressor copy number and DNA binding affinity.

Predicting Effects of Pairwise Double Mutations. Given full
knowledge of each individual mutation, we can draw predic-
tions of the behavior of the pairwise double mutants with no
free parameters based on the simplest null hypothesis of no
epistasis. The formalism of DF defined by Eq. (5) explicitly
states that the contribution to the free energy of the system
from the difference in DNA binding energy and the allosteric
parameters are strictly additive. Thus, deviations from the
predicted change in free energy would suggest epistatic inter-
actions between the two mutations.

To test this additive model, we constructed nine double
mutant strains, each having a unique inducer binding (F164T,
Q294V, Q294K) and DNA binding mutation (Y20I, Q21A,
Q21M). To make predictions with an appropriate representa-
tion of the uncertainty, we computed a large array of induction
profiles given random draws from the posterior distribution
for the DNA binding energy (determined from the single DNA
binding mutants) as well as from the joint posterior for the
allosteric parameters (determined from the single inducer bind-
ing mutants). These predictions, shown in Fig. 5(A) and (B)
as shaded blue curves, capture all experimental measurements
of the fold-change [Fig. 5(A)] and the inferred difference in
free energy [Fig. 5(B)]. The latter indicates that there are no
epistatic interactions between the mutations queried in this
work, though if there were, systematic deviations from these
predictions would shed light on how the epistasis is manifest.

The precise agreement between the predictions and mea-
surements for Q294K paired with either Q21A or Q21M is strik-
ing as Q294K drastically changed D#AI in addition to KA and
KI . Our ability to predict the induction profile and free en-
ergy change underscores the extent to which the DNA binding
energy and the allosteric parameters are insulated from one
another. Despite this insulation, the repressor still functions
as an allosteric molecule, emphasizing that the mutations we
have inserted do not alter the pathway of communication be-
tween the two domains of the protein. As the double mutant
Y20I-Q294K exhibits fold-change of approximately 1 across all
IPTG concentrations [Fig. 5(A)], these mutations in tandem
make repression so weak it is beyond the limits which are de-
tectable by our experiments. As a consequence, we are unable
to estimate DF nor experimentally verify the corresponding
prediction [grey box in Fig. 5(B)]. However, as the predicted
fold-change in gene expression is also approximately 1 for all c,
we believe that the prediction shown for DF is likely accurate.
One would be able to infer the DF to confirm these predictions
using a more sensitive method for measuring the fold-change,
such as single-cell microscopy or colorimetric assays.

Discussion. Allosteric regulation is often couched as “biologi-
cal action at a distance". Despite extensive knowledge of pro-
tein structure and function, it remains difficult to translate the
coordinates of the atomic constituents of a protein to the pre-
cise parameter values which define the functional response,
making each mutant its own intellectual adventure. Bioin-
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Fig. 5. Induction and free energy profiles of DNA binding and inducer binding double mutants.(A) Fold-change in gene expression for each double mutant as a function of
IPTG. Points and errors correspond to the mean and standard error of six to ten biological replicates. Where not visible, error bars are smaller than the corresponding marker.
Shaded regions correspond to the 95% credible region of the prediction given knowledge of the single mutants. These were generated by drawing 104 samples from the D#RA
posterior distribution of the single DNA binding domain mutants and the joint probability distribution of KA , KI , and D#AI from the single inducer binding domain mutants. (B)
The difference in free energy of each double mutant as a function of the reference free energy. Points and errors correspond to the median and bounds of the 95% credible
region of the posterior distribution for the inferred DF. Shaded lines region are the predicted change in free energy, generated in the same manner as the shaded lines in (A). All
measurements were taken from a strain with 260 repressors per cell paired with a reporter with the native O2 LacI operator sequence. In all plots, the IPTG concentration is
shown on a symmetric log axis with linear scaling between 0 and 10�2 µM and log scaling elsewhere.

formatic approaches to understanding the sequence-structure
relationship have permitted us to examine how the residues of
allosteric proteins evolve, revealing conserved regions which
hint to their function. Co-evolving residues reveal sectors of
conserved interactions which traverse the protein that act as
the allosteric communication channel between domains (23–25).
Elucidating these sectors has advanced our understanding of
how distinct domains "talk" to one another and has permitted
direct engineering of allosteric responses into non-allosteric
enzymes (26–28). Even so, we are left without a quantitative
understanding of how these admittedly complex networks set
the energetic difference between active and inactive states or
how a given mutation influences binding affinity. In this con-
text, a biophysical model in which the various parameters are
intimately connected to the molecular details can be of use and
can lead to quantitative predictions of the interplay between
amino-acid identity and system-level response.

By considering how each parameter contributes to the ob-
served change in free energy, we are able to tease out different
classes of parameter perturbations which result in stereotyped
responses to changing inducer concentration. These characteris-
tic changes to the free energy can be used as a diagnostic tool to
classify mutational effects. For example, we show in Fig. 2 that
modulating the inducer binding constants KA and KI results
in non-monotonic free energy changes that are dependent on
the inducer concentration, a feature observed in the inducer
binding mutants examined in this work. Simply looking at
the inferred DF as a function of inducer concentration, which
requires no fitting of the biophysical parameters, indicates that
KA and KI must be modified considering those are the only
parameters which can generate such a response.

Another key observation is that a perturbation to only KA
and KI requires that the DF = 0 at c = 0. Deviations from this

condition imply that more than the inducer binding constants
must have changed. If this shift in DF off of 0 at c = 0 is not
constant across all inducer concentrations, we can surmise that
the energy difference between the allosteric states D#AI must
also be modified. We again see this effect for all of our inducer
mutants. By examining the inferred DF, we can immediately
say that in addition to KA and KI , D#AI must decrease rela-
tive to the wild-type value as DF > 0 at c = 0. When the
allosteric parameters are fit to the induction profiles, we indeed
see that this is the case, with all four mutations decreasing the
energy gap between the active and inactive states. Two of these
mutations, Q294R and Q294K, make the inactive state of the
repressor more stable than the active state, which is not the case
for the wild-type repressor (10).

Our formulation of DF indicates that shifts away from 0
that are independent of the inducer concentration can only
arise from changes to the repressor copy number and/or DNA
binding specificity, indicating that the allosteric parameters
are untouched. We see that for three mutations in the DNA
binding domain, DF is the same irrespective of the inducer
concentration. Measurements of DF for these mutants with
repressor copy numbers across three orders of magnitude yield
approximately the same value, revealing that D#RA is the sole
parameter altered via the mutations.

We note that the conclusions stated above can be qualita-
tively drawn without resorting to fitting various parameters
and measuring the goodness-of-fit. Rather, the distinct behavior
of DF is sufficient to determine which parameters are changing.
Here, these conclusions are quantitatively confirmed by fitting
these parameters to the induction profile, which results in ac-
curate predictions of the fold-change and DF for nearly every
strain across different mutations, repressor copy numbers, and
operator sequence, all at different inducer concentrations. With
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a collection of evidence as to what parameters are changing
for single mutations, we put our model to the test and drew
predictions of how double mutants would behave both in terms
of the titration curve and free energy profile.

A hypothesis that arises from our formulation of DF is that
a simple summation of the energetic contribution of each mu-
tation should be sufficient to predict the double mutants (so
long as they are in separate domains). We find that such a cal-
culation permits precise and accurate predictions of the double
mutant phenotypes, indicating that there are no epistatic inter-
actions between the mutations examined in this work. With
an expectation of what the free energy differences should be,
epistatic interactions could be understood by looking at how
the measurements deviate from the prediction. For example, if
epistatic interactions exist which appear as a systematic shift
from the predicted DF independent of inducer concentration,
one could conclude that DNA binding energy is not equal to
that of the single mutation in the DNA binding domain alone.
Similarly, systematic shifts that are dependent on the inducer
concentration (i.e. not constant) indicate that the allosteric pa-
rameters must be influenced. If the expected difference in free
energy is equal to 0 when c = 0, one could surmise that the
modified parameter must not be D#AI nor D#RA as these would
both result in a shift in leakiness, indicating that KA and KI are
further modified.

Ultimately, we present this work as a proof-of-principle for
using biophysical models to investigate how mutations influ-
ence the response of allosteric systems. We emphasize that such
a treatment allows one to boil down the complex phenotypic
responses of these systems to a single-parameter description
which is easily interpretable as a free energy. The general utility
of this approach is illustrated in Fig. 6 where gene expres-
sion data from previous work (4, 6, 10) along with all of the
measurements presented in this work collapse onto the master
curve defined by Eq. (3). While our model coarse grains many
of the intricate details of transcriptional regulation into two
states (one in which the repressor is bound to the promoter and
one where it is not), it is sufficient to describe a wide range
of regulatory scenarios. Given enough parametric knowledge
of the system, it becomes possible to examine how modifica-
tions to the parameters move the physiological response along
this reduced one-dimensional parameter space. This approach
offers a glimpse at how mutational effects can be described
in terms of energy rather than Hill coefficients and arbitrary
prefactors. While we have explored a very small region of se-
quence space in this work, coupling of this approach with high-
throughput sequencing-based methods to query a library of
mutations within the protein will shed light on the phenotypic
landscape centered at the wild-type sequence. Furthermore,
pairing libraries of protein and operator sequence mutants will
provide insight as to how the protein and regulatory sequence
coevolve, a topic rich with opportunity for a dialogue between
theory and experiment.

Materials and Methods

Bacterial Strains and DNA Constructs. All wild-type strains from
which the mutants were derived were generated in previous work
from the Phillips group (4, 10). Briefly, mutations were first introduced
into the lacI gene of our pZS3*1-lacI plasmid (4) using a combination
of overhang PCR Gibson assembly as well as QuickChange mutagen-
esis (Agligent Technologies). The oligonucleotide sequences used to

Fig. 6. Data collapse of the simple repression regulatory architecture. All data are
means of biological replicates. Where present, error bars correspond to the standard
error of the mean of five to fifteen biological replicates. Red triangles indicate data
from Garcia and Phillips (4) obtained by colorimetric assays. Blue squares are data
from Brewster et al.(6) acquired from video microscopy. Green circles are data from
Razo-Mejia et al. (10) obtained via flow cytometry. All other symbols correspond to
the work presented here. An interactive version of this figure can be found on the
paper website where the different data sets can be viewed in more detail.

generate each mutant as well as the method are provided in the SI text.
For mutants generated through overhang PCR and Gibson assembly,

oligonucleotide primers were purchased containing an overhang with
the desired mutation and used to amplify the entire plasmid. Using the
homology of the primer overhang, Gibson assembly was performed to
circularize the DNA prior to electroporation into MG1655 E. coli cells.
Integration of LacI mutants was performed with l Red recombineering
(29) as described in Reference (4).

The mutants studied in this work were chosen from data reported
in (5). In selecting mutations, we looked for mutants which suggested
moderate to strong deviations from the behavior of the wild-type re-
pressor. We note that the variant of LacI used in this work has an
additional three amino acids (Met-Val-Asn) added to the N-terminus
than the canonical LacI sequence reported in (30). For this reason, all
mutants given here are with respect to our sequence and their positions
are shifted by three to those studied in (5).

Flow Cytometry. All fold-change measurements were performed on
a MACSQuant flow cytometer as described in Razo-Mejia et al. (10).
Briefly, saturated overnight cultures 500 µL in volume were grown in
deep-well 96 well plates covered with a breathable nylon cover (Lab
Pak - Nitex Nylon, Sefar America, Cat. No. 241205). After approxi-
mately 12 to 15 hr, the cultures reached saturation and were diluted
1000-fold into a second 2 mL 96-deep-well plate where each well con-
tained 500 µL of M9 minimal media supplemented with 0.5% w/v
glucose (anhydrous D-Glucose, Macron Chemicals) and the appro-
priate concentration of IPTG (Isopropyl b-D-1-thiogalactopyranoside,
Dioxane Free, Research Products International). These were sealed
with a breathable cover and were allowed to grow for approximately
8 hours until the OD600nm ⇡ 0.3. Cells were then diluted ten-fold into
a round-bottom 96-well plate (Corning Cat. No. 3365) containing 90
µL of M9 minimal media supplemented with 0.5% w/v glucose along
with the corresponding IPTG concentrations.

The flow cytometer was calibrated prior to use with MACSQuant
Calibration Beads (Cat. No. 130-093-607). During measurement, the
cultures were held at approximately 4� C by placing the 96-well plate
on a MACSQuant ice block. All fluorescence measurements were made
using a 488 nm excitation wavelength with a 525/50 nm emission filter.
The photomultiplier tube voltage settings for the instrument are the
same as those used in Reference (10).

The data was processed using an automatic unsupervised gating
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procedure based on the front and side- scattering values, where we fit
a two-dimensional Gaussian function to the log10 forward-scattering
(FSC) and the log10 side-scattering (SSC) data. Here we assume that the
region with highest density of points in these two channels corresponds
to single-cell measurements and consider data points that fall within
40% of the highest density region of the two-dimensional Gaussian
function. We direct the reader to Reference (10) for further detail and
comparison of flow cytometry with single-cell microscopy.

Bayesian Parameter Estimation. We used a Bayesian definition of prob-
ability in the statistical analysis of all mutants in this work. In the SI
text, we derive in detail the statistical models used for the various
parameters as well as multiple diagnostic tests. Here, we give a generic
description of our approach. To be succinct in notation, we consider
a generic parameter q which represents D#RA, KA, KI , and/or D#AI
depending on the specific LacI mutant.

As prescribed by Bayes’ theorem, we are interested in the posterior
probability distribution

g(q | y) µ f (y | q)g(q), [7]

where we use g and f to represent probability densities over param-
eters and data, respectively, and y to represent a set of fold-change
measurements. The likelihood of observing our dataset y given a value
of q is captured by f (y | q). All prior information we have about the
possible values of q are described by g(q).

In all inferential models used in this work, we assumed that all
experimental measurements at a given inducer concentration were
normally distributed about a mean value µ dictated by Eq. (1) with a
variance s2,

f (y | q) =
1

(2ps2)N/2

N

’
i

exp

� (yi � µ(q))2

2s2

�
, [8]

where N is the number of measurements in the data set y.
This choice of likelihood is justified as each individual measure-

ment at a given inducer concentration is a biological replicate and
independent of all other experiments. By using a Gaussian likelihood,
we introduce another parameter s. As s must be positive and greater
than zero, we define as a prior distribution a half-normal distribution
with a standard deviation f,

g(s) =
1
f

r
2
p

exp

� x

2f2

�
; x � 0, [9]

where x is a given range of values for s. A standard deviation of f = 0.1
was chosen given our knowledge of the scale of our measurement
error from other experiments. As the absolute measurement of fold-
change is restricted between 0 and 1.0, and given our knowledge of
the sensitivity of the experiment, it is reasonable to assume that the
error will be closer to 0 than to 1.0. Further justification of this choice
of prior through simulation based methods are given in the SI text.
The prior distribution for q is dependent on the parameter and its
associated physical and physiological restrictions. Detailed discussion
of our chosen prior distributions for each model can also be found in
the SI text.

All statistical modeling and parameter inference was performed
using Markov chain Monte Carlo (MCMC). Specifically, Hamiltonian
Monte Carlo sampling was used as sis implemented in the Stan prob-
abilistic programming language (31). All statistical models saved as
.stan models and can be accessed at the GitHub repository associated
with this work (DOI: 10.5281/zenodo.2721798) or can be downloaded
directly from the paper website.

Inference of Free Energy From Fold-Change Data. While the fold-
change in gene expression is restricted to be between 0 and 1, exper-
imental noise can generate fold-change measurements beyond these
bounds. To determine the free energy for a given set of fold-change
measurements (for one unique strain at a single inducer concentration),
we modeled the observed fold-change measurements as being drawn
from a normal distribution with a mean µ and standard deviation s.
Using Bayes’ theorem, we can write the posterior distribution as

g(µ, s |y) µ g(µ)g(s)
1

(2ps2)N/2

N

’
i

exp

�(yi � µ)2

2s2

�
, [10]

where y is a collection of fold-change measurements. The prior distri-
bution for µ was chosen to be uniform between 0 and 1 while the prior
on s was chosen to be half normal, as written in Eq. (9). The posterior
distribution was sampled independently for each set of fold-change
measurements using MCMC. The .stan model for this inference is
available on the paper website.

For each MCMC sample of µ, the free energy was calculated as

F = � log
⇣

µ�1 � 1
⌘

[11]

which is simply the rearrangement of Eq. (3). Using simulated data, we
determined that when µ < s or (1 � µ) < s, the mean fold-change in
gene expression was over or underestimated for the lower and upper
limit, respectively. This means that there are maximum and minimum
levels of fold-change that can be detected using flow cytometry which
are set by the distribution of fold-change measurements resulting from
various sources of day-to-day variation. This results in a systematic
error in the calculation of the free energy, making proper inference
beyond these limits difficult. This bounds the range in which we can
confidently infer this quantity with flow cytometry. We hypothesize
that more sensitive methods, such as single cell microscopy, colorimet-
ric assays, or direct counting of mRNA transcripts via Fluorescence In
Situ Hybridization (FISH) would improve the measurement of DF. We
further discuss details of this limitation in the SI text.

Data and Code Availability. All data was collected, stored, and pre-
served using the Git version control software. Code for data processing,
analysis, and figure generation is available on the GitHub repository
(https://www.github.com/rpgroup-pboc/mwc_mutants) or can be
accessed via the paper website. Raw flow cytometry data is stored
on the CaltechDATA data repository and can be accessed via DOI
10.22002/D1.1241.
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Supporting Information Text

1. Derivation of the Simple Repression Input-Output Function

In this section, we derive the input-output function for the inducible simple repression motif. This section summarizes the results
from Garcia and Phillips 2011 (1) and Razo-Mejia et al. 2018 (2) and we direct the reader to these references for further detail.

We begin by defining the simple repression motif as a regulatory architecture in which binding of a repressor to its cognate
binding site occludes binding of an RNA polymerase (RNAP) to the promoter, thereby hindering gene expression (3, 4). The
repressor in this work is considered to be an allosteric molecule which fluctuates between an active and inactive state in thermal
equilibrium. Binding of an allosteric effector molecule (i.e. an inducer) to a binding site in one domain of the repressor can
stabilize the inactive state relative to the active state. The repressor can still bind the DNA in the inactive state but the sequence
specificity is reduced and binding to the cognate sequence becomes comparable to nonspecific binding. Such regulatory motifs
have been well characterized from a thermodynamic perspective in which the system is considered to be in equilibrium at the time
scales relevant to molecular binding events. Under such a model, we can assume that the level of gene expression is proportional
to the the probability of RNAP being bound to the promoter and this has frequently been applied in thermodynamic models of
transcription (1–10).

The probability of the promoter being occupied by either a polymerase, repressor, or neither is dictated by the Boltzmann
distribution,

Pstate µ e
�#state/kBT , [1]

where #state is the energy of the state of interest. This energy is scaled to the thermal energy of the system kBT where kB is
Boltzmann’s constant and T is the temperature in units of K. The goal of this section is to translate generic proportionality in
Eq. (1) into the relevant states of our system.

The occupancy states of the promoter and corresponding statistical weights can be seen in Fig. S1 (A). Here we use P to denote
the number of RNAP per cell, RA as the number of active repressors, and RI as the number of inactive repressors. We assume
there is a single specific binding site on the genome and NNS nonspecific binding sites. The polymerase, active, and inactive
repressor in this work are considered to bind the DNA with different strengths. The energy of binding for each species is given as
D#P, D#RA, or D#RI , which captures the energetic difference between nonspecific and specific binding for that species. Since we
consider a single specific binding site for both the polymerase and repressor, we can say that NNS >> P and NNS >> RA + RI ,
allowing the multiplicity of arranging P polymerases and R repressors to be approximately equal to P/NNS and (RA + RI)/NNS,
respectively.

PROMOTER OCCUPANCY STATES

state statistical weightdescription

ALLOSTERIC STATES

state statistical weight state statistical weight

active states inactive states

empty
promoter

polymerase
bound

active repressor
bound

inactive repressor
bound

(B)(A)

Fig. S1. States and statistical weights for a simple repression motif with an allosteric repressor. (A) Occupancy states of the promoter in which the statistical weights are
relative to the unoccupied state. P, RA , and RI correspond to the average number of RNAP, active repressors, and inactive repressors per cell, respectively. The relative DNA
binding energies are given as D#P , D#RA and D#RI . (B) Allosteric states of the repressor and the statistical weights relative to the active repressor with no inducer bound. The
dissociation constant for the inducer to the active and inactive state of the repressor are denoted as KA and KI , respectively, c is the inducer concentration, and D#AI is the
energetic difference between the active and inactive states of the repressor.

With these states and statistical weights enumerated, we can now define the probability of a polymerase being bound to the
promoter as

Pbound =
P

NNS
e
�bD#P

1 + P

NNS
e�bD#P + RA

NNS
e�bD#RA + RI

NNS
e�bD#RI

, [2]

where we have defined b as 1
kBT

.
It is experimentally difficult to measure Pbound directly as identifying the direct proportionality to gene expression is not

straightforward. However, we can easily measure the fold-change in gene expression, defined as the probability of a polymerase
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being bound to the promoter in the presence of repressor relative to constitutive expression,

fold-change =
Pbound(R > 0)
Pbound(R = 0)

=
1 + P

NNS
e
�bD#P

1 + P

NNS
e�bD#P + RA

NNS
e�bD#RA + RI

NNS
e�bD#RI

. [3]

This can be simplified by making two well justified approximations. We can assume that binding of the inactive repressor to the
specific binding site is approximately equal to nonspecific binding, RI

NNS
e
�bD#RI << 1 + RA

NNS
e
�bD#RA . Secondly, we can state that

binding of RNAP to the promoter is weak, P

NNS
e
�bD#P << 1. Assuming P ⇡ 103 (11), NNS ⇡ 4.6 ⇥ 106 (the length of the E. coli

genome in base pairs) and D#P ⇡ �2 to �5 kBT (12), the probability of this state comes to ⇡ 1% and can be neglected. Using these
approximations, we can state that the fold-change in gene expression has the form

fold-change =

✓
1 +

RA

NNS

e
�bD#RA

◆�1
. [4]

In order to make falsifiable predictions, we must have a precise knowledge of the number of active repressors in the cell RA.
While determining this quantity is fraught with experimental difficulties, it is relatively easy to determine the total number of
repressors per cell R through quantitative western blotting (1), fluorescence based methods (9), or proteomic studies (13). We can
compute the number of active repressors at a given inducer concentration c by multiplying the total number of repressors by the
probability of a repressor being active at that inducer concentration,

RA(c) = pact(c)R. [5]

Similarly to computing Pbound, we can compute the possible states and statistical weights of the repressor activity, shown in
Fig. S1 (B). Following the model of Monod, Wyman, and Changeux (14), we have defined all statistical weights relative to the
active repressor with no bound inducer molecules. We have defined the dissociation constant of the inducer to the active and
inactive repressor as KA and KI , respectively, and have assigned an energetic penalty e

�bD#AI to all inactive states of the repressor.
The energetic term D#AI represents the relative energy difference between the active and inactive states, D#AI = # I � #A. For the
lac repressor used in this work, the value of D#AI has been inferred to be 4.5 kBT, indicating that the active state is energetically
preferred and with no inducer, approximately 99% of the repressors are in the active state.

Using these states and weights, we can compute Pact(c) as

pact(c) =

⇣
1 + c

KA

⌘2

⇣
1 + c

KA

⌘2
+ e�bD#AI

⇣
1 + c

KI

⌘2 . [6]

Using Eq. (4) - Eq. (6), we can then state that at a given inducer concentration c, the fold-change in gene expression can be defined
as

fold-change =

0

B@1 +

⇣
1 + c

KA

⌘2

⇣
1 + c

KA

⌘2
+ e�bD#AI

⇣
1 + c

KI

⌘2
R

NNS

e
�bD#RA

1

CA

�1

, [7]

which is the result stated in Eq. 1 of the main text. We emphasize that equilibrium models as derived here have frequently
been used to characterize the simple repression motif (1–5, 9) in addition to non-equilibrium approaches which have the same
functional form as Eq. (7) (15).
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2. Bayesian Parameter Estimation For DNA Binding Mutants

In this section, we outline the statistical model used in this work to estimate the DNA binding energy for a given mutation in the
DNA binding domain. We begin with a derivation of our statistical model using Bayes’ theorem and then perform a series of
principled steps to validate our choices of priors, ensure computational feasibility, and assess the validity of the model given the
collected data. This work follows the analysis pipeline outlined by Michael Betancourt in his case-study entitled "Towards A
Principled Bayesian Workflow."

The second subsection "Building a Generative Statistical Model" lays out the statistical model used in this work to estimate the
DNA binding energy and the error term s. The subsequent subsections – "Prior Predictive Checks", "Simulation Based Calibration",
and "Posterior Predictive Checks" – define and summarize a series of tests that ensure that the parameters of the statistical model can
be identified and are computationally tractable. To understand how we defined our statistical model, only the second subsection
is needed.

Calculation of the Fold-Change in Gene Expression. We appreciate the subtleties of the efficiency of photon detection in the flow
cytometer, fluorophore maturation and folding, and autofluorescence correction, and we understand the importance in modeling
the effects that these processes have on the reported value of the fold-change. However, in order to be consistent with the methods
used in the literature, we took a more simplistic approach to calculate the fold-change. Given a set of fluorescence measurements
of the constitutive expression control (R = 0), an autofluorescence control (no YFP), and the experimental strain (R > 0), we
calculate the fold-change as

fold-change =
hIcell(R > 0)i � hIautofluorescencei
hIcell(R = 0)i � hIautofluorescencei

. [8]

It is important to note here that for a given biological replicate, we consider only a point estimate of the mean fluorescence for
each sample and perform a simple subtraction to adjust for background fluorescence. For the analysis going forward, all mentions
of measured fold-change are determined by this calculation.

Building a Generative Statistical Model. To identify the minimal parameter set affected by a mutation, we assume that mutations
in the DNA binding domain of the repressor alters only the DNA binding energy D#RA, while the other parameters of the
repressor are left unperturbed from their wild-type values. As a first approach, we can assume that all of the other parameters
are known without error and can be taken as constants in our physical model. Ultimately, we want to know how probable a
particular value of D#RA is given a set of experimental measurements y. Bayes’ theorem computes this distribution, termed the
posterior distribution as

g(D#RA | y) =
f (y |D#RA)g(D#RA)

f (y)
, [9]

where we have used g and f to represent probability densities over parameters and data, respectively. The expression f (y |D#RA)
captures the likelihood of observing our data set y given a value for the DNA binding energy under our physical model. All
knowledge we have of what the DNA binding energy could be, while remaining completely ignorant of the experimental
measurements, is defined in g(D#RA), referred to as the prior distribution. Finally, the likelihood that we would observe the data
set y while being ignorant of our physical model is defined by the denominator f (y). In this work, this term serves only as a
normalization factor and as a result will be treated as a constant. We can therefore say that the posterior distribution of D#RA is
proportional to the joint distribution between the likelihood and the prior,

g(D#RA | y) µ f (y |D#RA)g(D#RA). [10]

We are now tasked with translating this generic notation into a concrete functional form. Our physical model given by Eq. (7)
computes the average fold-change in gene expression. Speaking practically, we make several replicate measurements of the
fold-change to reduce the effects of random errors. As each replicate is independent of the others, it is reasonable to expect that
these measurements will be normally distributed about the theoretical value of the fold-change µ, computed for a given D#RA. We
can write this mathematically for each measurement as

f (y |D#RA) =
1

(2ps2)N/2

N

’
i

exp

�(yi � µ(D#RA))

2

2s2

�
, [11]

where N is the number of measurements in y and yi is the i
th experimental fold-change measurement. We can write this likelihood

in shorthand as
f (y |D#RA) = Normal{µ(D#RA), s} [12]

which we will use for the remainder of this section.
Using a normal distribution for our likelihood has introduced a new parameter s which describes the spread of our measure-

ments about the true value. We must therefore include it in our parameter estimation and assign an appropriate prior distribution
such that the posterior distribution becomes

g(D#RA, s |y) µ f (y |D#RA, s)g(D#RA)g(s). [13]
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We are now tasked with assigning functional forms to the priors g(D#RA) and g(s). Though one hopes that the result of the
inference is not too dependent on the choice of prior, it is important to choose one that is in agreement with our physical and
physiological intuition of the system.

We can impose physically reasonable bounds on the possible values of the DNA binding energy D#RA. We can say that it is
unlikely that any given mutation in the DNA binding domain will result in an affinity greater than that of biotin to streptavidin
[1 fM ⇡ �35 kBT, BNID 107139 (16)], one of the strongest known non-covalent bonds. Similarly, it’s unlikely that a given mutation
will result in a large, positive binding energy, indicating non-specific binding is preferable to specific binding (⇠ 1 to 10 kBT).
While it is unlikely for the DNA binding energy to exceed these bounds, it’s not impossible, meaning we should not impose these
limits as hard boundaries. Rather, we can define a weakly informative prior as a normal distribution with a mean and standard
deviation as the average of these bounds,

g(D#RA) ⇠ Normal{�12, 12} [14]
whose probability density function in shown in Fig. S2 (A).

By definition, fold-change is restricted to the bounds [0, 1]. Measurement noise and fluctuations in autofluorescence background
subtraction means that experimental measurements of fold-change can extend beyond these bounds, though not substantially. By
definition, the scale parameter s must be positive and greater than zero. We also know that for the measurements to be of any use,
the error should be less than the available range of fold-change, 1.0. We can choose such a prior as a half normal distribution

g(s) =
1
f

r
2
p

exp

� s2

2f2

�
; 8 s � 0, [15]

where f is the standard deviation. By choosing f = 0.1, it is unlikely that s � 1 yet not impossible, permitting the occasional
measurement significantly outside of the theoretical bounds. The probability density function for this prior is shown in Fig. S2(B).

While these choices for the priors seem reasonable, we can check their appropriateness by using them to simulate a data set
and checking that the hypothetical fold-change measurements obey our physical and physiological intuition.

Prior Predictive Checks. If our choice of prior distribution for each parameter is appropriate, we should be able to simulate data
sets using these priors that match our expectations. In essence, we would hope that these prior choices would generate some
data sets with fold-change measurements above 1 or below zero, but they should be infrequent. If we end up getting primarily
negative values for fold-change, for example, then we can surmise that there is something wrong in our definition of the prior
distribution. This method, coined a prior predictive check, was first put forward by Isidore Good in 1950 (17) and has received
newfound attention in computational statistics.

We perform the simulation in the following manner. We first draw a random value for D#RA out of its prior distribution stated
in Eq. (14) and calculate what the mean fold-change should be given our theory described in Eq. (7). With this in hand, we draw
a random value for s from its prior distribution, specified in Eq. (15). We then generate a simulated dataset by drawing ⇡ 70
fold-change values across twelve inducer concentrations from the likelihood distribution which we defined in Eq. (12). This
roughly matches the number of measurements made for each mutant in this work. We repeat this procedure for 800 draws from
the prior distributions, which is enough to observe the occasional extreme fold-change value from the likelihood. As the DNA
binding energy is the only parameter of our physical model that we are estimating, we had to choose values for the others. We
kept the values of the inducer binding constants KA and KI the same as the wild-type repressor (139 µM and 0.53 µM, respectively).
We chose to use R = 260 repressors per cell as this is the repressor copy number we used in the main text to estimate the DNA
binding energies of the three mutants.

The draws from the priors are shown in S2(A) and (B) as black points above the corresponding distribution. To display the
results, we computed the percentiles of the simulated data sets at each inducer concentration. These percentiles are shown as
red shaded regions in Fig. S2(C). The 5th percentile (dark red band) has the characteristic profile of an induction curve. Given
that the prior distribution for D#RA is centered at �12 kBT and we chose R = 260, we expect the generated data sets to cluster
about the induction profile defined by these values. More importantly, approximately 95% of the generated data sets fall between
fold-change values of -0.1 and 1.1, which is within the realm of possibility given the systematic and biological noise in our
experiments. The 99th percentile maximum is approximately 1.3 and the minimum approximately �0.3. While we could tune our
choice of prior further to minimize draws this far from the theoretical bounds, we err on the side of caution and accept these
values as it is possible that fold-change measurements this high or low can be observed, albeit rarely.

Through these prior predictive checks, we feel confident that these choices of priors are appropriate for the parameters we wish
to estimate. We can now move forward and make sure that the statistical model as a whole is valid and computationally tractable.

Sensitivity Analysis and Simulation Based Calibration. Satisfied with our choice of prior distributions, we can proceed to check
other properties of the statistical model and root out any pathologies lurking in our model assumptions.

To build trust in our model, we could generate a data set ỹ with a known value for s and D#RA, estimate the posterior
distribution g(D#RA, s | ỹ), and determine how well we were able to retrieve the true value of the parameters. However, running
this once or twice for handpicked values of s and D#RA won’t reveal edge-cases in which the inference fails, some of which may
exist in our data. Rather than performing this operation once, we can run this process over a variety of data sets where the ground
truth parameter value is drawn from the prior distribution (as we did for the prior predictive checks). For an arbitrary parameter
q, the joint distribution between the ground truth value q̃, the inferred value q, and the simulated data set ỹ can be written as

p(q, ỹ, q̃) = g(q | ỹ) f (ỹ | q̃)g(q̃). [16]
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Fig. S2. Prior distributions and prior predictive check for estimation of the DNA binding energy. (A) Prior probability density function for DNA binding energy D#RA as
⇠ Normal(�12, 12). (B) Prior probability density function for the standard deviation in measurement noise s as ⇠ HalfNormal(0, 0.1). (C) Percentiles of values drawn from the
likelihood distribution given draws from prior distributions given R = 260, KA = 139 ⇥ 10�6 M, KI = 0.53 ⇥ 10�6 M, and D#AI = 4.5 kBT, which match the parameters used for
the predictions in Razo-Mejia et al. 2018 (2). Black points at top of (A) and (B) represent draws used to generate fold-change measurements from the likelihood distribution.
Percentiles in (C) generated from 800 draws from the prior distributions. For each draw from the prior distributions, a data set of 70 measurements over 12 IPTG concentrations
(ranging from 0 to 5000 µM) were generated from the likelihood.

If this process is run for a large number of simulations, Eq. (16) can be marginalized over all data sets ỹ and all ground truth
values q̃ to yield the original prior distribution,

Z
dq̃

Z
dỹp(q, ỹ, q̃) = g(q). [17]

This result, described by Talts et al. 2018 (18), holds true for any statistical model and is a natural self consistency property of
Bayesian inference. Any deviation between the distribution of our inferred values for q and the original prior distribution g(q)
indicates that either our statistical model is malformed or the computational method is not behaving as expected. There are a
variety of ways we can ensure that this condition is satisfied, which we outline below.

Using the data set generated for the prior predictive checks [shown in Fig. S2(C)], we sampled the posterior distribution
and compute D#RA and s for each simulation and checked that they matched the original prior distribution. To perform the
inference, we use Markov chain Monte Carlo (MCMC) to sample the posterior distribution. Specifically, we use the Hamiltonian
Monte Carlo algorithm implemented in the Stan probabilistic programming language (19). The specific code files can be accessed
through the paper website or the associated GitHub repository. The original prior distribution and the distribution of inferred
parameter values can be seen in Fig. S3 (A) and (B). For both D#RA and s, we can accurately recover the ground truth distribution
(blue) via sampling with MCMC (red). For D#RA, there appears to be an upper and lower limit past which we are unable to
accurately infer the binding energy. This can be seen in both the histogram [Fig. S3(A)] and the empirical cumulative distribution
[Fig. S3(B)] as deviations from the ground truth when DNA binding is below ⇡ �25kBT or above ⇡ �5kBT. These limits hinder
our ability to comment on exceptionally strong or weak binding affinities. However, as all mutants queried in this work exhibited
binding energies between these limits, we surmise that the inferential scheme permits us to draw conclusions about the inferred
DNA binding strengths.

Rather than examining the agreement of the data-averaged posterior and the ground truth prior distribution solely by eye, we
can compute summary statistics using the mean µ and standard deviation s of the posterior and prior distributions which permit
easier identification of pathologies in the inference. One such quantity is the posterior z-score, which is defined as

z =
µposterior � q̃

sposterior
. [18]

This statistic summarizes how accurately the posterior recovers the ground truth value beyond simply reporting the mean,
median, or mode of the posterior distribution. Z-scores around 0 indicate that the posterior is concentrating tightly about the true
value of the parameter whereas large values (either positive or negative) indicate that the posterior is concentrating elsewhere. A
useful feature of this metric is that the width of the posterior is also considered. It is possible that the posterior could have a mean
very close to the ground truth value, but have an incredibly narrow distribution/spread such that it does not overlap with the
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Fig. S3. Comparison of averaged posterior and prior distributions for D#RA and s. (A) Distribution of the average values for the DNA binding energy D#RA (red) overlaid with
the ground truth distribution (blue). (B) Data averaged posterior (red) for the standard deviation of fold-change measurements overlaid with the ground truth distribution (blue).
Top and bottom show the same data with different visualizations.

ground-truth. Only comparing the mean value to the ground truth would suggest that the inference "worked". However with a
small standard deviation generates a very large z-score, telling us that something has gone awry.

If our inferential model is behaving properly, the width of the posterior distribution should be significantly smaller than the
width of the prior, meaning that the posterior is being informed by the data. The level to which the posterior is being informed by
the data can be easily calculated given knowledge of both the prior and posterior distribution. This quantity, aptly named the
shrinkage s, can be computed as

s = 1 �
s2

posterior

s2
prior

. [19]

When the shrinkage is close to zero, the variance of the posterior is approximately the same as the variance of the prior, model is
not being properly informed by the data. When s ⇡ 1, the variance of the posterior is much smaller than the variance of the prior,
indicating that the it is being highly informed by the data. A shrinkage less than 0 indicates that the posterior is wider than the
prior distribution, revealing a severe pathology in either the model itself or the implementation.

In Fig. S4, we compute these summary statistics for each parameter. For both D#RA and s, we see clustering of the z-score about
0 with the extrema reaching ⇡ ±3. This suggests that for the vast majority of our simulated data sets, the posterior distribution
concentrated about the ground truth value. We also see that for both parameters, the posterior shrinkage s is ⇡ 1, indicating that
the posterior is being highly informed by the data. There is a second distribution centered ⇡ 0.8 for D#RA, indicating that for a
subset of the data sets, the posterior is only ⇡ 80% narrower than the prior distribution. These samples are those that were drawn
outside of the limits of ⇡ �25 to �5 kBT where the inferential power is limited. Nevertheless, the posterior still significantly
shrank, indicating that the data strongly informs the posterior.

The general self-consistency condition given by Eq. (17) provides another route to ensure that the model is computationally
tractable. Say that we draw a value for the DNA binding energy from the prior distribution, simulate a data set, and sample
the posterior using MCMC. The result of this sampling is a collection of N values of the parameter which may be above, below,
or equal to the ground-truth value. From this set of values, we select L of them and rank order them by their value. Talts
and colleagues (18) derived a general theorem which states that the number of samples less than the ground truth value of
the parameter (termed the rank statistic) is uniformly distributed over the interval [0, L]. As Eq. (17) must hold true for any
statistical model, deviations from uniformity signal that there is a problem in the implementation of the statistical model. How
the distribution deviates is also informative as different types of failures result in different distributions. The nature of these
deviations, along with a more formal proof of the uniform distribution of rank statistics can be found in Talts et al. 2018 (18)
where it was originally derived.

Given the sampling statistics for each of the simulated data sets, we took 800 of the MCMC samples of the posterior distribution
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Fig. S4. Inferential sensitivity for estimation of D#RA and s. The posterior z-score for each posterior distribution inferred from a simulated data set is plotted against the
shrinkage for (A) the DNA binding energy D#RA and (B) the standard deviation of fold-change measurements s

for each of the 800 simulated data sets and computed the rank statistic. The distributions are shown in Fig. S5 as both histograms
and ECDFs for the DNA binding energy and standard deviation. The distribution of rank statistics for both parameters appears to
be uniform. The gray band overlaying the histograms (top row) as well as the gray envelopes overlaying the ECDFs (bottom
row) represent the 99th percentile expected from a true uniform distribution. The uniformity of this distribution, along with the
well-behaved z-scores and shrinkage for each parameter, tells us that there are no underlying pathologies in our statistical model
and that it is computationally tractable. However, this does not mean that it is correct. Whether this model is valid for the actual
observed data is the topic of the next section.

Parameter Estimation and Posterior Predictive Checks. We now turn to applying our vetted statistical model to experimental
measurements. While the same statistical model was applied to all three DNA binding mutants, here we only focus on the mutant
Q21M for brevity.

Using a single induction profile, we sampled the posterior distribution over both the DNA binding energy D#RA and the
standard deviation s using MCMC implemented in the Stan programming language. The output of this process is a set of 4000
samples of both parameters along with the value of their log posterior probabilities, which serves as an approximate measure
of the probability of each value. The individual samples are shown in Fig. S6. The joint distribution between D#RA and s is
shown in the lower left hand corner, and the marginal distributions for each parameter are shown above and to the right of
the joint distribution, respectively. The joint distribution is color coded by the value of the log posterior, with yellow and blue
corresponding to high and low probability, respectively. The symmetric shape of the joint distribution is a telling sign that there is
no correlation between two parameters. The marginal distributions for each parameter are also relatively narrow, with the DNA
binding energy covering a range of ⇡ 0.6 kBT and s spanning ⇡ 0.02. To more precisely quantify the uncertainty, we computed
the shortest interval of the marginal distribution for each parameter contains 95% of the probability. The bounds of this interval,
coined the Bayesian credible region, can accommodate asymmetry in the marginal distribution since the upper and lower bounds
of the estimate are reported. In the main text, we reported the DNA binding energy estimated from these data to be 15.43+0.06

�0.06 kBT,
where the first value is the median of the distribution and the super- and subscripts correspond to the upper and lower bounds of
the credible region, respectively.

While looking at the shape of the posterior distribution can be illuminating, it is not enough to tell us if the parameter values
extracted make sense or accurately describe the data on which they were conditioned. To assess the validity of the statistical
model in describing actual data, we again turn to simulation, this time using the posterior distributions for each parameter rather
than the prior distributions. The likelihood of our statistical model assumes that across the entire induction profile, the observed
fold-change is normally distributed about the theoretical prediction with a standard deviation s. If this is an accurate depiction
of the generative process, we should be able to draw values from the likelihood using the sampled values for D#RA and s that
are indistinguishable from the actual experimental measurements. This process is known as a posterior predictive check and is a
Bayesian method of assessing goodness-of-fit.

For each sample from the posterior, we computed the theoretical mean fold-change given the sampled value for D#RA and
Eq. (7). With this mean in hand, we used the corresponding sample for s and drew a data set from the likelihood distribution the
same size as the real data set used for the inference. As we did this for every sample of our MCMC output (a total of ⇡ 4000), it is
more instructive to compute the percentiles of the generated data than to show the entire output. In Fig. S6(B), the percentiles of
the generated data sets are shown overlaid with the data used for the inference. We see that all of the data points fall within the
99th percentile of simulated data sets with the 5th percentile tracking the mean of the data at each inducer concentration. As there
are no systematic deviations or experimental observations that fall far outside those generated from the statistical model, we can
safely say that the statistical model derived here accurately describes the observed data.
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Fig. S5. Rank distribution of the posterior samples from simulated data. Top row shows a histogram of the rank distribution with n = 20 bins. Bottom row is the cumulative
distribution for the same data. Gray bands correspond to the 99th percentile of expected variation from a uniform distribution. (A) Distribution for the DNA binding energy D#RA

and (B) for the standard deviation s.
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Fig. S6. Markov Chain Monte Carlo (MCMC) samples and posterior predictive check for DNA binding mutant Q21M. (A) Marginal and joint sampling distributions for DNA
binding energy D#RA and s. Each point in the joint distribution is a single sample. Marginal distributions for each parameter are shown adjacent to joint distribution. Color in the
joint distribution corresponds to the value of the log posterior with the progression of blue to yellow corresponding to increasing probability. (B) The posterior predictive check of
model. The measurements of the fold-change in gene expression are shown as black open-faced circles. The percentiles are shown as colored bands and indicate the fraction
of simulated data drawn from the likelihood that fall within the shaded region.
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3. Inferring the Free Energy From Fold-Change Measurements

In this section, we describe the statistical model to infer the free energy F from a set of fold-change measurements. We follow
the same principled workflow as described previously for the DNA binding estimation, including declaration of the generative
model, prior predictive checks, simulation based calibration, and posterior predictive checks. Finally, we determine an empirical
limit in our ability to infer the free energy and define a heuristic which can be used to identify measurements that are likely
inaccurate. To understand the statistical model and the empirical limits of detection, only the subsections Building A Generative

Model and Sensitivity Limits and Systematic Errors in Inference are necessary.

Building A Generative Model. In the main text, we showed that the fold-change equation defined in Eq. (7) can be rewritten in the
form of a Fermi function,

fold-change =
1

1 + e�F/kBT
, [20]

where F corresponds to the free energy difference between the repressor bound and unbound states of the promoter. While the
theory prescribes a way for us to calculate the free energy based on our knowledge of the biophysical parameters, we can directly
calculate the free energy of a measurement of fold-change by simply rearranging Eq. (20) as

F = �kBT log
✓

1
fold-change

� 1
◆

. [21]

With perfect measurement of the fold-change in gene expression (assuming no experimental or measurement noise), the free
energy can be directly calculated. However, actual measurements of the fold-change in gene expression can extend beyond the
theoretical bounds of 0 and 1, for which the free energy is mathematically undefined.

As the fold-change measurements between biological replicates are independent, it is reasonable to assume that they are
normally distributed about a mean value µ with a standard deviation s. While the mean value is restricted to the bounds of [0, 1],
fold-change measurements outside of these bounds are still possible given that they are distributed about the mean with a scale of
s. Thus, if we have knowledge of the mean fold-change in gene expression about which the observed fold-change is distributed,
we can calculate the mean free energy as

F = �kBT log
✓

1
µ
� 1

◆
. [22]

For a given set of fold-change measurements y, we wish to infer the posterior probability distribution for µ and s, given by
Bayes’ theorem as

g(µ, s | y) µ f (y | µ, s)g(µ)g(s), [23]

where we have dropped the normalization constant f (y) and assigned a proportionality between the posterior and joint probability
distribution. Given that the measurements are independent, we define the likelihood f (y | µ, s) as a normal distribution,

f (y | µ s) ⇠ Normal{µ, s}. [24]

While the mean µ is restricted to the interval [0, 1], there is no reason a priori to think that it is more likely to be closer to either
bound. To remain uninformative and be as permissive as possible, we define a prior distribution for µ as a Uniform distribution
between 0 and 1,

g(µ) =

(
1

µmax�µmin
µmin < µ < µmax

0 otherwise
. [25]

Here, µmin = 0 and µmax = 1, reducing g(µ) to 1. For s, we can again assume a half-normal distribution with a standard deviation
of 0.1 as was used for estimating the DNA binding energy [Eq. (15)],

g(s) = HalfNormal{0, 0.1}. [26]

With a full generative model defined, we can now use prior predictive checks to ensure that our choices of prior are appropriate
for the inference.

Prior Predictive Checks. To check the validity of the chosen priors, we pulled 1000 combinations of µ and s from their respective
distributions [Fig. S7(A)] and subsequently drew a set of 10 fold-change values (a number comparable to the number of biological
replicates used in this work) from a normal distribution defined by µ and s. To visualize the range of values generated from
these checks, we computed the percentiles of the empirical cumulative distributions of the fold-change values, as can be seen in
Fig. S7(C). Approximately 95% of the the generated fold-change measurements were between the theoretical bounds of [0, 1]
whereas 5% of the data sets fell outside with the maximum and minimum values extending to ⇡ 1.2 and �0.2, respectively. Given
our familiarity with these experimental strains and the detection sensitivity of the flow cytometer, these excursions beyond the
theoretical bounds agree with our intuition. Satisfied with our choice of prior distributions, we can proceed to check the sensitivity
and computational tractability of our model through simulation based calibration.

Griffin Chure, Manuel Razo-Mejia, Nathan M. Belliveau, Tal Einav, Stephanie L. Barnes, Mitchell Lewis, Rob Phillips 11 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2019. ; https://doi.org/10.1101/638270doi: bioRxiv preprint 

https://doi.org/10.1101/638270
http://creativecommons.org/licenses/by/4.0/


Fig. S7. Prior predictive checks for inference of the mean fold-change. (A) The prior distributions for µ (left) and s (right). The vertical axis is proportional to the probability of
the value. Black points above distributions correspond to the values used to perform the prior predictive checks. (B) Percentiles of the data generated for each draw from the
prior distributions shown as a cumulative distribution. Percentiles were calculated for 1000 generated data sets, each with 10 fold-change measurements drawn from the
likelihood given the drawn values of µ and s.

Simulation Based Calibration. To ensure that the parameters can be estimated with confidence, we sampled the posterior
distribution of µ and s for each data set generated from the prior predictive checks. For each inference, we computed the z-score
and shrinkage for each parameter, shown in Fig. S8(A). For both parameters, the z-scores are approximately centered about zero,
indicating that the posteriors concentrate about the ground truth value of the parameter. The z-scores for s [black points in Fig.
S10(A)] appear to be slightly off centered with more negative values than positive. This suggests that s is more likely to be slightly
overestimated in some cases. The shrinkage parameter for µ (red points) is very tightly distributed about 1.0, indicating that the
prior is being strongly informed by the data. The shrinkage is more broadly distributed for for s with a minimum value of ⇡ 0.5.
However, the median shrinkage for s is ⇡ 0.9, indicating that half of the inferences shrank the prior distribution by at least 90%.
While we could revisit the model to try and improve the shrinkage values, we are more concerned with µ which shows high
shrinkage and zero-centered z-scores.

To ensure that the model is computationally tractable, we computed the rank statistic of each parameter for each inference.
The empirical cumulative distributions for µ (black) and s (red) can be seen in Fig. S8(B). Both distributions appear to be uniform,
falling within the 99th percentile of the variation expected from a true uniform distribution. This indicates that the self-consistency
relation defined by Eq. (17) holds for this statistical model. With a computationally tractable model in hand, we can now apply
the statistical model to our data and verify that data sets drawn from the data-conditioned posterior are indistinguishable from
the experimental measurements.

Posterior Predictive Checks. The same statistical model was applied to every unique set of fold-change measurements used in
this work. Here, we focus only on the set of fold-change measurements for the double mutant Y20I-Q294V at 50 µM IPTG. The
samples from the posterior distribution conditioned on this dataset can be seen in Fig. S9(A). The joint distribution, shown in the
lower left-hand corner, appears fairly symmetric, indicating that µ and s are independent. There is a slight asymmetry in the
sampling of s, which can be more clearly seen in the corresponding marginal distribution to the right of the joint distribution.

For each MCMC sample of µ and s, we drew 10 samples from a normal distribution defined by these parameters. From this
collection of data sets, we computed the percentiles of the empirical cumulative distribution and plotted them over the data, as
can be seen in Fig. S9 (B). We find that the observed data falls within the 99th percentile of the generated data sets. This illustrates
that the model can produce data which is identically distributed to the actual experimental measurements, validating our choice
of statistical model.

Sensitivity Limits and Systematic Errors in Inference. Considering the results from the prior predictive checks, simulation based
calibration, and posterior predictive checks, we can say that the statistical model for inferring µ and s fold-change from a collection
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Fig. S8. Sensitivity measurements and rank statistic distribution of the statistical model estimating µ and s. (A) Posterior z-score of each inference plotted against the posterior
shrinkage factor for the parameters µ (red points) and s (black points). (B) Distribution of rank statistics for µ (red) and s (black). Gray envelope represents the 99th percentile
of a true uniform distribution.

of noisy fold-change measurements is valid and computationally tractable. Upon applying this model to the experimental data of
the wild-type strain (where the free energy is theoretically known), we observed that systematic errors arise when the fold-change
is exceptionally high or low, making the resulting inference of the free energy inaccurate.

To elucidate the source of this systematic error, we return to a simulation based approach in which the true free energy is
known [black points in Fig. S10(A)]. For a range of free energies, we computed the theoretical fold-change prescribed by Eq. (20).
For each free energy value, we pulled a value for s from the prior distribution defined in Eq. (15) and generated a data set of
10 measurements by drawing values from a normal distribution defined by the true fold-change and the drawn value of s [red
points in Fig. S10(A)]. We then sampled the statistical model over these data and inferred the mean fold-change µ [blue points in
Fig. S10(A)]. By eye, the inferred points appear to collapse onto the master curve, in many cases overlapping the true values.
However, the points with a free energy less than ⇡ �2 kBT and greater than ⇡ 2 kBT are slightly above or below the master
curve, respectively. This becomes more obvious when the inferred free energy is plotted as a function of the true free energy,
shown in Fig. S10(B). Points in which the difference between µ and the neearest boundary (0 or 1) is less than the value of s are
shown as purple or green. When this condition is met, the inferred mean free energy strays from the true value, introducing a
systematic error. This suggests that the spread of the fold-change measurements sets the detection limit of fold-change close to
either boundary. Thus, the narrower the spread in the fold-change the better the estimate of the fold-change near the boundaries.

These systematic errors can be seen in experimental measurements of the wild-type repressor. Data from Razo-Mejia et al.
2018(2) in which the IPTG titration profiles of seventeen different bacterial strains were measured is shown collapsed onto the
master curve in Fig. S10(C) as red points. Here, each point corresponds to a single biological replicate. The inferred mean
fold-change µ and 95% credible regions are shown as purple, blue, or green points. The color of these points correspond to the
relative value of µ or 1 � µ to s. The discrepancy between the predicted and inferred free energy of each measurement set can be
seen in Fig. S10(D). The significant deviation from the predicted and inferred free energy occurs past the detection limit set by s.
In this work, we therefore opted to not display inferred free energies at the extrema where the inferred fold-change was closer to
the boundaries than the correspoding standard deviation, as it reflects limitations in our measurement rather than a deviation
from the theoretical predictions.
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Fig. S9. MCMC sampling output and posterior predictive checks of the statistical model for the mean fold-change µ and standard deviation s. (A) Corner plot of sampling
output. The joint distribution between s and µ is shown in the lower left hand corner. Each point is an individual sample. Points are colored by the value of the log posterior with
increasing probability corresponding to transitions from blue to yellow. Marginal distributions for each parameter are shown adjacent to the joint distribution. (B) Percentiles of
the cumulative distributions from the posterior predictive checks are shown as shaded bars. Data on which the posterior was conditioned are shown as white circles connected
by black lines.
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Fig. S10. Identification of systematic error in simulated and real data when considering the free energy. (A) The true fold-change (black open circles), simulated fold-change
distribution (red points), and inferred mean fold-change (blue) is plotted as a function of the true free energy. Error bars on inferred fold-change correspond to the 95% credible
region of the mean fold-change µ. (B) Inferred free energy plotted as a function of the true free energy. Black line indicates perfect agreement between the ground truth free
energy and inferred free energy. Blue points correspond to the inferred free energy where the median values of the parameters satisfy the condition µ > s and 1 � µ > s.
Purple points correspond to the inferred mean fold-change µ < s. Green points correspond to those where the inferred mean fold-change 1 � µ < s. Error bars correspond to
the bounds of the 95% credible region. (C) Biological replicate data from Razo-Mejia et al. 2018 (2) (red points) plotted as a function of the theoretical free energy. Inferred
mean fold-change µ and the 95% credible region are shown as blue points. Purple and green points are colored by the same conditions as in (B). (D) Inferred free energy as a
function of the predicted free energy colored by the satisfied condition. Error bars are the bounds of the 95% credible region. All inferred values in (A - D) are the median values
of the posterior distribution.
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4. Additional Characterization of DNA Binding Mutants

In the main text, we estimated the DNA binding energy o f each mutant using the mutant strains that had approximately 260
repressors per cell. In this section, we examine the effect of the choice of fit strain on the predictions of both the induction profiles
and DF for each DNA binding domain mutant.

We applied the statistical model derived in Section 2 for each unique strain of the DNA binding mutants and estimated the
DNA binding energy. The median of the posterior distribution along with the upper and lower bounds of the 95% credible region
are reported in Table S1. We found that the choice of fitting strain did not strongly influence the estimate of the DNA binding
energy. The largest deviations appear for the weakest binding mutants paired with the lowest repressor copy number. In these
cases, such as for Q21A, the difference in binding energy between the repressor copy numbers is ⇡ 1 kBT which is small compared
to the overall DNA binding energy. Using these energies, we computed the predicted induction profiles of each mutant with
different repressor copy numbers, shown in Fig. S11. In this plot, the rows correspond to the repressor copy number of the strain
used to estimate the DNA binding energy. The columns correspond to the repressor copy number of the predicted strains. The
diagonals, shaded in grey, show the induction profile of the fit strain along with the corresponding data. In all cases, we find that
the predicted profiles are relatively accurate with the largest deviations resulting from using the lowest repressor copy number as
the fit strain.

The predicted change in free energy DF using each fit strain can be seen in Fig. S12. In this figure, the rows represent the
repressor copy number of the strain to which the DNA binding energy was fit whereas the columns correspond to each mutant. In
each plot, we have shown the data for all repressor copy numbers with the fit strain represented by white filled circles. Much as
for the induction profiles, we see little difference in the predicted DF for each strain, all of which accurately describe the inferred
free energies. The ability to accurately predict the majority of the induction profiles of each mutant with repressor copy numbers
ranging over two orders of magnitude strengthens our assessment that for these DNA binding domain mutations, only the DNA
binding energy is modified.
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Fig. S11. Pairwise comparisons of DNA binding mutant induction profiles. Rows correspond to the repressor copy number of the strain used to estimate the DNA binding
energy for each mutant. Columns correspond to the repressor copy number of the strains that are predicted. Diagonals in which the data used to estimate the DNA binding
energy are shown with a gray background.
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Fig. S12. Dependence of fitting strain on DF predictions of DNA binding domain mutants. Rows correspond to the repressor copy number used to estimate the DNA binding
energy. Columns correspond to the particular mutant. Colored lines are the bounds of the 95% credible region of the predicted DF. Open face points indicate the strain to which
the DNA binding energy was fit.
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Table S1. Estimated DNA binding energy for DNA binding domain mutants with different repressor copy numbers. Median of the posterior

distribution with the upper and lower bounds of the 95% credible region are reported.

Mutant Repressors DNA Binding Energy [kBT]

Q21A 60 �9.8+0.2
�0.2

124 �10.3+0.1
�0.1

260 �11.0+0.1
�0.1

1220 �11.3+0.1
�0.1

Q21M 60 �15.83+0.08
�0.08

124 �15.7+0.1
�0.1

260 �15.43+0.07
�0.06

1220 �15.27+0.07
�0.07

Y20I 60 �9.4+0.3
�0.3

124 �9.5+0.1
�0.1

260 �9.9+0.1
�0.1

1220 �10.1+0.2
�0.2
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5. Bayesian Parameter Estimation for Inducer Binding Domain Mutants

In the main text, we put forward two naïve hypotheses for which parameters of Eq. (7) are affected by mutations in the inducer
binding domain of the repressor. The first hypothesis was that only the inducer dissociation constants, KA and KI , were perturbed
from their wild-type values. Another hypothesis was that the inducer dissociation constants were affected in addition to the
energetic difference between the active and inactive states of the repressor, D#AI .

In this section, we first derive the statistical model for each hypothesis and then perform a series of diagnostic tests that expose
the inferential limitations of each model. With well calibrated statistical models, we then apply each to an induction profile of
the inducer binding mutant Q294K and assess the validity of each hypothesis. To understand the statistical models for each
hypothesis, only the subsection Building A Generative Statistical Model is necessary.

Building a Generative Statistical Model. For both hypotheses, we assume that the underlying physical model defined in Eq. (7)
is the same while a subset of the parameters are modified. As the fold-change measurements for each biological replicate are
statistically independent, we can assume that they are normally distributed about the theoretical fold-change value. Thus, for
each model, we must include a parameter s which is the standard deviation of the distribution of fold-change measurements. For
the first hypothesis, in which only KA and KI are changed, we are interested in sampling the posterior distribution

g(KA, KI , s | y) µ f (y | KA, KI , s)g(KA)g(KI)g(s), [27]

where y corresponds to the set of fold-change measurements. In the above model, we have assumed that the priors for KA and KI

are independent. It is possible that it is more appropriate to assume that they are dependent and that a single prior distribution
captures both parameters, g(KA, KI). However, assigning this prior is more difficult and requires strong knowledge a priori about
the relationship between them. Therefore, we continue under the assumption that the priors are independent.

The generic posterior given in Eq. (27) can be extended to evaluate the second hypothesis in which D#AI is also modified,

g(KA, KI , D#AI , s | y) µ f (y | KA, KI , D#AI , s)g(KA)g(KI)g(D#AI)g(s) [28]

where we have included D#AI as an estimated parameter and assigned a prior distribution.
As we have assumed that the fold-change measurements across replicates are independent and normally distributed, the

likelihoods for each hypothesis can be written as

f (y | KA, KI , s) ⇠ Normal{µ(KA, KI), s}, [29]

for the first hypothesis and
f (y | KA, KI , D#AI , s) ⇠ Normal{µ(KA, KI , D#AI), s}, [30]

for the second. Here, we have assigned µ(. . . ) as the mean of the normal distribution as a function of the parameters defined by
our fold-change equation, Eq. (7).

With a likelihood distribution in hand, we now turn toward assigning functional forms to each prior distribution. As we have
used in the previous sections [Sec. 2 and Sec. 3], we can assign a half-normal prior for s with a standard deviation of 0.1, namely,

g(s) ⇠ HalfNormal{0, 0.1}. [31]

It is important to note that the inducer dissociation constants KA and KI are scale invariant, meaning that a change from 0.1 µM to
1 µM yields a decrease in affinity equal to a change from 10 µM to 100 µM. As such, it is better to sample the dissociation constants
on a logarithmic scale. We can assign a log normal prior for each dissociation constant as

g(KA) =
1

KA

p
2pf2

exp

2

4�
(log KA

1 µM � µKA
)2

2f2

3

5 , [32]

or with the short-hand notion of
g(KA) ⇠ LogNormal{µKA

, f} [33]

For KA, we assigned a mean µKA
= 2 and a standard deviation f = 2. For KI , we chose a mean of µKI

= 0 and f = 2, capturing
our prior knowledge that KA > KI for the wild-type LacI. While the prior distributions are centered differently, they both show
extensive overlap, permitting mutations in which KA < KI . For D#AI , we assign a normal distribution of the prior centered at 0
with a standard deviation of 5 kBT,

g(D#AI) ⇠ Normal{0, 5}. [34]

This permits values of D#AI that are above or below zero, meaning that the inactive state of the repressor can be either more or
less energetically favorable to the active state. A standard deviation of 5 kBT permits a wide range of energies with +5 kBT and
�5 kBT corresponding to ⇡ 99.5% and ⇡ 0.5% of the repressors being active in the absence of inducer, respectively.
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Prior predictive checks. To ensure that these choices of prior distributions are appropriate, we performed prior predictive checks
for each hypothesis as previously described in Section 2. We drew 1000 values from the prior distributions shown in Fig. S13(A)
for KA, KI , and D#AI . Using the draws from the KA, and KI priors alone, we generated datasets of ⇡ 70 measurements. The
percentiles of the fold-change values drawn for the 1000 simulations is shown in the top panel of Fig. S13(B).

It can be seen that in the absence of inducer, the fold-change values are close to zero and are with distributed about the
leakiness value due to s. This is in contrast to the data sets generated when D#AI is permitted to vary along with KA and KI . In
the bottom panel of Fig. S13(B), the fold-change when c = 0 can extend above 1.0 which is possible only when D#AI is included,
which sets what fraction of the repressors is active. Under both hypotheses, the 99th percentile of the fold-change extends to just
above 1 or just below 0, which matches our intuition of how the data should behave. Given these results, we are satisfied with
these choices of priors and continue onto the next level of calibration of our model.

Fig. S13. Prior predictive checks for two hypotheses of inducer binding domain mutants. (A) Probability density functions for KA , KI , D#AI , and s. Black points correspond to
draws from the distributions used for prior predictive checks. (B) Percentiles of the simulated data sets using draws from the KA and KI distributions only (top, red bands) and
using draws from KA , KI , and D#AI (bottom, blue bands).

Simulation Based Calibration. With an appropriate choice of priors, we turn to simulation based calibration to root out any
pathologies lurking in the model itself or the implementation through MCMC. For each parameter under each model, we compute
the z-score and shrinkage of each inference, shown in Fig. S14. Under the first hypothesis in which KA and KI are the only
perturbed parameters [Fig. S14(A)], we see all parameters have z�scores clustered around 0, indicating that the value of the
ground-truth is being accurately estimated through the inference. While the shrinkage for s is close to 1 (indicating the prior is
being informed by the data), the shrinkage for KA and KI is heavily tailed with some values approaching zero. This is true for
both statistical models, indicating that for some values of KA and KI , the parameters are difficult to pin down with high certainty.
In the application of these models to data, this will be revealed as large credible regions in the reported parameters. Under the
second hypothesis in which all allosteric parameters are allowed to change, we see moderate shrinkage for D#AI [purple points
in Fig. S14(B)] with the minimum shrinkage being around 0.5. The samples resulting in low shrinkage correspond to values of
D#AI that are highly positive or highly negative, in which small changes in the active fraction of repressors cannot be accurately
measured through our model. However, the median shrinkage for D#AI is approximately 0.92, meaning that the the data highly
informed the prior distributions for the majority of the inferences. The rank distributions for all parameters under each model
appear to be highly uniform, indicating that both statistical models are computationally tractable.

With knowledge of the caveats of estimating KA and KI for both models, we proceed with our analysis and examine how
accurately these models can capture the phenomenology of the data.

Posterior Predictive Checks. With a properly calibrated statistical model for each hypothesis, we now apply it to a representative
dataset. While each model was applied to each inducer binding domain mutant, we only show the application to the mutant
Q294K with 260 repressors per cell paired with the native lac operator O2.
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Fig. S14. Simulation based calibration of statistical models for inducer binding domain mutants. (A) Sensitivity statistics and rank distribution for a statistical model in which KA

and KI are the only parameters permitted to vary. (B) Sensitivity statistics and rank distribution for a model in which all allosteric parameters KA , KI , and D#AI are allowed to be
modified by the mutation. Gray envelope in the bottom plots correspond to the 99th percentile of variation expected from a true uniform distribution.
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The results from applying the statistical model in which only KA and KI can change is shown in Fig. S15. The joint and marginal
distributions for each parameter [Fig. S15(A)] reveal a strong correlation between KA and KI whereas all other parameters are
symmetric and independent. While the joint and marginal distributions look well behaved, the percentiles of the posterior
predictive checks [Fig. S15(B)] are more suspect. While all data falls within the 95th percentile, the overall trend of the data is not
well predicted. Furthermore, the percentiles expand far below zero, indicating that the sampling of s is compensating for the
leakiness in the data being larger than it should be if only KA and KI were the changing parameters.

We see significant improvement when D#AI is permitted to vary in addition to KA and KI . Fig. S16(A) shows the joint and
marginal distributions between all parameters from the MCMC sampling. We still see correlation between KA and KI , although
it is not as strong as in the case where they are the only parameters allowed to change due to the mutation. We also see that
the marginal distribution for s has shrunk significantly compared to the marginal distribution in Fig. S15(A). The percentiles of
the posterior predictive checks, shown in Fig. S16(B) are much more in line with the experimental measurements, with the 5th
percentile following the data for the entire induction profile.

In this section we have presented two hypotheses for the minimal parameter set needed to describe the inducer binding
mutations, derived a statistical model for each, thoroughly calibrated its behavior, and applied it to a representative data set. The
posterior predictive checks [Fig. S15 and Fig. S16] help us understand which hypothesis is more appropriate for that particular
mutant. The incredibly wide percentiles and significant change in the leakiness that result from a model in which only KA and
KI are perturbed suggests that more than those two parameters should be changing. We see significant improvement in the
description of the data when D#AI is altered, indicating that it is the more appropriate hypothesis of the two.
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Fig. S15. Posterior predictive checks for inducer binding domain mutants where only KA and KI are changed. (A) MCMC sampling output for each parameter. Joint distributions
are colored by the value of the log posterior with increasing probability corresponding to transition from blue to yellow. (B) Percentiles of the data generated from the likelihood
distribution for each sample of KA , KI , and s. Overlaid points are the experimentally observed measurements.
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Fig. S16. Posterior predictive checks for inducer binding domain mutants where all allosteric parameters can change. (A) MCMC sampling output for all parameters. Joint
distributions are colored by the value of the log posterior with increasing probability corresponding to the transition from blue to yellow. Marginal distributions are shown adjacent
to each joint distribution. (B) Percentiles of the data generated from the likelihood for each sample of KA , KI , D#AI , and s. The corresponding experimental data for Q294K are
shown as black open-faced circles.
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6. Additional Characterization of Inducer Binding Domain Mutants

To predict the induction profiles of the inducer binding mutants, we used only the induction profile of each mutant paired with
the native O2 lac operator to infer the parameters. Here, we examine the influence the choice of fit strain has on the predictions of
the induction profiles and DF for each mutant.

In the main text, we dismissed the hypothesis that only KA and KI were changing due to the mutation and based the fit to a
single induction profile. In Fig. S17, the fits and predictions for each mutant paired with each operator sequence queried. Here,
the rows correspond to the operator sequence of the fit strain while the columns correspond to the operator sequence of the
predicted strain. The diagonals, colored in gray, show the fit induction profiles and the corresponding data. Regardless of the
choice of fit strain, the predicted induction profiles of the repressor paired with the O3 operator are poor, with the leakiness
in each case being significantly underestimated. We also see that fitting to O3 results in poor predictions with incredibly wide
credible regions for the other two operators. In Razo-Mejia et al. 2018 (2), we also found that fitting KA and KI to the induction
profile of O3 generally resulted in poor predictions of the other strains with comparably wide credible regions.

When D#AI is included as a parameter, however, the predictive power is improved for all three operators, as can be seen in Fig.
S18. While the credible regions are still wide when fit to the O3 operator, they are much narrower than under the first hypothesis.
We emphasize that we are able to accurately predict the leakiness of nearly every strain by redetermining D#AI whereas the
leakiness was not predicted when only KA and KI were considered. Thus, we conclude that all three allosteric parameters KA, KI ,
and D#AI are modified for these four inducer binding domain mutations. The values of the inferred parameters are reported in
Table S2.

We also examined the effect the choice of fit strain has on the predicted DF, shown in Fig. S19. We find that the predictions
agree with the data regardless of the choice of fit strain. One exception is the prediction of the Q294K DF when the parameters
fit to the O3 induction profile are used. As the induction profile for Q294K paired with O3 is effectively flat at a fold-change of
1, it is difficult to properly estimate the parameters of our sigmoidal function. We note all measurements of DF for Q294K are
described by using either the parameters fit to either O1 or O3 induction profiles, suggesting that the choice of fit strain makes
little difference.
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Fig. S17. Pairwise comparison of fit strain versus predictions assuming only KA and KI are influenced by the mutation. Rows correspond to the operator sequence of the strain
used for the parameter inference. Columns correspond to the operator sequence of the predicted strain. Colors identify the mutation. Diagonal positions (gray background)
show the induction fit strain and profiles.
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Fig. S18. Pairwise comparison of fit strain versus predictions assuming all allosteric parameters are affected by the mutation. Rows correspond to the operator of the strain
used to fit the parameters. Columns correspond to the operator of the strains whose induction profile is predicted. Mutants are identified by color. Diagonals (gray background)
show the induction profiles of the strain to which the parameters were fit.
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Fig. S19. Comparison of choice of fit strain on predicted DF profiles. Rows correspond to the operator of the strain to which the parameters were fit. Columns correspond to
mutations. Points are colored by their operator sequence. The data corresponding to the operator of the fit strain are shown as white-faced points.
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Table S2. Inferred values of KA, KI , and D#AI for inducer binding domain mutants. Values reported are the mean of the posterior distribution

with the upper and lower bounds of the 95% credible region.

Mutant Operator KA [µM] KI [µM] D#AI [kBT]

F164T O1 290+60
�56 1+4

�0.98 4+5
�3

O2 165+90
�65 3+6

�3 1+5
�2

O3 110+700
�105 7+5

�4 �0.9+0.4
�0.3

Q294K O1 > 1 mM 410+150
�100 �3.2+0.1

�0.1

O2 > 1 mM 310+70
�60 �3.11+0.07

�0.07

O3 10+200
�10 1+9

�1 �7+3
�5

Q294R O1 3+27
�3 2+20

�2 �1.9+0.4
�0.3

O2 9+20
�9 8+20

�8 �2.32+0.01
�0.09

O3 6+24
�6 9+30

�9 �2.6+0.4
�0.5

Q294V O1 > 1 mM 3+13
�3 6+4

�4

O2 650+450
�250 8+8

�8 3+6
�3

O3 100+400
�90 22+33

�18 0.1+0.8
�0.6
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7. Parameter Estimation Using All Induction Profiles

In the main text and Sec. 4 and 6 of this supplementary text, we have laid out our strategy for inferring the the various parameters
of our model to a single induction profile and using the resulting values to predict the free energy and induction profiles of other
strains. In this section, we estimate the parameters using all induction profiles of a single mutant and using the estimated values
to predict the free energy profiles.

The inferred DNA binding energies considering induction profiles of all repressor copy numbers for the three DNA binding
mutants are reported in Tab. S3. These parameters are close to those reported in Tab. S1 for each repressor copy number with
Q21A showing the largest differences. The resulting induction profiles and predicted change in free energy for these mutants can
be seen in Fig. ??. Overall, the induction profiles match the data to an appreciable agree. We acknowledge that even when using
all repressor copy numbers, the fit to Q21A remains imperfect. However we contend that this disagreement is comparable to
that observed in (2) which described the induction profile of the wild-type repressor. We find that the predicted change in free
energy [bottom row in Fig. ??(B)] narrows compared to that in Fig. S12 and Fig. 3 of the main text, confirming that considering all
induction profiles improves our inference of the most-likely DNA binding energy. There appears to be a very slight trend in the
DF for Q21A at higher inducer concentrations, though the overall change in free energy from 0 to 5000 µM IPTG is small.

We also estimated the allosteric parameters (KA, KI , and D#AI) for all inducer binding domain mutations using the induction
profiles of all three operator sequences. The values, reported in Tab. S4 are very similar to those estimated from a single induction
profile (Tab. S2). We note that for Q294R, it is difficult to properly estimate the values for KA and KI as the observed induction
profile is approximately flat. The induction profiles and predicted change in free energy for each inducer binding mutant is shown
in Fig. S21. We see notable improvement in the agreement between the induction profiles and the observed data, indicating that
considering all data significantly shrinks the uncertainty of each parameter. The predicted change in free energy is also improved
compared to that shown in Fig. S19. We emphasize that the observed free energy difference for each point assumes no knowledge
of the underlying parameters and comes directly from measurements. The remarkable agreement between the predicted free
energy and the observations illustrates that redetermining the allosteric parameters is sufficient to describe how the free energy
changes as a result of the mutation.
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Table S3. Estimated DNA binding energies for each DNA binding domain mutant using all repressor copy numbers

Mutant D#RA [kBT]

Y20I �9.81+0.04
�0.08

Q21A �10.60+0.07
�0.07

Q21M �15.61+0.05
�0.05
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Fig. S20. Induction profiles and predicted change in free energy using parameters estimated from the complete data sets. Top row shows fold-change measurements (points)
as mean and standard error with ten to fifteen biological replicates. Shaded lines correspond to the 95% credible regions of the induction profiles using the estimated values of
the DNA binding energies reported in Tab. S3. Bottom row shows the 95% credible regions of the predicted change in free energy (shaded lines) along with the inferred free
energy of data shown in the top row. In all plots, the inducer concentration is shown on a symmetric log scale with linear scaling between 0 and 10�2 µM and log scaling
elsewhere.
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Table S4. Estimated values for KA, KI , and D#AI for inducer binding domain mutations using induction profiles of all operator sequences.

Mutant KA [µM] KI [µM] D#AI [kBT]

F164T 300+60
�60 12.7+0.1

�0.1 �0.9+0.3
�0.3

Q294K > 1 mM 330+60
�70 �3.17+0.07

�0.07

Q294R > 1 mM > 1 mM �2.4+0.2
�0.2

Q294V > 1 mM 53+17
�13 0+0.3

�0.3
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Fig. S21. Induction profiles and predicted change in free energy using parameters estimated from the complete data sets for inducer binding domain mutnats. Top row shows
fold-change measurements (points) as mean and standard error with ten to fifteen biological replicates. Shaded lines correspond to the 95% credible regions of the induction
profiles using the estimated values of the allosteric parameters reported in Tab. S4. Bottom row shows the 95% credible regions of the predicted change in free energy (shaded
lines) along with the inferred free energy of data shown in the top row. In all plots, the inducer concentration is shown on a symmetric log scale with linear scaling between 0
and 10�2 µM and log scaling elsewhere.
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Strain and Oligonucleotide Information

Table S5. Escherichia coli strains used in this work

Class LacI Mutant Operator Rep. per Cell Genotype Plasmid

– – – 22 MG1655::DlacZYA pZS4*1-mCherry
– – O1 0 MG1655::DlacIZYA;galK <>25O1+11-YFP pZS4*1-mCherry
– – O2 0 MG1655::DlacIZYA;galK <>25O2+11-YFP pZS4*1-mCherry
– – O3 0 MG1655::DlacIZYA;galK <>25O3+11-YFP pZS4*1-mCherry
WT WT O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI pZS4*1-mCherry
DNA Y20I O2 60 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1147LacI(Y20I) pZS4*1-mCherry
DNA Y20I O2 124 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS446LacI(Y20I) pZS4*1-mCherry
DNA Y20I O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20I) pZS4*1-mCherry
DNA Y20I O2 1220 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1LacI(Y20I) pZS4*1-mCherry
DNA Q21A O2 60 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1147LacI(Q21A) pZS4*1-mCherry
DNA Q21A O2 124 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS446LacI(Q21A) pZS4*1-mCherry
DNA Q21A O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21A) pZS4*1-mCherry
DNA Q21A O2 1220 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1LacI(Q21A) pZS4*1-mCherry
DNA Q21M O2 60 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1147LacI(Q21M) pZS4*1-mCherry
DNA Q21M O2 124 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS446LacI(Q21M) pZS4*1-mCherry
DNA Q21M O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21M) pZS4*1-mCherry
DNA Q21M O2 1220 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1LacI(Q21M) pZS4*1-mCherry
IND F164T O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(F164T) pZS4*1-mCherry
IND F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(F164T) pZS4*1-mCherry
IND F164T O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(F164T) pZS4*1-mCherry
IND Q294V O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(Q294V) pZS4*1-mCherry
IND Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q294V) pZS4*1-mCherry
IND Q294V O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(Q294V) pZS4*1-mCherry
IND Q294K O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(Q294K) pZS4*1-mCherry
IND Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q294K) pZS4*1-mCherry
IND Q294K O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(Q294K) pZS4*1-mCherry
IND Q294R O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(Q294R) pZS4*1-mCherry
IND Q294R O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q294R) pZS4*1-mCherry
IND Q294R O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(Q294R) pZS4*1-mCherry
DBL Y20I-F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20IF164T) pZS4*1-mCherry
DBL Y20I-Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20IQ294V) pZS4*1-mCherry
DBL Y20I-Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20IQ294K) pZS4*1-mCherry
DBL Q21A-F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21AF164T) pZS4*1-mCherry
DBL Q21A-Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21AQ294V) pZS4*1-mCherry
DBL Q21A-Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21AQ294K) pZS4*1-mCherry
DBL Q21M-F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21MF164T) pZS4*1-mCherry
DBL Q21M-Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21MQ294V) pZS4*1-mCherry
DBL Q21M-Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21MQ294K) pZS4*1-mCherry

Table S6. Oligonucleotides used for mutant generation.

Primer Name Sequence (5’!3’) Description Method

10.1 acctctgcggaggggaagcgtgaacctctcacaagacggcatcaaattacactagcaacaccagaacagc Integration into ybcN locus l-Red Recombineering
10.3 ctgtagatgtgtccgttcatgacacgaataagcggtgtagccattacgccggctaatgcacccagtaagg Integration into ybcN locus l-Red Recombineering
GCMWC-001 ccggcatactctgcgaca Amplification of plasmid QuickChange Mutagenesis
GCMWC-002 gtgtctcttatATGaccgtttcccgc Q21M Mutation (CAG!ATG) QuickChange Mutagenesis
GCMWC-003 tgtctcttatGCGaccgtttcccgc Q21A Mutation (CAG!GCG) QuickChange Mutagenesis
GCMWC-004 gttaacggcgggatataac Amplification of plasmid QuickChange Mutagenesis
GCMWC-005 caccatcaaaGTGgattttcgcctgc Q294V Mutation (CAG ! GTG) QuickChange Mutagenesis
GCMWC-006 caccatcaaaAAGgattttcgcc Q294K Mutation (CAG!AAG) QuickChange Mutagenesis
GCMWC-007 cagtattattACCtcccatgaagacgg F164T Mutation (TTC!ACC) QuickChange Mutagenesis
GCMWC-008 ttgatgggtgtctggtcag Amplification of plasmid QuickChange Mutagenesis
GCMWC-009 gcatactctgcgacatcgtataa Amplification of plasmid QuickChange Mutagenesis
GCMWC-010 cggtgtctctATTcagaccgtttc Y20I Mutation (TAT!ATT) QuickChange Mutagenesis
GCMWC-017 ccatcaaaAGGgattttcgcctgctggggcaaaccag Q294R Mutation (CAG!AGG) Gibson Assembly
GCMWC-018 ggcgaaaatcCCTtttgatggtggttaacggcggg Q294R Mutation (CTG!CCT) Gibson Assembly
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