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Abstract

Genotyping novel complex multigene systems is particularly challenging in non-model organisms.

Target primers frequently amplify simultaneously multiple loci leading to high PCR and sequencing

artefacts  such  as  chimeras  and  allele  amplification  bias.  Most  next-generation  sequencing

genotyping  pipelines  have  been  validated  in  non-model  systems  whereby  the  real  genotype  is

unknown and the  generation  of  artefacts  may  be  highly  repeatable.  Further  hindering  accurate

genotyping, the relationship between artefacts and copy number variation (CNV) within a PCR

remains  poorly described.  Here we investigate  the latter  by experimentally  combining multiple

known major histocompatibility complex (MHC) haplotypes of a model organism (chicken, Gallus

gallus, 43 artificial genotypes with 2-13 alleles per amplicon). In addition to well defined “optimal”

primers, we simulated a non-model species situation by designing “naïve” primers, with sequence

data from closely related Galliform species. We applied a novel open-source genotyping pipeline

(ACACIA) to the data, and compared its performance with another, previously published, pipeline.

ACACIA  yielded  very  high  allele  calling  accuracy  (>98%).  Non-chimeric  artefacts  increased

linearly with increasing CNV but chimeric artefacts leveled when amplifying more than 4-6 alleles.

As  expected,  we  found  heterogeneous  amplification  efficiency  of  allelic  variants  when  co-

amplifying multiple loci. Using our validated ACACIA pipeline and the example data of this study,

we discuss in detail  the pitfalls researchers should avoid in order to reliably genotype complex

multigene systems. ACACIA and the datasets used in this study are publicly available at GitLab and

FigShare  (https://gitlab.com/psc_santos/ACACIA and

https://figshare.com/projects/ACACIA/66485). 
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Introduction

A key challenge for molecular ecologists is that they frequently work on systems with limited to no

knowledge of their  genomes.  This means that the development of a genotyping approach often

relies  on  information  from closely  related  species  available  in  genetic  databases.  Furthermore,

assessing and validating genotyping methods can be particularly challenging when the structure of

the target region is unknown.

Multigene complexes, such as resistance genes (R-genes) and self-incompatibility genes (SI-

genes)  in  plants,  immunoglobulin  superfamily  and  major  histocompatibility  genes  (MHC)  in

vertebrates, and homeobox genes in animals, plants and fungi, among many others, are particularly

challenging to genotype in  non-model  organisms.  As a result  of  high sequence similarity  from

recent  gene  duplication  events,  polymerase  chain  reaction  (PCR)  primers  will  frequently  bind

across  multiple  loci  leading  to  the  amplification  of  multiple  allelic  variants  (Babik,  2010;

Biedrzycka et al., 2017; Burri et al., 2014; Lighten et al., 2014; Lighten, Oosterhout, & Bentzen,

2014; Sebastian et al., 2016; Sommer, Courtiol, & Mazzoni, 2013). Unspecific locus amplification

may lead to several biases during PCR since 1) chimeric sequences (hereafter “chimeras”; which

may  arise  because  of  incomplete  extension  of  sequences  during  a  PCR  cycle  which  are

subsequently completed with a different allele template) are likely to become more frequent as more

loci are amplified within an amplicon simply because there will be more gene variants from which

chimeras can be generated (Lenz & Becker, 2008); 2) amplification bias of some gene variants

relative  to  others  may occur  because  primers  preferentially  bind  to  some alleles/loci  (hereafter

referred to as “PCR competition”) (Marmesat et al., 2016; Sommer, Courtiol, & Mazzoni, 2013).

Creative solutions in primer design and in PCR conditions, such as using pooled primers instead of

degenerate  primers (Marmesat  et  al.,  2016),  reducing  the  number  of  cycles  and  modifying

elongation steps of PCRs (Judo, Wedel, & Wilson, 1998; Lenz & Becker, 2008; Smyth et al., 2010),

can significantly reduce amplification bias. However, even after the application of such methods,

PCR biases will nonetheless persist and may lead to genotyping errors because: 1) chimerias may
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be difficult to distinguish from valid recombinant gene variants (frequent in multigene complexes;

Chen et al., 2007), resulting in either PCR artefacts being falsely validated as a true allelic variants

(type I  errors,  hereafter  referred to  as “false positives”) or in  true allelic variants being falsely

rejected  as  an  artefact  (type  II  errors,  hereafter  referred  to  as  “allele  dropout”)  and  2)  poorly

amplified allelic variants may not be sequenced resulting in allele dropout, particularly when the

number of sequences per amplicon (a set of sequences of a target region generated within a PCR) is

low (Biedrzycka et  al.,  2017;  Galan et  al.,  2010;  Lighten  et  al.,  2014;  Lighten,  Oosterhout,  &

Bentzen, 2014; Sommer, Courtiol, & Mazzoni, 2013).

The recent rapid dissemination of next generation DNA sequencing (NGS) platforms has

provided molecular ecologists with an exciting opportunity to tackle the parallelised genotyping of

multiple  markers  in  numerous  species,  since  it  has  allowed  the  generation  of  thousands  of

sequences (termed “reads”) per amplicon, at a fraction of cost and time needed previously (Babik,

2010; Sommer, Courtiol, & Mazzoni, 2013; Lighten et al., 2014). However, NGS platforms have

their  own limitations,  the  most  relevant  being  the  relatively  high  amount  of  sequencing errors

generated  in  a  typical  sequencing  run  (Glenn,  2011;  Huse  et  al.,  2007;  Sommer,  Courtiol,  &

Mazzoni, 2013Liu, Keller, & Heckel, 2012; McElroy, Luciani, & Thomas, 2012; Ross et al., 2013).

For instance, Illumina, currently the mainstream technology for NGS amplicon sequencing, report

an error rate (primarily substitutions of base pairs) of ≤ 0.1% per base for ≥ 75-85% of bases (see

Glenn (2011) for details), although final error rates are likely to be much higher and can reach up to

6% (McElroy  et  al.,  2012).  Indeed,  previous  genotyping  studies  in  multi-locus-systems  (>10)

reported  average  amplification  and  sequencing  artefact  rates  of  1.5%  to  2.5%  per  amplicon

(Promerová et al., 2012; Radwan et al., 2012; Sepil et al., 2012). Therefore, PCR competition when

amplifying multiple loci per amplicon means that sequences from some genuine allelic variants

occur at a similar frequency to PCR artefacts or sequencing errors (Biedrzycka et al., 2017; Galan et

al.,  2010; Lighten,  Oosterhout, & Bentzen, 2014; Sommer,  Courtiol,  & Mazzoni,  2013). In this
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scenario,  poorly  amplified  alleles  cannot  be  easily  distinguished  from  artefacts  during  allele

validation, leading to further false positives and allele dropout during genotyping.

The need to distinguish PCR and sequencing artefacts from valid allelic variants has led to

the  development  of  multiple  bioinformatic  workflows  (i.e.  a  set  of  bioinformatic  steps  during

processing of  sequencing data  which  eventually  leads  to  genotyping,  hereafter  referred to  as  a

“genotyping pipeline”). While all genotyping pipelines rely to some degree on the assumption that

artefacts  are  less  frequent  than  genuine  allelic  variants,  they  vary  in  the  approach  used  to

discriminate poorly amplified allelic variants from artefacts. Genotyping pipelines for complex gene

families have been extensively reviewed in Biedrzycka et al. (2017). Recently developed pipelines

cluster  artefacts  to  their  putative  parental  sequences  thereby increasing  the  read  depths  of  true

variants (Lighten et al., 2014; Pavey et al., 2013; Sebastian et al., 2016; Stutz & Bolnick, 2014).

Currently, the most commonly used pipeline for MHC studies is the AmpliSAS web server pipeline

(Sebastian  et  al.,  2016).  After  chimera  removal,  AmpliSAS  uses  a  clustering  algorithm  to

discriminate  between artefacts  and allelic  variants,  which  take  into  account  the  error  rate  of  a

particular NGS technology and the expected lengths of the amplified sequences. This is achieved in

a stepwise manner, whereby it first clusters the most common variant (according to specified error

rates) and then moves on to the next most common variant, until no variant remains to be clustered.

Microbiome studies, which typically amplify hypervariable regions of the 16S rRNA gene from

very  diverse  bacterial  communities  within  a  single  amplicon,  have  used  a  similar  strategy  to

AmpliSAS, whereby potential  artefactual  variants are  clustered to  suspected parental  sequences

using Shannon entropy (referred to as “Oligotyping”; Eren et al., 2013) or other similar clustering

methods (Amir et al., 2017; Callahan, McMurdie, & Holmes, 2016). 

Most of the amplicon genotyping pipelines for multigene families available to molecular

ecologists have only been tested on non-model organisms for which the real genotype is unknown

(but  see  Sebastian  et  al.,  2016).  As  a  consequence,  studies  have  frequently  depended  on

repeatability  of  duplicated  samples  to  justify  genotyping  pipeline  reliability  (Biedrzycka  et  al.,
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2017; Galan et al., 2010; Lighten et al., 2014; Radwan et al., 2012; Sebastian et al., 2016; Sommer,

Courtiol, & Mazzoni, 2013). However for a given set of PCR primers and sequencing technology,

PCR and sequencing bias, and thus in turn the rate of false positives and allele dropout, will be

consistently repeatable (Biedrzycka et al., 2017). For instance, the high rate of Illumina substitution

errors are known to be not random (see references within Sebastian et  al.,  2016) and therefore

variants which result from substitution errors are highly repeatable between amplicons (Biedrzycka

et al., 2017). Furthermore, while the generation of PCR and sequencing artefacts is well known, the

precise relationship between artefacts and the number of alleles amplified within an amplicon for a

given set  of primers  and sequencing technology has  never  been described.  Yet,  having a  clear

indication of this  relationship is  an important step in predicting what  are  the optimal  pipelines

settings (e.g. predicting error rates) for a given number of loci amplified within an amplicon. The

latter  can only be achieved by experimentally manipulating CNV of  a priori known genotypes

before PCR amplification and NGS sequencing.

In this study, we manipulated known combinations of the MHC alleles of a model organism

(the chicken,  Gallus gallus) as an example of a target multigene region of interest to molecular

ecologists,  in  order  to  accurately  quantify  the  effects  of  PCR  and  sequencing  artefacts  on

genotyping pipelines. While we focus on the MHC hereafter, all methods and results are applicable

to any multigene family. Like many multigene complexes, MHC genes are subject to multiple gene

conversion, duplication and deletion (Nei, Gu, & Sitnikova, 1997; Nei & Rooney, 2005; Parham &

Ohta, 1996) and MHC gene copies vary considerably across and even within a species (reviewed in

Kelley, Walter, & Trowsdale, 2005). Therefore, the number of MHC loci present in a non-model

study system often remains unknown. For instance, MHC class IIB CNV was found to be as high as

21 in some passerine species, resulting in up to 42 allelic variants amplified within an amplicon and

strong  CNV  between  individuals  (Biedrzycka  et  al.,  2017).  In  contrast,  the  chicken  MHC  B

complex is unusually simple, leading it to be coined as a “minimal essential” system, with only two

MHC class I loci and two MHC class II loci (Kaufman, Jacob, et al., 1999; Kaufman, Milne, et al.,
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1999; Kaufman, Völk, & Wallny, 1995). The latter is therefore an ideal system to validate MHC

genotyping pipelines for the following reasons: 1.) the structure of the B complex is well known

with well-defined primers in conserved regions; 2.) the well characterised B complex haplotype

lineages can be used so that the expected MHC genotyping results are known prior to sequencing

and genotyping and 3.) CNV within an amplicon can be experimentally engineered by combining

DNA samples from multiple MHC B complex haplotypes.

 In order to perform the genotyping of known chicken MHC haplotypes and extract data

concerning PCR and sequencing artefacts at each step of the genotyping workflow, we developed

and calibrated our own genotyping pipeline (named ACACIA for  Allele  CAlling proCedure for

Illumina  Amplicon  sequencing data).  ACACIA is  written  in  Python and  it  takes  advantage  of

several previously published software dedicated to genomics (detailed in methods), as well as of the

widely used Biopython library (Cock et  al.,  2009) to  handle genomic data.  We experimentally

generated a MHC dataset with a range of CNVs by combining DNA samples from multiple chicken

MHC B complex haplotypes. Since MHC B complex in chickens is well characterised, optimal

primers to amplify the entire exons which code for the antigen binding regions have been developed

within the introns (Goto et al., 2002; Shaw et al., 2007). However in most wildlife species, such

extensive genomic information around the region of interest is unavailable. In order to avoid the

problems associated with overfitting ACACIA to one specific dataset and also in order to replicate

the  challenge  of  designing  primers  for  a  non-model  species,  we additionally  designed  primers

within  the  exons  coding  for  antigen-binding  regions  using  sequence  data  from closely  related

Galliform species  that  were  not  chickens  (hereafter  referred  to  as  “naïve  primers”).  The latter

enabled us to gain insight into the relative amount of artefacts generated by an intentionally sub-

optimal set of primers, for which we expected allele dropout. 

Specifically, this study aimed to:

1. validate ACACIA using experimentally manipulated genotypes with different CNV that are

known a priori;

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176



2. accurately  describe  the  relationship  between  PCR/sequencing  artefacts  and  CNV  by

experimentally varying CNV and primer design in a model system; 
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Materials and Methods

Samples and DNA extraction

Chicken blood samples originated from experimental inbred lines kept at the Institute for Animal

Health at Compton UK (lines 72, C, WL and N) and the Basel Institute for Immunology in Basel

Switzerland (lines H.B15 and H.B19+), as detailed in Jacob et al. (2000), Shaw et al. (2007) and

Wallny et al. (2006). These lines carry seven common B haplotypes: B2 (line 72), B4 and B12 (line

C), B14 (line WL, sometimes referred as W), B15 (H.B15), B19 (H.B19) and B21 (line N). All the

lines  are  homozygotes  at  the  MHC except  line  C,  which  was  not  used  in  this  study.  In  each

haplotype are two class II B loci: BLB1 (previously known as BLBI or BLBminor) and BLB2

(BLBII  or  BLBmajor),  with  alleles  now  designated  as  BLB1*02  and  BLB2*02  from  the  B2

haplotype,  etc.  All  alleles have different nucleotide sequences, except BLB1*12 and BLB1*19.

DNA was isolated from blood cells by a salting out procedure (Miller, Dykes, & Polesky, 1988).

Generating 41 artificial MHC genotypes

We artificially generated 43 genotypes of varying CNV by combining equimolar amounts of DNA

samples from the seven MHC haplotypes mentioned above (Table 1; created genotypes listed in

Supplementary Table 1). 

Optimal primers for chicken MHC Class II 

We targeted the entire 241 bp of exon 2 of MHC class II, the polymorphic region known to code for

antigen  binding  sites,  using  the  primers  OL284BL  (5′-GTGCCCGCAGCGTTCTTC-3′)  and

RV280BL  (5′-TCCTCTGCACCGTGAAGG-3′;  Goto  et  al.,  2002).  The  primers  are  not  locus

specific and bind to both loci of the chicken B complex. 

Naïve primer design for chicken MHC Class II

In order to naïvely design primers, we downloaded 61 exon 2 MHC Class II sequences from seven

Galliform species  (Coturnix  japonica,  Crossoptilon  crossoptilon,  Meleagris  gallopavo,  Numida
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meleagris,  Pavo  cristatus,  Perdix  perdix and  Phasianus  colchicus)  from  the  GenBank

(https://www.ncbi.nlm.nih.gov/genbank/).  We  then  used  Primer3  (Rozen  &  Skaletsky,  1999;

Untergasser et al., 2012) to design the forward primer GagaF1 (5′-WTCTACAACCGGCAGCAGT-

3′) and the reverse primer GagaR2 (5′- TCCTCTGCACCGTGAWGGAC-3′) aiming at amplifying

151 bp of exon 2.

PCR Amplification, Library Preparation, and High-Throughput Sequencing

For all datasets we replicated all individuals in order to estimate repeatability (nindividuals = 43 and

namplicons = 86). 

Individual PCR reactions were tagged with a 10-base pair identifier, using a standardised

Fluidigm  protocol  (Access  Array™  System  for  Illumina  Sequencing  Systems,  ©Fluidigm

Corporation). We first performed a target specific PCR with the CS1 adapter and the CS2 adapter

appended. To enrich base pair diversity of our libraries during sequencing, we added four random

bases to our forward primer. The CS1 and CS2 adapters were then used in a second PCR to add a

10bp  barcode  sequence  and  the  adapter  sequences  used  by  the  Illumina  instrument  during

sequencing.

The  first  PCR  consisted  of  3–5  ng  of  extracted  DNA,  0.5  units  FastStart  Taq  DNA

Polymerase (Roche Applied Science, Mannheim, Germany), 1x PCR buffer, 4.5 mM MgCl2, 250

μM each dNTP, 0.5 μM primers, and 5% dimethylsulfoxide (DMSO). The PCR was carried out

with an initial denaturation step at 95°C for 4 min followed by 30 cycles at 95°C for 30 s, 60°C for

30 s, 72°C for 45 s, and a final extension step at 72°C for 10 min. The second PCR contained 2 μl

of the product generated by the initial PCR, 80 nM per barcode primer, 0.5 units FastStart Taq DNA

Polymerase,  1x  PCR buffer,  4.5  mM MgCl2,  250  μM  each  dNTP,  and  5% dimethylsulfoxide

(DMSO) in a final volume of 20 μl. Cycling conditions were the same as those outlined above but

the number of cycles was reduced to ten.
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PCR products were purified using an Agilent AMPure XP (Beckman Coulter) bead cleanup

kit. The fragment size and DNA concentration of the cleaned PCR products were estimated with the

QIAxcel  Advanced  System  (Qiagen)  and  by  UV/VIS  spectroscopy  on  an  Xpose  instrument

(Trinean, Gentbrugge, Belgium). Samples were then pooled to equimolar amounts of DNA. The

library was prepared as recommended by Illumina (Miseq System Denature and Dilute Libraries

Guide 15039740 v05) and was loaded at 7.5 pM on a MiSeq flow cell with a 10% PhiX spike.

Paired-end sequencing was performed over 2 × 251 cycles. 

   

Data analysis with the ACACIA pipeline 

ACACIA consists  of 11 consecutive steps of data  processing..  The software requires  two non-

standard python libraries (Pandas (McKinney, 2010) and Biopython (Cock et al., 2009)) as well as

six  third-party  software  (FastQC  (www.bioinformatics.babraham.ac.uk/projects/fastqc/),  FLASh

(Magoč & Salzberg, 2011), VSEARCH (Rognes, Flouri, Nichols, Quince, & Mahé, 2016), BLAST

(Altschul,  Gish,  Miller,  Myers,  &  Lipman,  1990),  MAFFT  (Katoh  &  Standley,  2013)  and

Oligotyping (Eren et al., 2013), which can all be installed with one command. The input files are

any number of FASTq files, which are the current canonical output of the Illumina platform. The

step-by-step workflow is described below:

1. Generating Quality Reports. Sequencing quality is assessed for each FASTq file yielded by

the sequencing platform, with the FastQC tool. Reports for each file are produced in HTML

format for visual inspection.

2. Trimming  low  quality  ends  of  forward  and  reverse  reads  (optional). The  information

generated in step #1 is crucial for an informed decision about how many (if any) bases should

be trimmed out of each read. If trimming is performed here, step #1 is repeated. Shorter FASTq

files are generated as output of this step.

3. Merging paired-end reads (optional). This concerns projects with paired-end sequencing only

and should be skipped if using data from single-end sequencing (note: the names of the paired
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forward and reverse FASTq files should be identical prior to the first “_” character, e.g.: ID1-

S1-L001_R1_001.fastq and ID1-S1-L001_R2_001.fastq).  The reads  of file  pairs  are  merged

using  FLASh  (Magoč & Salzberg,  2011).  The minimum and maximum lengths  of  overlap

during merging can be adjusted by the user to improve performance (defaults are zero and read

length, respectively). New FASTq files with merged sequences are generated as output, as well

as a series of .log files which allow users to monitor merging performance.

4. Trimming primers. After prompting users to enter the sequences of the primers used for target

amplification,  ACACIA  trims  primer  sequences  from  both  ends  of  the  merged  sequences

(IUPAC nucleotide ambiguity codes are allowed). Primerless sequences are written into FASTq

files which are the output of this step. The Python functions for trimming primers and low-

quality ends (step #2) are part of the core ACACIA pipeline. External tools were avoided here

to decrease dependency on further software.

5. Quality-control.  Users are then prompted to enter the values of two parameters (q and  p) in

order  to  filter  sequences  based  on  their  mean  phred-scores.  First,  q stands  for  quality and

denotes  a  phred-score  threshold  that  can  take  values  from  0  to  40.  Second,  p stands  for

percentage and denotes the proportion of bases, in any given sequence, that have to achieve at

least the quality threshold q for that sequence to pass the quality filter. ACACIA uses the default

values  q = 30 and  p = 90 if  users do not explicitly change them. In practical terms, these

thresholds correspond to an error probability lower than 10-3 in at least 90% of bases for each

sequence. All information on quality data of sequences passing this filter is then removed and

FASTA files with high-quality sequences are given as the output of this step.

6. Removing singletons. A large proportion of sequences contain random errors inherent to the

sequencing technology (Quail et al., 2012). In order to decrease file sizes without risking loss of

relevant allele information, ACACIA removes all singletons (sequences that appear one single

time) in an individual amplicon.
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7. Removing  chimeras. The  chimera  identification  tool  VSEARCH  (Rognes  et  al.,  2016) is

employed  here,  with  slightly  altered  settings  (alignwidth =  0  and  mindiffs =  1)  aiming  at

increasing sensitivity to chimeras that diverge very little from one of the “parent” sequences.

FASTA files with non-chimeric sequences, along with log files for each individual amplicon,

are given as output.

8. Removing unrelated sequences. All  remaining sequences are  then compared with a  set  of

reference sequences  chosen by users.  This  step aims at  removing sequences  that  passed all

filters  so  far  but  are  products  of  unspecific  priming  during  PCR.  Typically,  sequences

phylogenetically  related  to  those  being  analyzed  can  be  downloaded  from  the  GenBank

(www.ncbi.nlm.nih.gov/genbank/).  Users  are  prompted  to  provide  one  FASTA  file  with

reference sequences, which is converted by ACACIA to a local BLAST database (Altschul et

al., 1990) and used for BLAST. Only sequences yielding high-scoring hits to the local database

(expectation value threshold = 10) are written into new FASTA files as an output of this step,

which is the workflow’s last filtering procedure.

9. Aligning. The MAFFT aligner (Katoh & Standley, 2013) is used to perform global alignments

of sequences that have passed filters. Since all sequences are pooled into one single alignment

output file, the individual IDs are now transferred from file names into the FASTA sequence

headers. We have successfully aligned up to 603,513 sequences in a desktop computer with four

CPUs and 32GB of RAM. Users with a significantly higher number of sequences might find it

useful  to  increase  the  computational  parallelization  of  the  aligner  as  described  recently

(Nakamura et al., 2018).

10. Calling candidate alleles. The Oligotyping tool (Eren et al., 2013) is used to call candidate

alleles. Although originally conceived as a tool for identifying variants from microbiome 16S

rRNA amplicon sequencing projects, we recognised Oligotyping as ideal for other forms of

highly  variable  amplicon  sequencing  projects.  This  step  consists  of  concatenating  high-

information nucleotide positions (defined by entropy analysis of the alignment produced in the
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previous step) and subsequently using entropy information to cluster divergent variants, while

grouping redundant information and filtering out artefacts. Although Oligotyping was conceived

as a supervised tool, we automated the selection of parameter values aiming at high tolerance.

This has the advantage of running an unsupervised instance of Oligotype as a pipeline step, at

the  cost  of  keeping  potential  false  positives  among  the  results.  Report  files  with  a  list  of

candidate alleles grouped by individual amplicons are the output of this step. 

11. Allele calling and final reporting. A Python script is used to perform the final allele calling by

filtering out Oligotyping results according to the following criteria:

○ Removal of unique allele variants (Y/N). Setting Y (yes) removes all alleles identified in

one single individual amplicon;

○ Absolute number of reads (abs_nor): minimum number of sequences that need to support an

allele,  otherwise  the  allele  is  considered  an  artefact.  Ranges  between 0 and 1000,  with

default = 10;

○ Lowest proportion of reads (low_por): in order to be called in an individual amplicon, an

allele  needs  to  be  supported  by  at  least  the  proportion  of  reads,  within  that  individual

amplicon, that is declared here. Ranges between 0 and 1, with default = 0, while a value

greater than 0 is recommended for data sets with ultra deep sequencing depth, which can

suffer more from false positives (Biedrzycka et al., 2017).

Subsequently, putative alleles with very low frequency (both at the individual and population

level) are scrutinised again. If the proportion of reads of a putative allele within an individual

amplicon is less than 10 times lower than the next higher ranking allele, and if it is very similar

(one  single  different  base)  to  another,  more  frequent  allele  present  in  the  same individual

amplicon, that putative allele is considered an artefact and removed. Finally, if an individual

amplicon has fewer than 50 sequences following all of the allele calling validation steps, it is
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eliminated. Users are able to change all parameter values, but ACACIA recommends settings

based on our benchmarking. The output of this step consists of four files:

○ allelereport.csv: a brief allele report listing genotypes of all individual amplicons as well as

frequencies and abundances of all alleles found in the run;

○ allelereport_XL.csv: a detailed allele report including the number of reads supporting each

allele both within individuals and in the population;

○ pipelinereport.csv: a pipeline report quantifying read counts and sequences failing or passing

each pipeline step described above;

○ alleles.fasta: a FASTA sequence file of all alleles identified in the run.

We investigated the best abs_nor and low_por for our datasets by first looking at the allele calling

accuracy (the proportion of alleles that have been correctly called) and repeatability (the proportion

of alleles, including false positives, called in both PCR replicates) at varying abs_nor values (range:

0-40, with low_por set at 0) first, and at varying low_por values (range: 0-0.02, with the optimal

abs_nor,  in  our  case 10)  second.  The latter  is  how we recommend users  to  find  their  optimal

settings, although the range of  abs_nor and  low_por values to be investigated may vary across

different datasets, depending on where the “peak” optimal setting lies.

The pipeline is supervised by a configuration text file (config.ini) which is appended every

time  users  enter  one  of  the  settings  mentioned  below.  Users  can  avoid  running  ACACIA

interactively  (and  run  the  whole  workflow  in  a  “hands-free”  mode)  by  providing  a  complete

config.ini  file  at  the  beginning  of  the  workflow.  A  template  of  a  config.ini  file  is  given  in

ACACIA’s repository (https://gitlab.com/psc_santos/ACACIA/blob/master/config.ini).

 

Data analysis with the AmpliSAS pipeline 
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To compare how ACACIA performed relative to an existing relevant pipeline, we applied the web

server AmpliSAS pipeline to our chicken datasets (Sebastian et al., 2016). The default AmpliSAS

parameters of a substitution error rate of 1% and an indel error rate of 0.001% for Illumina data was

used. We then tested for the optimal ‘minimum dominant frequency’ clustering threshold for a

given filtering threshold (i.e.  0.5% for the ‘minimum amplicon frequency’),  by testing a set  of

thresholds of 10%, 15%, 20% and 25%. All  clustering parameters tested gave an allele calling

accuracy of ~97%, but we chose the 25% clustering threshold because it was the only parameter

which resulted in no false positives.

Subsequently,  AmpliSAS  filters  for  clusters  that  are  likely  to  be  artefacts,  including

chimeras and other low frequency artefacts that have filtered through the clustering step (Sebastian

et al., 2016). The default setting for the filtering of low frequency variants (i.e. ‘minimum amplicon

frequency’) is 3%. However this value was far too high for our datasets, and we tested a range of

filtering threshold between 0% and 1% at 0.1% intervals (i.e. 0%, 0.1%, 0.2% etc.). We assessed

the optimal filtering threshold using both allele calling accuracy and repeatability.
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Results

Sequencing depth for each dataset and proportion of artefacts detected using ACACIA

A  total  of  530,101  paired-end  reads  were  generated  for  the  optimal  primers  dataset,  which

amounted  to  an  average  of  6,164 reads  per  amplicon (n =  86).  For  the  naïve  primers  dataset,

994,338 paired-end reads were generated, amounting to an average of 11,562 reads per amplicon (n

= 86). The proportion of artefacts identified at each step of the ACACIA pipeline for the chicken

datasets combined is illustrated in Figure 1. Workflow filtering removed the highest proportion of

reads when filtering for singletons (13.6%) and chimeras (14.2%). After all filters, 66.4% of the

original raw reads were used for allele calling.

 

Optimal settings of different workflows 

We compared allele calling repeatability optimal  abs_nor and  low_por settings when using the

ACACIA workflow. We first fixed the  abs_nor setting at 10 and tested different  low_por values

and found that the optimal setting was 0 across both datasets (Figure 2a.). Lower low_por values

increased allele dropout. We then tested the optimal abs_nor setting for a fixed low_por value of 0

and found that the optimal setting was 10 across both datasets (Figure 2b.). An abs_nor value of 0

increased the rate of false positives and whilst a value above 10 increased the rate of allele dropout.

For  the  AmpliSAS workflow, we investigated  the  optimal  filtering threshold and found

differing optimal values between datasets. For the optimal primer dataset we found that the optimal

filtering threshold was 0.3 whilst 0.5 was found to be optimal for the naïve dataset (Figure 2c.).

AmpliSAS vs ACACIA: optimal primers dataset

When using the optimal settings of the ACACIA workflow, comparison of results with expected

genotypes revealed that nine alleles dropped out, no false positives were found (Table 2) and allele

calling accuracy was 98.5% (Figure 2a. and b.). All instances of allele dropout derived from the

B21 haplotype. For two genotypes, both BLB2*21 and BLB1*21 dropped out. For four genotypes,
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only BLB1*21 dropped out and for one genotype only BLB2*21 dropped out (Table 2). Allele

calling repeatability was 97.7%.

Using the optimal settings in AmpliSAS, 17 alleles dropped out,  one false  positive was

found (Table 2) and allele calling accuracy was 97% (Figure 2c.). As with ACACIA, most allele

dropouts (16 of 17)  derived from the B21 haplotype.  For three genotypes,  both BLB2*21 and

BLB1*21  dropped  out.  For  nine  genotypes,  only  BLB2*21  alleles  dropped  out  and  for  one

genotype  only  BLB1*21  allele  dropped  out.  Finally  for  one  genotype  the  allele  dropout  was

BLB2*04 and the same genotype had a false positive allele (Table 2). Allele calling repeatability

was 95.3%.

AmpliSAS vs ACACIA: chicken naïve primers dataset 

Using the optimal settings of ACACIA, we found 134 allele dropouts and allele calling accuracy

was 77.8% (Figure 2a. and b.). However, all dropouts were from the alleles BLB2*04, BLB2*15 or

BLB2*21,  for  which  a  primer  mismatch  was  present.  Therefore,  all  allele  dropouts  could  be

explained by primer design and allele calling repeatability between both replicates was 100%.

Using the optimal settings of AmpliSAS, we found 152 allele dropouts and allele calling

accuracy was 75.2% (Figure 2c.). As above, 134 dropouts were due to a mismatch with the forward

primer. The remaining 17 alleles that dropped out were BLB2*12 or *19 (13 alleles) and BLB1*14

(4 alleles). Allele calling repeatability between both replicates was 96.1%. 

Relationship between number of alleles amplified and artefacts

The proportion of sequences classified as artefacts was much higher for PCRs using the optimal

primer set than when using the naïve primer set (Figure 3a. and 3b.). For all chicken data sets, when

considering  non-chimeric  artefacts,  there was a  positive relationship between the  proportion  of

artefacts  and  the  number  of  alleles  amplified  (Figure  3a.).  There  is  a  logarithmic  relationship

between  the  proportion  of  chimeric  artefacts  and the  number  of  alleles  amplified  whereby  the
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proportion of chimeric reads no longer increased with number of alleles amplified when amplifying

more than 4-6 alleles (Figure 3b.). The total number of unique chimeric reads also tended to follow

a logarithmic relationship, whereby the number of unique chimeric variants seemed to no longer

increase with the number of alleles amplified when amplifying more than 10 alleles (Figure 3c.).

The total number of parental variants generating chimeras also did not increase with CNV when

amplifying  more  than  six  alleles  (Figure  4).  Finally,  the  contribution  of  allelic  variants  to  the

proportion of reads decreased sharply with increasing number of alleles when amplifying less than

4-6  alleles  (Figure  4).  However  the  contribution  of  allele  variants  to  the  proportion  of  reads

stabilised when amplifying more than 4-6 alleles (Figure 4). Both alleles from the B21 haplotype in

the optimal dataset and the BLB1*04 allele in the naïve dataset consistently amplified poorly when

co-amplifying with alleles from other haplotypes (Figure 4). 
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Discussion

Using known MHC genotypes for two datasets (chicken MHC Class II B complex), we achieved

high allele calling accuracy (≥98.5%) and repeatability (≥97.7%) using ACACIA. With fewer allele

dropouts  and  false  positives,  the  ACACIA  pipeline  performed  better  than  AmpliSAS.  We

demonstrated the “costs” of designing primers within MHC exon 2 in terms of allele dropout, with

three common alleles failing to amplify when using primers naïvely designed from sequences of

related Galliform species. We also explored the relationship between artefacts and CNV, and found

that surprisingly, the relationship between the proportion of chimeric artefacts and CNV was not

linear but rather leveled when amplifying more than 4-6 alleles. However, non-chimeric artefacts

did increase  linearly  with increasing CNV. As expected  we found heterogeneous amplification

efficiency of allelic variants when amplifying multiple loci within a PCR. Below we discuss in

further  detail  the ACACIA, AmpliSAS and other  genotyping pipelines,  primer design for non-

model organisms, the relationship between CNV and artefacts, the effect of chimera formation on

genotyping pipelines and, finally, we conclude by advising users on important points to consider

when genotyping complex multigene systems in non-model organisms. 

AmpliSAS vs ACACIA

Experimentally generating CNV of known chicken MHC class II genotypes allowed us to validate

our  ACACIA  pipeline  to  genotype  systems  with  high  CNV  complexity  at  high  accuracy  and

repeatability across replicates. While we achieved higher allele calling accuracy and repeatability

using  ACACIA than  the  AmpliSAS web server  pipeline,  we  do  not  claim that  ACACIA will

necessarily perform better than AmpliSAS with all datasets. To demonstrate the latter we would

need to test both pipelines on a larger number of datasets and/or on simulated datasets. In addition,

while our pipeline should suit data generated with any next-generation sequencing technologies, we

have only tested ACACIA with paired-end Illumina sequencing technology.
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The most apparent benefit of using the AmpliSAS web server is that it is relatively easy to

use for users with limited knowledge of scripting languages (such as PYTHON, PERL, C++ or R).

However, we have noticed that a number of studies report using default settings when applying the

AmpliSAS pipeline to their dataset. We find this concerning since, as our study demonstrates, the

default  clustering and filtering parameters are unlikely to be optimal for most datasets.  Indeed,

allele calling accuracy was much lower when using the default settings (81.8%) as compared to the

optimal settings (97%) in the optimal primer dataset in our study, due to high allele dropout when

using the default settings. We therefore strongly discourage users from using default settings and

advise to permutate between different filtering and clustering parameters in order to find the best

settings when using the AmpliSAS pipeline. 

An important  disadvantage  of  the  AmpliSAS web server  is  that  at  the  time of  writing,

sequencing depth per amplicon was limited to 5,000 reads. The latter is particularly problematic

when wishing to genotype systems with complex CNV, which require high sequencing depth to

genotype with high repeatability  (Biedrzycka et  al.,  2017).  For  datasets  with sequencing depth

above 5000 reads, AmpliSAS can be run locally but we found that, unlike the web server, the local

version of AmpliSAS had limited documentation and troubleshooting was time consuming. 

Once installed, ACACIA does not require users to have experience with scripting languages,

allows genotyping with virtually unlimited sequencing depth and provides output data reporting the

number of reads kept at each step of the pipeline. The latter should aid users when deciding upon

optimal parameters and thresholds. As for the AmpliSAS pipeline, we advise to not use default

parameters  of  ACACIA  without  critically  assessing  different  parameters  for  each  dataset.  In

particular,  we  urge  users  to  permutate  between  different  settings  of  abs_nor and  low_por

parameters.  We  advise  to  first  search  for  the  optimal  abs_nor setting  with  a  fixed  low_por

parameter of 0 because it is likely that it is only necessary to change the low_por parameter setting

from 0 in datasets with ultra deep sequencing depth. If it is subsequently found that the optimal

low_por setting  is  greater  than  0,  users  should  repeat  the  permuting  step  of  abs_nor until  the
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optimal settings are found. Of course finding optimal settings requires the inclusion of replicates for

at least a subset of the dataset. We therefore recommend that a sufficient number of replicates are

always included in genotyping runs to obtain sufficiently accurate repeatability values.

Comparing ACACIA to other pipelines 

Prior to the development of AmpliSAS and ACACIA, researchers who wished to genotype complex

multigene systems generally relied on either earlier software such as SESAME (Meglécz et al.,

2011) or jMHC (Stuglik, Radwan, & Babik, 2011) or their own customised scripts (e.g. Kloch et

al., 2010; Zagalska-Neubauer et al., 2010). However while both SESAME and jMHC aided allele

calling workflows by allowing users to demultiplex sequences and to generate tables which contains

sequence variants and the number of reads, they do not allow users to apply an automated workflow

to distinguish artefacts from real allelic variants. 

Genotyping pipelines have evolved and matured in the last decade, however all genotyping

pipelines rely to some degree on the assumption that artefacts are in general less frequent than

genuine allelic variants. However genotyping pipelines vary in the methods used to discriminate

poorly  amplified  allelic  variants  from artefacts.  An  early  pipeline  suggested  by  Radwan et  al.

(2012),  which  expanded from initial  pipelines  suggested by Kloch et  al.  (2010) and Zagalska-

Neubauer et al. (2010), set a threshold below which all variants are considered artefacts (e.g. <1.5%

per amplicon in Radwan et al.  2012). This threshold is set by comparing rare variants to more

common variants within an amplicon to determine whether the rare variant can be explained as an

artefact (i.e. 1 to 2 bp mismatch compared to a common variant within an amplicon or a PCR

chimera from two common parental variants within an amplicon). The weakness of this genotyping

pipeline is that it  relies on a single threshold below which all  variants are considered artefacts,

potentially  making  it  particularly  vulnerable  to  allele  dropout  (Sommer,  Courtiol,  & Mazzoni,

2013). A second method was suggested by Sommer, Courtiol, & Mazzoni (2013), which relied on

comparisons between duplicated amplicons and a series of decision making trees to discriminate
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between allelic variants and artefacts. While the pipeline of Sommer, Courtiol, & Mazzoni (2013)

also assumes that artefacts are less frequent than most allelic variants, it does not rely on a single

threshold below which all sequences are considered artefacts. However, one potential weakness of

this method is that it may be more vulnerable to repeatable artefacts and thus to false positives,

particularly  in  systems  highly  diverse  in  terms  of  high  copy  number  variation  (CNV>10;

Bierdzycka et al. 2017). 

A further  disadvantage  of  all  the  above  early  genotyping  pipelines  is  that  much of  the

sequencing  depth  data  is  wasted  by  simply  discarding  low  threshold  sequences.  In  order  to

maximise the available  sequencing depth,  recent  genotyping methods have clustered artefactual

(non-chimeric)  sequences to  their  suspected parental  variant  to  increase genotyping confidence.

This  trend has  been particularly  strong in  the  16S rRNA microbiome community,  which  have

traditionally clustered sequence variants to so called operational taxonomic units (OTUs) using a

fixed similarity threshold (usually 97% similarity). More recent 16S rRNA clustering methods such

as the entropy based Oligotyping tool used within ACACIA (Eren et al., 2013), as well as model

based methods such as DADA2 (Callahan, McMurdie, & Holmes, 2016) and Deblur (Amir et al.,

2017),  have  used  alternative  and  more  sophisticated  statistical  methods  to  simple  similarity

thresholds to distinguish sequence variants that differ by as little as one base pair. The clear benefit

of  clustering  is  that  it  significantly  reduces  the  number  of  reads  with  low  abundances,  while

increasing  the  read  counts  from  poorly  amplified  allelic  variants.  However  even  the  most

sophisticated  clustering  methods  will  retain  some  artefacts  within  datasets  (Amir  et  al.,  2017;

Callahan, McMurdie, & Holmes, 2017; Eren et al., 2013), hence the need for additional filtering

steps  following clustering.  Downstream filtering  strategies  can  also  resemble  the  pre-clustering

pipelines strategies mentioned above as was applied by Biedrzycka et al. (2017) using AmpliSAS in

a highly complex system (19 to 42 allelic variants per amplicon). Biedrzycka et al. (2017) found a

high agreement between genotyping methods as long as sequencing depth was sufficiently high.

This will also likely be the case when applying ACACIA instead of AmpliSAS to such datasets.
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An important benefit  of the Oligotyping tool in ACACIA is that unlike other clustering

methods which use the entire  sequence,  it  only uses the base pairs  with the most  discriminant

information based on entropy analyses (Eren et al., 2013). In the context of MHC genotyping in

particular, such a strategy makes much intuitive sense, since most functional differences between

MHC alleles will be within specific regions of the sequences which will contain the antigen-binding

sites that are highly polymorphic as a result of strong positive selection.

The challenge of designing primers for non-model organisms

A common  approach  for  primer  design  in  complex  genomic  regions  of  non-model  organisms

includes aligning multiple sequences of phylogenetically related species. By building primers on

consensus  sequences,  researchers  assume that  oligos  will  amplify  the  target  region  also  in  the

species  of  interest.  However,  knowledge  about  related  species  is  often  limited  to  very  few

individuals. This means that primers can be designed in regions that are polymorphic in the target

species.  As  a  consequence,  certain  allelic  variants  are  not  amplified  and  homozygosity  is

overestimated.  Indeed,  this  proved  to  be  the  case  in  our  naïve  primers  dataset,  whereby  two

mismatches (1st bp and 16th bp) within the forward primer (19 bp long) were sufficient to prevent

the amplification of three alleles (out of 13). Interestingly, a single base pair mismatch between the

second base pair of the reverse primer and the BLB1*04 allele did not prevent the amplification of

this allele, although it did suffer severely from low amplification efficiency when in competition

with  other  alleles  (Figure  4).  However,  high  sequencing  depth  for  the  naïve  primer  dataset

prevented  this  allele  from dropping out,  regardless  of  the  genotyping pipeline used.  Our study

therefore highlights the importance of designing multiple primers when wishing to genotype a novel

target region in non-model organisms to limit allele dropout due to primer mismatch.

Relationship between number of alleles amplified and artefacts
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By knowing the exact alleles to expect for the chicken genotypes, we were able to quantify chimeric

artefacts precisely (Figure 1). There was a higher proportion of chimeric and non-chimeric artefacts

in the optimal primer dataset than in the naïve primer dataset. The most likely explanation for the

latter is the shorter sequence for the naïve primer dataset (151 bp) compared to the optimal primer

dataset (241 bp). A shorter fragment reduces the number of base pairs that can be erroneously

substituted and the number of breaking points for chimera formation. In addition, it is likely that the

probability of incomplete elongation is inversely related to fragment length. Thus, fragment length

appears to be the dominant factor predicting the proportion of artefactual reads. 

As expected, the proportion of reads that were non-chimeric artefacts increased linearly as

CNV increased, which can be explained simply by the fact that there is an increasing number of

possible artefacts that can be generated as the number of initial template variants increases. Thus,

reads that failed to be completely elongated within the PCR cycles are more likely to be erroneously

elongated during the final extension step. 

A  more  unexpected  result  was  that  the  proportions  of  chimeras  did  not  increase  with

increasing CNV, when amplifying more than 4-6 alleles. Similarly, when amplifying more than 10

alleles, the number of chimeric variants no longer increased with increasing CNV. Such saturation

in  chimera  generation  beyond  a  CNV  threshold  is  likely  to  be  a  by-product  of  allele  PCR

competition.  Indeed,  as  demonstrated  by  our  own  data  (Figure  4),  there  is  amplification  bias

whereby some gene variants are amplified preferentially relative to others (Marmesat et al., 2016;

Sommer, Courtiol,  & Mazzoni, 2013). Therefore, a few gene variants (~ 3-6 gene variants) are

preferentially amplified and most chimeras originate from these dominantly amplified variants and

few chimeras are generated from the poorly amplified variants. Indeed, we found that the number of

parental variants generating chimeras in our dataset did not increase with increasing CNV when

amplifying more than 4-6 alleles. The non-linear relationship between chimera generation and CNV

have important  implications  when considering  sequencing depth needed to accurately genotype

complex multigene system, since it suggests that linearly increasing sequencing depth for increasing
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CNV is not necessarily the optimal strategy. The challenges of dealing with chimeras in genotyping

pipelines is discussed below in detail.

Chimeras in genotyping pipelines

The formation of artificial  chimeras  during amplification is  an important  source of  artefacts  in

amplicon sequencing projects (Lenz & Becker, 2008; Smyth et al.,  2010), including those with

newer  sequencing  technologies  (Laver  et  al.,  2016).  Chimeras  are  challenging  to  identify  as

artefacts because they resemble real alleles generated by recombination, particularly in multigene

systems under high rates of interlocus genetic exchange (“concerted evolution”), which is common

in  many MHC systems (Reto  et  al.,  2008;  Reto  et  al.,  2010;  Edwards,  Grahn,  & Potts,  1995;

Gillingham et al.,  2016; Hess & Edwards, 2002; Wittzell et al.,  1999). Our results suggest that

chimeras are more prevalent, harder to identify and potentially more reproducible across technical

replicates  than  previously  assumed.  We  expect  the  same  to  be  true  for  similar  projects  with

conserved, yet variable amplification targets such as the MHC. 

For the optimal primer dataset, regardless of the genotyping pipeline used, allele dropout

occurred in genotypes with high CNV (for ACACIA 8 out of 9 and for AmpliSAS 12 out of 14

haplotypes had a CNV < 10). For all instances bar one, allele dropout were alleles from the B21

haplotype which amplified poorly when CNV was greater than 6 (Figure 2f). Higher sequencing

depth will reduce or even remove such allele dropout instances (Biedrzycka et al., 2017). Indeed for

the naïve primer dataset, sequencing depth was twice as high, and there were no instances of allele

dropout due to the ACACIA pipeline (all allele dropouts were due to primer mismatch). One allele

erroneously called as a real variant (i.e. a false positive) by the AmpliSAS pipeline in the optimal

primer dataset was actually a chimera between the BLB1*21 and BLB2*21 alleles. Furthermore,

when using the AmpliSAS pipeline,  15 allele dropouts in the naïve primer dataset were due to

erroneous assignment of real allelic variants as chimera artefacts.  Indeed, the BLB2*12 or *19

minor allele was identical to potential chimeric artefact sequences between BLB1*14 (85 possible
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breakpoints)  and  any  of  the  following  alleles:  BLB2*04,  BLB1*15,  BLB1*19,  BLB1*21  or

BLB2*21 (Figure  5a.).  In  addition,  BLB1*14 dropped out  because  it  is  identical  to  a  chimera

formed between the BLB2*02 minor and BLB2*12 or *19 alleles (33 breakpoints; Figure 5b.).

We have identified two factors which seemed to enhance chimera formation and challenge

the distinction between artefact and real allelic variants. First,  the combination of multiple real

“parent” sequences can yield the same chimeras, as illustrated in our examples in Figure 5a. and

Figure  5b.,  whereby  any  breakpoint  in  the  shaded  areas  leads  to  the  same  chimeras.  Second,

peripheral breakpoints (Figure 5c.) can generate chimeras that differ to parental sequences by as

little  as  a  single base  pair.  For  instance,  a  chimera  could be  a  product  of  the  allele  BLB1*21

combined with any of the other alleles shown in the alignment, with a breakpoint within the shaded

area  (Figure 5c.).  Since the potential  breaking points  are  at  the  very  end of  the sequence,  the

chimera is very similar to one of its parents (in this example, it is different from BLB1*21 by only

one base). In an attempt to deal with this issue as much as possible, we changed the default settings

of VSEARCH so that chimeras can be detected even if they differ from one parent by one single

base. Both the “multiple parents” and the “peripheral breakpoints” issues are likely to contribute to

making chimeras reproducible across replicates.

Conclusion

Genotyping accuracy and artefacts are intrinsically linked. We have demonstrated that the ACACIA

genotyping  pipeline  provides  high  allele  calling  accuracy  and  repeatability.  Regardless  of  the

pipeline used, however, users should critically assess the optimal parameters to be used. We are

convinced that universal default settings for optimal genotyping accuracy cannot be achieved, since

optimal parameters will depend on dataset-specific generation of artefacts. The latter, in turn, varies

according to species-specific CNV, DNA quality, and the conditions of PCR (e.g. extension time,

number  of  cycles  and  the  polymerase  used)  and  sequencing  (e.g.  quality  and  depth).  High

sequencing depth  allows  detecting  alleles  that  amplify  poorly  in  complex (multigene)  systems.
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Furthermore simple steps prior to sequencing can greatly reduce the number of artefacts generated

and improve genotyping accuracy: designing more than one PCR primer pair, reducing the number

of  PCR cycles,  increasing  PCR in-cycle  extension  time,  and omitting  the  final  extension  step.

Reducing  chimera  formation  during  PCRs  is  particularly  critical,  because  they  are  difficult  to

distinguish from real alleles generated by inter-locus recombination.
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Figure 1: Flow diagram of reads and sequences from two Illumina runs analysed with ACACIA.

Blue bars correspond to filters, and the percentages given correspond to the sequences kept at each

step for further analyses. The percentage given at the bottom for artefacts refers to the total amount

of reads in the beginning of the process. (Fwd & Rev) raw forward and reverse reads; (Mrg) Paired-

end read merger; (Prm) primer filter; (QC) quality control; (Sgt) Singleton removal; (Chm) chimera

removal; (Blt) BLAST filter.

Figure 2: Allele calling accuracy and repeatability for the two datasets of this study (optimal primer

or n) at different abs_nor threshold settings with low_por set at 0 within the ACACIA pipeline (a.);
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at different  low_por threshold settings with  abs_nor set at 100 within the ACACIA pipeline (c.);

and, at different filtering thresholds (i.e.  ‘minimum amplicon frequency’) within the AmpliSAS

pipeline.

Figure 3:  The relationship between the number of alleles amplified and: the proportion of non-

chimeric reads (a.); the proportion of chimeric reads (b.); the absolute number of chimeric variants

(c.); and, the absolute number of parental variants generating chimeric reads (d.). All relationships

were fitted with general additive model using the ggplot package (Wickham, 2016) in R (R Core

Team, 2018) using a binomial distribution for (a.), (b.) and (f.), and a Poisson distribution corrected

for over-dispersion for (c.) and (d.).

Figure 4: The relationship between the number of alleles amplified and the proportion of reads for

each real allelic variant. All relationships were fitted with general additive model using the ggplot

package (Wickham, 2016) in R (R Core Team, 2018) using a binomial distribution.

Figure 5: Three alignments with examples of sequences which can be classified as chimeras. The

points  denote  identity  to  the  first  sequence  in  each  alignment,  while  the  differences  to  it  are

highlighted.  The  shaded  areas  indicate  possible  chimera-yielding  breakpoints.  (a)  The  allele

BLB2*12 or *19 could be a  chimera of BLB1*14 with any of the four other  allele  sequences

depicted, in a case of multiple potential parent pairs. (b) BLB1*14 can be interpreted as a chimera

between BLB2*12 or *19 minor and BLB2*02. (c) Actual chimera with multiple potential parents

and a peripheral breakpoint, and therefore very similar to one of its parents.
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Table 1:  The number of alleles per genotype,  the number of

genotypes  with  a  certain  number  alleles  and  the  number  of

amplicons  with  a  certain  number  alleles  (all  genotypes  were

duplicated) for the chicken datasets used in this study. The list

haplotypes used to artificially create the genotypes are listed in

supplementary Table S1.

Number of alleles
per genotype

Number of genotypes Number of amplicons

2 7 14
4 7 14
6 7 14
8 7 14
10 7 14
11 5 10
12 2 4
13 1 2
Total 43 86
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Table  2:  Genotypes  with  allele  dropouts  and  false  positives  using  ACACIA  and  AmpliSAS

(excluding allele dropout due to primer mismatch in the naïve primers dataset).

Genotype Replicate Number of 
predicted 
alleles

Allele dropout
using 
ACACIA

Allele dropout 
using AmpliSAS

False positive 
using 
AmpliSAS

a. Optimal primers dataset (BLB MHC Class II)
B2-B4-B12-B14-B19-B21 1 11 BLB1*21 BLB1*21

BLB2*21
B4-B14-B15-B19-B21 1 10 BLB1*21 BLB2*21

2 10 BLB1*21 BLB1*21
B4-B15-B19-B21 1 8 BLB1*21 BLB2*21
B2-B4-B12-B14-B15-B19-B21 1 13 BLB1*21 

BLB2*21 
BLB1*21
BLB2*21

B2-B4-B12-B14-B15-B21 1 12 BLB1*21 
BLB2*21

BLB1*21
BLB2*21

B2-B12-B14-B15-B19-B21 1 11 BLB2*21
B2-B4-B12-B15-B19-B21 1 11 BLB2*21
B2-B4-B12-B15-B21 1 10 BLB2*21
B2-B4-B14-B15-B19-B21 1 12 BLB2*21
B2-B4-B14-B15-B21 1 10 BLB2*21
B2-B4-B15-B19-B21 1 10 BLB2*21

2 10 BLB2*21
B4-B12-B21 1 6 BLB2*04 1 false positive
B4-B14-B15-B19-B21 2 10 BLB2*21

b. Naïve primers dataset (BLB MHC Class II)
B12-B14-B15-B21 1 5 BLB2*12 or *19

2 5 BLB2*12 or *19
B14-B15-B19-B21 1 8 BLB2*12 or *19
B2-B12-B14-B15 1 6 BLB2*12 or *19

2 6 BLB2*12 or *19
B2-B12-B14-B15-B19-B21 1 11 BLB1*14
B2-B14-B15-B19-B21 1 10 BLB2*12 or *19
B2-B4-B12-B14-B15 1 10

BLB2*12 or *19
2 10

BLB2*12 or *19
B2-B4-B12-B14-B15-B19 1 11 BLB1*14
B2-B4-B12-B14-B15-B19-B21 1 13 BLB1*14
B2-B4-B12-B14-B15-B21 1 12 BLB2*12 or *19
B2-B4-B12-B14-B19-B21 1 11 BLB1*14
B2-B4-B14-B15-B19-B21 1 12 BLB2*12 or *19
B4-B12-B14-B15 1 8 BLB2*12 or *19

2 8 BLB2*12 or *19
B4-B14-B15-B19-B21 1 10 BLB2*12 or *19
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Table S1:  The chicken MHC  B complex haplotypes and combined

haplotypes which formed experimental genotypes with varying copy

number variation (CNV).

Combined haplotypes Number of alleles
B2 2
B4 2
B12 2
B14 2
B15 2
B19 2
B21 2
B2-B4 4
B2-B12 4
B4-B12 4
B12-B14 4
B12-B21 4
B14-B15 4
B19-B21 4
B2-B4-B19 6
B2-B14-B19 6
B2-B15-B19 6
B4-B12-B21 6
B4-B14-B19 6
B12-B14-B21 6
B15-B19-B21 6
B2-B4-B12-B14 8
B2-B12-B14-B15 8
B2-B14-B19-B21 8
B4-B12-B14-B15 8
B4-B15-B19-B21 8
B12-B14-B15-B21 8
B14-B15-B19-B21 8
B2-B4-B12-B14-B15 10
B2-B4-B12-B14-B21 10
B2-B4-B12-B15-B21 10
B2-B4-B14-B15-B21 10
B2-B4-B15-B19-B21 10
B2-B14-B15-B19-B21 10
B4-B14-B15-B19-B21 10
B2-B4-B12-B14-B15-B19 11
B2-B4-B12-B14-B15-B21 12
B2-B4-B12-B14-B19-B21 11
B2-B4-B12-B15-B19-B21 11
B2-B4-B14-B15-B19-B21 12
B2-B12-B14-B15-B19-B21 11
B4-B12-B14-B15-B19-B21 11
B2-B4-B12-B14-B15-B19-B21 13
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