Comparison of the predictive values of diagnostic tests subject to a case-control sampling with application to the diagnosis of Human African Trypanosomiasis José Antonio Roldán-Nofuentes^{1*}, Saad Bouh Sidaty-Regad² ¹Department of Statistics, School of Medicine, University of Granada, Spain ²Department of Public Health and Epidemiology, School of Medicine, University of

7

Nouakchott, Mauritania

8 *Corresponding author

9 Email: jaroldan@ugr.es

10

Abstract. Case-control sampling to compare the accuracy of two binary diagnostic tests is 11 12 frequent in clinical practice. This type of sampling consists of applying the two diagnostic tests to all of the individuals in a sample of those who have the disease and in another sample 13 of those who do not have the disease. In this sampling, the sensitivities are compared from the 14 case sample applying the McNemar's test, and the specificities from the control sample. Other 15 parameters of binary tests are the positive and negative predictive values. The predictive 16 17 values of a diagnostic test represent the clinical accuracy of a binary diagnostic test when it is applied to the individuals in a population with a determined disease prevalence. This article 18 studies the comparison of the predictive values of two diagnostic tests subject to a case-19 20 control sampling. A global hypothesis test, based on the chi-square distribution, is proposed to compare the predictive values simultaneously. The comparison of the predictive values is also 21 studied individually. The hypothesis tests studied require knowledge of the disease 22 prevalence. Simulation experiments were carried out to study the type I errors and the powers 23 of the hypothesis tests proposed, as well as to study the effect of a misspecification of the 24

prevalence on the asymptotic behavior of the hypothesis tests and on the estimators of the predictive values. The results obtained were applied to a real example on the diagnosis of the Human African Trypanosomiasis. The model proposed was extended to the situation in which there are more than two diagnostic tests.

Keywords: Case-control sampling, Diagnostic test, Human African Trypanosomiasis,
Predictive values.

31

32 **1. Introduction**

The main parameters to assess and compare the accuracy of binary diagnostic tests (BDTs) 33 are sensitivity and specificity. The sensitivity (Se) is the probability of the result of the BDT 34 being positive when the individual has the disease and the specificity (Sp) is the probability of 35 the result of the BDT being negative when the individual does not have the disease. Other 36 parameters that are used to assess and compare two BDTs are the predictive values (PVs). 37 The positive predictive value (PPV) is the probability of an individual having the disease 38 when the result of the BDT is positive, and the negative predictive value (NPV) is the 39 probability of an individual not having the disease when the result of the BDT is negative. 40 The PVs represent the accuracy of the diagnostic test when it is applied to a cohort of 41 individuals, and they are measures of the clinical accuracy of the BDT. The PVs depend on 42 the Se and the Sp of the BDT and on the disease prevalence (p), and are easily calculated 43 applying Bayes' Theorem i.e. 44

45
$$PPV = \frac{p \times Se}{p \times Se + (1-p) \times (1-Sp)} \text{ and } NPV = \frac{(1-p) \times Sp}{p \times (1-Se) + (1-p) \times Sp}.$$
 (1)

Whereas the Se and the Sp quantify how well the BDT reflects the true disease status (presentor absent), the PVs quantify the clinical value of the BDT, since both the individual and the

clinician are more interested in knowing how probable it is to have the disease given a BDTresult.

The comparison of the performance of two binary diagnostic tests is a topic of special 50 importance in the study of statistical methods for the diagnosis of diseases. This comparison 51 can be made through a cross-sectional sampling or a case-control sampling. Cross-sectional 52 sampling consists of applying the two BDTs and the gold standard to all of the individuals in 53 a single sample. Case-control sampling consists of applying the two BDTs to all of the 54 individuals in two samples, one made up of individuals who have the disease (case sample) 55 and another made up of individuals who do not have the disease (control sample). The 56 57 advantages and disadvantages of case-control sampling over the cross-sectional can be seen in the book by Pepe (2003). Summarizing, case-control sampling has some advantages over 58 cross-sectional: a) case-control design is more efficient in terms of sample size requirements. 59 60 b) case-control studies allow for the exploration of subject-related characteristics of the test. Nevertheless, the case-control design has the disadvantage is that by using it we cannot 61 estimate the prevalence of the disease. 62

The comparison of the sensitivities and the specificities of two BDTs subject to crosssectional sampling or subject to case-control sampling is made applying the exact comparison test of two paired binomial proportions or McNemar's test (the asymptotic version of the exact test).

In cross-sectional sampling, the comparison of PVs has been the subject of several studies. Bennett (1972, 1985), Leisenring et al (2000), Wang et al (2006) and Kosinski (2013) studied hypothesis tests to independently compare the PPVs and the NPVs of two BDTs. Moskowitz and Pepe (2006) studied the estimation of the PVs through a confidence region. Roldán-Nofuentes et al (2012) studied the joint comparison of the PPVs and NPVs of two BDTs, and

proposed a global hypothesis test based on the chi-square distribution to simultaneouslycompare the PVs of two BDTs.

In a case-control sampling, Mercaldo et al (2007) have studied the estimation of the PVs of 74 a BDT, assuming that the disease prevalence is known. In this article, we extended the study 75 of Mercaldo et al to the case of two BDTs, studying the comparison of the PVs of the two 76 BDTs subject to a case-control sampling. Subject to a case-control sampling, the two BDTs 77 are applied to all of the individual in two samples, one of n_1 individuals who have the disease 78 (case sample) and another with n_2 individuals who do not have the disease (control sample). 79 In this sampling, the sample sizes n_1 and n_0 are set by the researcher. The sample of 80 individuals that have the disease is extracted from a population of individuals that have the 81 disease (e.g. registers of diseases), and the control sample is extracted from a population of 82 individuals who are known not to have the disease. As the PVs depend on the disease 83 prevalence and subject to a case-control sampling the quotient $n_1/(n_1 + n_2)$ is not an estimator 84 85 of the prevalence, in order to estimate and compare the PVs subject to this sampling it is necessary to know the prevalence or an estimate of the prevalence. This estimation can be 86 obtained from health surveys or from previous studies. Consequently, the methods of 87 88 comparison of the PVs subject to a cross-sectional sampling cannot be applied when there is a case-control sampling. In Section 2, we study hypothesis tests to jointly and individually 89 compare the PVs of two BDTs subject to case-control sampling. In Section 3, simulation 90 experiments are carried out to study the type I errors and the powers of the hypothesis tests 91 proposed in Section 2. In Section 4, we study the effect of the misspecification of the 92 prevalence on the asymptotic behavior of the hypothesis tests proposed in Section 2 and on 93 the estimators of the PVs. In Section 5, the results are applied to a real example of the 94 diagnosis of Human African Trypanosomiasis. In Section 6, the model proposed in Section 2 95

96 was extended to the situation in which we compare the PVs of more than two BDTs, and in97 Section 7 the results are discussed.

98

99 2. The model

Let us consider two BDTs, Test 1 and Test 2, which are applied to all of the individuals in two samples, one of n_1 individuals who have the disease (case sample) and another of n_2 individuals who do not have it (control sample). Let T_1 and T_2 be two binary variables that model the results of each BDT, in such a way that $T_i = 1$ when the result of the corresponding BDT is positive and $T_i = 0$ when it is negative. In Table 1, we can see the probabilities associated to the application of both BDTs to both types of individuals (cases and controls), as well as the frequencies observed.

107

1	no
	ບລ
_	~~

Table 1. Probabilities and observed frequencies subject to case-control sampling.

	Probabilities										
	Ca	ase			Cor	ntrol					
_	$T_2 = 1$	$T_2 = 0$	Total			$T_2 = 1$	$T_2 = 0$	Total			
$T_1 = 1$	ξ_{111}	ξ_{110}	Se ₁		$T_1 = 1$	ξ ₂₁₁	ξ_{210}	$1-Sp_1$			
$T_1 = 0$	ξ_{101}	ξ_{100}	$1-Se_1$		$T_1 = 0$	ξ_{201}	ξ_{200}	Sp_1			
Total	Se ₂	$1 - Se_2$	1	-	Total	$1-Sp_2$	Sp_2	1			
			Obser	ved frequ	uencies						
	Ca	ase		_		Cor	ntrol				
	$T_2 = 1$	$T_2 = 0$	Total			$T_2 = 1$	$T_2 = 0$	Total			
$T_1 = 1$	<i>n</i> ₁₁₁	<i>n</i> ₁₁₀	n_{11}		$T_1 = 1$	<i>n</i> ₂₁₁	<i>n</i> ₂₁₀	$n_{21\square}$			
$T_1 = 0$	<i>n</i> ₁₀₁	<i>n</i> ₁₀₀	$n_{10\Box}$		$T_1 = 0$	<i>n</i> ₂₀₁	<i>n</i> ₂₀₀	<i>n</i> _{20□}			
Total	$n_{1\square}$	$n_{1\square 0}$	<i>n</i> ₁		Total	$n_{2\square}$	$n_{2\square 0}$	<i>n</i> ₂			

109

110 Using the conditional dependence model of Vacek (1985), the probabilities given in the table

111 are written as

112
$$\xi_{1jk} = Se_1^j \left(1 - Se_1\right)^{1-j} Se_2^k \left(1 - Se_2\right)^{1-k} + \delta_{jk}\varepsilon^+$$
(2)

113 and

114

$$\xi_{2jk} = Sp_1^{1-j} \left(1 - Sp_1\right)^j Sp_2^{1-k} \left(1 - Sp_2\right)^k + \delta_{jk} \varepsilon^-,$$
(3)

115 with j, k = 0, 1. The parameter ε^+ (ε^-) is the covariance between the two BDTs in cases 116 (controls), where $\delta_{jk} = 1$ if j = k and $\delta_{jk} = -1$ if $j \neq k$, and it is verified that

117
$$0 \le \varepsilon^+ \le \operatorname{Min}\left\{Se_1(1-Se_2), Se_2(1-Se_1)\right\}$$
 and $0 \le \varepsilon^- \le \operatorname{Min}\left\{Sp_1(1-Sp_2), Sp_2(1-Sp_1)\right\}$. If

118 $\varepsilon^+ = \varepsilon^- = 0$ then the two BDTs are conditionally independent on the disease status. In 119 practice, the assumption of the conditional independence is not realistic, and therefore $\varepsilon^+ > 0$ 120 and/or $\varepsilon^- > 0$. In terms of the probabilities ξ_{iik} , the sensitivities are written as

121
$$Se_1 = \xi_{111} + \xi_{110}$$
 and $Se_2 = \xi_{111} + \xi_{101}$

122 and the specificities as

123
$$Sp_1 = \xi_{201} + \xi_{200}$$
 and $Sp_2 = \xi_{210} + \xi_{200}$

124 From the case (control) samples Se_1 and Se_2 (Sp_1 and Sp_2) are estimated i.e.

125
$$\hat{S}e_1 = \frac{n_{111}}{n_1}$$
 and $\hat{S}e_2 = \frac{n_{111}}{n_1}$

126 and

127
$$\hat{S}p_1 = \frac{n_{200}}{n_2}$$
 and $\hat{S}p_2 = \frac{n_{200}}{n_1}$,

128 and the estimators of their variances are $\hat{V}ar(\hat{S}e_1) = \hat{S}e_1(1-\hat{S}e_1)/n_1$, 129 $\hat{V}ar(\hat{S}e_2) = \hat{S}e_2(1-\hat{S}e_2)/n_1$, $\hat{V}ar(\hat{S}p_1) = \hat{S}p_1(1-\hat{S}p_1)/n_2$ and $\hat{V}ar(\hat{S}p_2) = \hat{S}p_2(1-\hat{S}p_2)/n_2$. 130 Therefore, the sensitivities and the specificities are estimated as proportions of marginal

totals. In this way, in the case sample we are interested in the marginal frequencies n_{110} and n_{10} , and therefore these frequencies are the product of a type I bivariate binomial distribution (Kocherlakota and Kocherlakota, 1992). In an analogous way, from the control sample, the

marginal frequencies n_{200} and n_{210} are the product of a type I bivariate binomial distribution. In the individuals with the disease, the type I bivariate binomial distribution is characterized (Kocherlakota and Kocherlakota, 1992) by the two probabilities Se_1 and Se_2 and by the correlation coefficient (ρ^+) between T_1 and T_2 . In an analogous way, in the individuals who do not have the disease, the type I bivariate binomial distribution is characterized by Sp_1 , Sp_2 and the correlation coefficient (ρ^-) between T_1 and T_2 . In the individuals with the disease (cases), the correlation coefficient between the two BDTs is

141
$$\rho^{+} = \frac{\xi_{111} - Se_1 Se_2}{\sqrt{Se_1(1 - Se_1)Se_2(1 - Se_2)}} = \frac{\varepsilon^{+}}{\sqrt{Se_1(1 - Se_1)Se_2(1 - Se_2)}}, \quad (4)$$

and in the individuals who do not have the disease (controls), the correlation coefficientbetween the two BDTs is

144
$$\rho^{-} = \frac{\xi_{200} - Sp_1 Sp_2}{\sqrt{Sp_1(1 - Sp_1)Sp_2(1 - Sp_2)}} = \frac{\varepsilon^{-}}{\sqrt{Sp_1(1 - Sp_1)Sp_2(1 - Sp_2)}}.$$
 (5)

145 It is easy to check that

146
$$\hat{\varepsilon}^+ = \frac{n_1 n_{111} - n_{11\square} n_{1\square}}{n_1^2}$$
 and $\hat{\varepsilon}^- = \frac{n_2 n_{20\square} - n_{20\square} n_{2\square}}{n_2^2}$,

147
$$\hat{C}ov(\hat{S}e_1, \hat{S}e_2) = (\hat{\xi}_{111} - \hat{S}e_1\hat{S}e_2)/n_1 = \hat{\varepsilon}^+/n_1$$

148 and

149
$$\hat{C}ov(\hat{S}p_1,\hat{S}p_2) = (\hat{\xi}_{200} - \hat{S}p_1\hat{S}p_2)/n_2 = \hat{\varepsilon}^-/n_2$$

All of the other covariances are zero, since the two samples are independent. The estimators of ρ^+ and ρ^- are

152
$$\hat{\rho}^{+} = \frac{n_1 n_{111} - n_{11\Box} n_{1\Box}}{\sqrt{n_{11\Box} (n_1 - n_{1\Box}) n_{1\Box} (n_1 - n_{1\Box})}} \text{ and } \hat{\rho}^{-} = \frac{n_2 n_{200} - n_{20\Box} n_{2\Box}}{\sqrt{n_{20\Box} (n_2 - n_{20\Box}) n_{2\Box} (n_2 - n_{2\Box})}}$$

153 Assuming that prevalence p (or an estimation) is known, the estimators of the predictive

154 values are

155
$$\hat{P}PV_1 = \frac{pn_2n_{11\square}}{pn_2n_{11\square} + qn_1(n_2 - n_{20\square})}$$
 and $\hat{N}PV_1 = \frac{qn_1n_{20\square}}{pn_2(n_1 - n_{11\square}) + qn_1n_{20\square}}$ (6)

156 for Test 1, and

157
$$\hat{P}PV_2 = \frac{pn_2n_{1\square}}{pn_2n_{1\square} + qn_1(n_2 - n_{2\square})}$$
 and $\hat{N}PV_2 = \frac{qn_1n_{2\square}}{pn_2(n_1 - n_{1\square}) + qn_1n_{2\square}}$ (7)

158 for Test 2, where q = 1 - p. Let the variance-covariance matrixes be defined as

159
$$\Sigma_{\hat{s}e} = \begin{pmatrix} Var(\hat{s}e_1) & Cov(\hat{s}e_1, \hat{s}e_2) \\ Cov(\hat{s}e_1, \hat{s}e_2) & Var(\hat{s}e_2) \end{pmatrix}$$
(8)

160 and

161
$$\Sigma_{\hat{s}p} = \begin{pmatrix} Var(\hat{s}p_1) & Cov(\hat{s}p_1, \hat{s}p_2) \\ Cov(\hat{s}p_1, \hat{s}p_2) & Var(\hat{s}p_2) \end{pmatrix}.$$
(9)

162 Let $\boldsymbol{\theta} = (Se_1, Se_2, Sp_1, Sp_2)^T$ be a vector whose components are the sensitivities and the 163 specificities, and let $\boldsymbol{\omega} = (PPV_1, PPV_2, NPV_1, NPV_2)^T$ be a vector whose components are the 164 predictive values. The variance-covariance matrix of $\hat{\boldsymbol{\theta}}$ is

165
$$\Sigma_{\hat{\theta}} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \Sigma_{\hat{s}e} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \Sigma_{\hat{s}p}, \qquad (10)$$

where \otimes is the product of Kronecker. Applying the delta method, the matrix of variancestor covariances of $\hat{\mathbf{\omega}}$ is

168
$$\Sigma_{\hat{\boldsymbol{\omega}}} = \left(\frac{\partial \boldsymbol{\omega}}{\partial \boldsymbol{\theta}}\right) \Sigma_{\hat{\boldsymbol{\theta}}} \left(\frac{\partial \boldsymbol{\omega}}{\partial \boldsymbol{\theta}}\right)^{T}.$$
 (11)

In Appendix A, we can see the expressions of the variances-covariances of the PVs. Then, westudy the joint comparison and the individual comparison of the PVs of the two BDTs. In

both cases, and as has been explained in Section 1, it is assumed that there is an estimation ofthe disease prevalence based on a health survey or other studies.

173

174 2.1. Global hypothesis test

The PVs of each BDT depend on the same parameters, the sensitivity and the specificity of the test and disease prevalence, and therefore they are parameters that depend on each other. Consequently, the PVs of the two BDTs can be compared simultaneously. The global hypothesis test to simultaneously compare the PVs of the two BDTs is

179
$$H_0: PPV_1 = PPV_2 \text{ and } NPV_1 = NPV_2$$
$$H_1: \text{ at least one equality is not true,}$$

180 which is equivalent to the hypothesis test

181
$$H_0: \mathbf{A}\boldsymbol{\omega} = \mathbf{0} \text{ vs } H_1: \mathbf{A}\boldsymbol{\omega} \neq \mathbf{0}, \qquad (12)$$

where **A** is a complete range design matrix and a dimension 2×4 , i.e.

183
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & -1 \end{pmatrix}$$

As the vector $\hat{\boldsymbol{\omega}}$ is distributed asymptotically according to a multivariate normal distribution, i.e. $\sqrt{n_1 + n_2} (\hat{\boldsymbol{\omega}} - \boldsymbol{\omega}) \xrightarrow[n_1 + n_2 \to \infty]{} N(\boldsymbol{0}, \boldsymbol{\Sigma}_{\boldsymbol{\omega}})$, then the statistic for the global hypothesis test (12) is

187
$$Q^{2} = \hat{\boldsymbol{\omega}}^{T} \mathbf{A}^{T} \left(\mathbf{A} \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\omega}}} \mathbf{A}^{T} \right)^{-1} \mathbf{A} \hat{\boldsymbol{\omega}} , \qquad (13)$$

188 which is distributed asymptotically according to Hotelling's *T*-squared distribution with a 189 dimension 2 and $n_1 + n_2$ degrees of freedom, where 2 is the dimension of the vector $\mathbf{A}\hat{\boldsymbol{\omega}}$. 190 When $n_1 + n_2$ is large, the statistic Q^2 is distributed according to a central chi-square 191 distribution with 2 degrees of freedom when the null hypothesis is true.

193 2.2. Individual hypothesis tests

194 The hypothesis test to individually compare the two PPVs (NPVs) is

195
$$H_0: PV_1 = PV_2 \text{ vs } H_0: PV_1 \neq PV_2$$

196 where PV is PPV or NPV. Based on the asymptotic normality of the estimators, the statistic

197 for this hypothesis test is

198
$$z = \frac{\left|\hat{P}V_{1} - \hat{P}V_{2}\right|}{\sqrt{\hat{V}ar(\hat{P}V_{1}) + \hat{V}ar(\hat{P}V_{2}) - 2\hat{C}ov(\hat{P}V_{1}, \hat{P}V_{2})}},$$
(14)

which is distributed asymptotically according to a normal standard distribution, and where thevariances-covariances is obtained from the equation (11).

201

202 *2.3. Alternative methods to the global test*

The global hypothesis test (12) simultaneously compares the PPVs and the NPVs of the two 203 204 BDTs. Some alternative methods to this global hypothesis test, based on the individual hypothesis tests, are: 1) Testing the hypotheses $H_0: PPV_1 = PPV_2$ and $H_0: NPV_1 = NPV_2$, 205 each one to an error α ; 2) Testing the hypotheses H_0 : $PPV_1 = PPV_2$ and H_0 : $NPV_1 = NPV_2$, 206 and applying a multiple comparison method such as Bonferroni's method (1936) or Holm's 207 method (1979), which are methods that are very easy to apply based on the p-values. 208 Bonferroni's method consists of solving each individual hypothesis test to an error $\alpha/2$; and 209 Holm's method is a step-down method which is based on Bonferroni's method but is more 210 conservative. In Appendix B, Holm's method is summarized. 211

212

3. Simulation experiments

Simulation experiments were carried out to study the type I errors and the powers of the four methods proposed to solve the global hypothesis test: the hypothesis test based on the chi-

square (equation (13)), the individual hypothesis tests each one to an error α , and the individual hypothesis tests applying Bonferroni's method and Holm's method. We have also studied the effect of a misspecification of the prevalence on the asymptotic behaviour of the global hypothesis test and on the estimators of the PVs.

The experiments were designed setting the values of the PVs. For each BDT, we took as PVs the values {0.70,0.75,...,0.90,0.95}, and as disease prevalence we took the values 10%, 25% and 50%. Based on the PVs and the prevalence, the Se and the Sp of each BDT were calculated from the equations (1) and (2), only considering those cases in which the solutions are between 0 and 1. As values of the correlation coefficients ρ^+ and ρ^- we took low values (25% of the maximum value), intermediate ones (50% of the maximum value) and high ones (75% of the maximum value), and the maximum value of each correlation coefficient is:

227
$$\max(\rho^{+}) = \frac{\min\{Se_{1}(1-Se_{2}), (1-Se_{1})Se_{2}\}}{\sqrt{Se_{1}(1-Se_{1})Se_{2}(1-Se_{2})}} \text{ and } \max(\rho^{-}) = \frac{\min\{Sp_{1}(1-Sp_{2}), (1-Sp_{1})Sp_{2}\}}{\sqrt{Sp_{1}(1-Sp_{1})Sp_{2}(1-Sp_{2})}}.$$

As sample sizes, we took the values $n_i = \{50, 75, 100, 200, 500\}$. The simulation experiments were carried out with R, using the bindata package to generate the samples of each type I bivariate binomial distribution.

Regarding the random samples, these were generated in the following way. Firstly, once 231 the values of the PVs and of the prevalence were set, we calculated the sensitivities and the 232 specificities and maximum values of the coefficients ρ^+ and ρ^- . We then generated 10,000 233 samples with a type I bivariate binomial distribution with a sample size n_1 , probabilities Se_1 234 and Se₂ and correlation coefficient ρ^+ , and another 10,000 samples with a type I bivariate 235 binomial distribution with a sample size n_0 , probabilities Sp_1 and Sp_2 and correlation 236 coefficient ρ^- . In this way, we obtained the marginal frequencies n_{110} and n_{10} (n_{200} and n_{200}) 237 of each one of the 10, 000 case (control) samples. The rest of the marginal frequencies were 238

easily calculated: $n_{10\square} = n_1 - n_{11\square}$, $n_{1\square} = n_1 - n_{1\square}$, $n_{21\square} = n_2 - n_{20\square}$ and $n_{2\square} = n_2 - n_{2\square}$. Then and in 239 order to construct the 2×2 table of each case simple, we generated a random valor n_{111} of a 240 doubly truncated binomial distribution of parameters n_1 and $\xi_{111} = Se_1Se_2 + \varepsilon^+$ with 241 $n_{11\square} + n_{1\square} - n_1 \le n_{111} \le Min\{n_{11\square}, n_{11\square}\}$. This is necessary so that the sum of the frequencies leads 242 to the marginal totals randomly generated through the type I bivariate binomial distribution. 243 In the same way, in order to construct the 2×2 table of each control sample, we generated a 244 random value n_{200} of a doubly truncated binomial distribution of parameters n_2 and 245 $\xi_{200} = Sp_1Sp_2 + \varepsilon^-$ with $n_{200} + n_{200} - n_2 \le n_{200} \le Min\{n_{200}, n_{200}\}$. For each one of the 10,000 case 246 (control) samples, once we have generated the values $n_{11\square}$, $n_{1\square}$ and n_{111} ($n_{20\square}$, $n_{2\square0}$ and n_{200}) 247 it is easy to construct the complete 2×2 table. Thus, $n_{110} = n_1 - n_{110}$, $n_{101} = n_{101} - n_{111}$ and 248 $n_{100} = n_{101} - n_{101}$ for the case samples, and $n_{201} = n_{201} - n_{200}$, $n_{210} = n_{210} - n_{200}$ 249 and $n_{211} = n_{210} - n_{210}$. For the experiments, the error $\alpha = 5\%$ was set. Moreover, all of the samples 250 were generated in such a way that in all of them the parameters and the variances-covariances 251 can be estimated. 252

253

254 *3.1. Type I errors and powers*

In Tables 2 and 3, we can see some results obtained for the type I errors of the global test and of the alternative methods proposed in Section 2.3. In these tables, we can only see the results for the global test, the individual comparisons with $\alpha = 5\%$ and with Bonferroni's method. The results obtained with Holm's method are not shown as they are practically the same as those obtained with Bonferroni's method. From the results obtained we can draw the following conclusions. In general terms, the type I error of the global hypothesis test fluctuates around the error $\alpha = 5\%$, especially in the case of samples sized $n_i \ge 100$,

depending on the prevalence and the correlations between the two BDTs. For samples with smaller sizes $(n_i \le 75)$, the type I error of the global test is lower than the error $\alpha = 5\%$. The correlations between the two BDTs have an important effect on the type I error of the global test, with a decrease in the type I error when there is an increase in the correlation coefficients. Regarding the method based on the individual hypothesis tests $H_0: PPV_1 = PPV_2$ and $H_0: NPV_1 = NPV_2$ to an error $\alpha = 5\%$ each one of them, the type I error may clearly overwhelm the nominal error (a situation that we have considered when the type I error is greater than 6.5%), especially when the correlations are not high. Consequently, this method may lead to erroneous results (false significances) and, therefore, should not be used. As for solving the global test from the individual tests applying Bonferroni's (Holm's) method, the type I error has a very similar behaviour to that of the global hypothesis test.

	Table	2. Type	I errors fo	or PPV_1	$= PPV_2$	= 0.70 at	nd NPV	$T_1 = NPV_2$	$f_2 = 0.95$.				
	$Se_1 = 0.5385$, $Sp_1 = 0.9744$, $Se_2 = 0.5385$, $Sp_2 = 0.9744$												
	$0 \le ho^+ \le 1$, $0 \le ho^- \le 1$												
	<i>p</i> = 10%												
	$\rho^+ = 0.25 \ \rho^- = 0.25 \qquad \rho^+ = 0.50 \ \rho^- = 0.50 \qquad \rho^+ = 0.75 \ \rho^- = 0.75$												
n_1	<i>n</i> ₂	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.			
50	50	0.031	0.051	0.029	0.027	0.048	0.027	0.004	0.013	0.004			
50	75	0.029	0.059	0.029	0.025	0.051	0.026	0.004	0.017	0.005			
50	100	0.028	0.063	0.030	0.029	0.061	0.028	0.008	0.018	0.007			
75	75	0.023	0.061	0.026	0.031	0.056	0.028	0.015	0.034	0.017			
100	100	0.027	0.063	0.029	0.023	0.052	0.024	0.020	0.043	0.019			
200	200	0.044	0.086	0.045	0.032	0.063	0.031	0.025	0.050	0.026			
500	500	0.055	0.107	0.056	0.058	0.102	0.057	0.040	0.077	0.039			
		S	$e_1 = 0.8615$	$, Sp_1 = 0.$.8769, Se_2	= 0.8615,	$Sp_2 = 0.8$	769					
	$0 \le \rho^+ \le 1, \ 0 \le \rho^- \le 1$												
	p = 25%												
	$ \rho^+ = 0.25 \ \rho^- = 0.25 $ $ \rho^+ = 0.50 \ \rho^- = 0.50 $ $ \rho^+ = 0.75 \ \rho^- = 0.75 $												
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.			
50	50	0.048	0.094	0.046	0.018	0.047	0.018	0.001	0.007	0.002			
50	75	0.053	0.100	0.051	0.025	0.063	0.026	0.002	0.012	0.003			
50	100	0.053	0.106	0.057	0.034	0.076	0.032	0.008	0.023	0.008			
75	75	0.059	0.105	0.055	0.039	0.087	0.037	0.007	0.016	0.006			
100	100	0.059	0.117	0.059	0.056	0.102	0.054	0.011	0.040	0.010			
200	200	0.058	0.099	0.057	0.048	0.094	0.049	0.044	0.090	0.042			
500	500	0.052	0.098	0.053	0.051	0.101	0.052	0.049	0.090	0.048			
		S	$e_1 = 0.9692$	$, Sp_1 = 0.$.5846 , <i>Se</i> ₂	= 0.9692,	$Sp_2 = 0.5$	846					
				$0 \leq \mu$	$o^+ \le 1, 0 \le$	$\leq \rho^{-} \leq 1$							
					<i>p</i> = 50%	Ó							
		$ ho^{\scriptscriptstyle +}$ =	$0.25 \ \rho^{-} =$	0.25	$ ho^{\scriptscriptstyle +}$ =	$0.50 \ \rho^{-} =$	0.50	$ ho^{\scriptscriptstyle +}$ =	0.75 $\rho^{-} =$	0.75			
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.			
50	50	0.026	0.049	0.026	0.025	0.061	0.026	0.006	0.017	0.006			
50	75	0.020	0.049	0.023	0.019	0.052	0.024	0.007	0.028	0.010			
50	100	0.019	0.043	0.023	0.016	0.045	0.019	0.010	0.034	0.014			
75	75	0.024	0.065	0.027	0.020	0.051	0.027	0.012	0.038	0.017			
100	100	0.028	0.066	0.029	0.021	0.052	0.025	0.012	0.042	0.019			
200	200	0.047	0.088	0.044	0.034	0.074	0.032	0.021	0.058	0.026			
500	500	0.052	0.099	0.052	0.050	0.097	0.049	0.037	0.077	0.034			

Global: Global hypothesis test based on the chi-square distribution. $\alpha = 5\%$: Individual hypothesis tests each one to an error $\alpha = 5\%$.

Bonf.: Bonferroni's method.

	Table	3. Type	I errors fo	or PPV_1	$= PPV_2$	= 0.85 ar	nd NPV	$V_1 = NPV_2$	$f_2 = 0.95$.			
	$Se_1 = 0.5312$, $Sp_1 = 0.9896$, $Se_2 = 0.5312$, $Sp_2 = 0.9896$											
				$0 \le \mu$	$o^+ \le 1, 0 \le$	$\leq \rho^{-} \leq 1$						
					<i>p</i> = 10%)						
		$ ho^{\scriptscriptstyle +}$ =	0.25 $\rho^{-} =$	$0.25 \ \rho^- = 0.25 \qquad \rho^+ = 0.50 \ \rho^- = 0.50 \qquad \rho^+ = 0.75 \ \rho^- = 0.50 \qquad \rho^+ = 0.75 \ \rho^- = 0.50 \qquad \rho^+ = 0.75 \ \rho^- = 0.50 \ \rho^- = 0.5$								
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.		
50	50	0.033	0.056	0.034	0.020	0.051	0.024	0.004	0.014	0.004		
50	75	0.024	0.049	0.024	0.026	0.050	0.025	0.005	0.019	0.006		
50	100	0.032	0.057	0.033	0.030	0.056	0.030	0.004	0.016	0.004		
75	75	0.034	0.054	0.033	0.025	0.052	0.026	0.014	0.036	0.015		
100	100	0.027	0.055	0.026	0.027	0.055	0.026	0.017	0.041	0.017		
200	200	0.033	0.059	0.031	0.025	0.050	0.024	0.022	0.055	0.021		
500	500	0.046	0.087	0.049	0.031	0.068	0.033	0.018	0.050	0.024		
			$Se_1 = 0.$	$85, Sp_1 =$	$= 0.95$, Se_2	= 0.85 , Sp	$p_2 = 0.95$					
				$0 \le \mu$	$o^+ \le 1, 0 \le$	$\leq \rho^{-} \leq 1$						
					<i>p</i> = 25%	ý O						
		$ ho^{\scriptscriptstyle +}$ =	$0.25 \ \rho^{-} =$	0.25	$ ho^{\scriptscriptstyle +}$ =	0.50 $\rho^{-} =$	0.50	$ ho^{\scriptscriptstyle +}$ =	0.75 $\rho^{-} =$	0.75		
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.		
50	50	0.023	0.058	0.022	0.005	0.030	0.007	0.001	0.005	0.001		
50	75	0.037	0.077	0.036	0.014	0.039	0.015	0.001	0.008	0.001		
50	100	0.049	0.092	0.048	0.022	0.056	0.022	0.001	0.007	0.002		
75	75	0.042	0.087	0.041	0.025	0.055	0.025	0.004	0.014	0.004		
100	100	0.048	0.095	0.043	0.028	0.066	0.027	0.005	0.025	0.005		
200	200	0.033	0.059	0.031	0.025	0.050	0.024	0.022	0.055	0.021		
500	500	0.048	0.097	0.046	0.056	0.101	0.051	0.050	0.099	0.049		
		S	$e_1 = 0.9562$	$, Sp_1 = 0.$.8312 , <i>Se</i> ₂	= 0.9562,	$Sp_2 = 0.8$	3312				
				$0 \le \mu$	$o^+ \le 1, 0 \le$	$\leq \rho^{-} \leq 1$						
					<i>p</i> = 50%	, D						
		$ ho^+=$	$0.25 \ \rho^{-} =$	0.25	$\rho^+ =$	$0.50 \ \rho^{-} =$	0.50	$\rho^+ =$	0.75 $\rho^{-} =$	0.75		
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.		
50	50	0.031	0.072	0.031	0.014	0.041	0.015	0.001	0.007	0.001		
50	75	0.032	0.069	0.033	0.022	0.049	0.022	0.005	0.015	0.005		
50	100	0.025	0.057	0.026	0.025	0.064	0.026	0.008	0.025	0.008		
75	75	0.038	0.081	0.037	0.027	0.054	0.025	0.006	0.017	0.006		
100	100	0.039	0.084	0.038	0.031	0.073	0.030	0.008	0.030	0.009		
200	200	0.033	0.059	0.031	0.025	0.050	0.024	0.022	0.055	0.021		
500	500	0.051	0.099	0.049	0.050	0.097	0.047	0.043	0.087	0.042		

Global: Global hypothesis test based on the chi-square distribution. $\alpha = 5\%$: Individual hypothesis tests each one to an error $\alpha = 5\%$.

Bonf.: Bonferroni's method.

Regarding the power of the hypothesis tests, in Tables 4 and 5 we can see some of the 302 303 results obtained for the global test and other alternative methods (Section 2.3). Neither can we see in these Tables the results obtained applying Holm's method as they are practically the 304 same as those obtained with Bonferroni's method. From the results, the following conclusions 305 306 are obtained. The disease prevalence has an important effect on the power of each one of the methods to solve the global test, and the power increases with an increase in the prevalence. 307 Regarding the correlations ρ^+ and ρ^- , these do not have a clear effect on the power, and the 308 power increases sometimes and decreases other times when the correlations increase. In very 309 general terms, when the prevalence is relatively small (p = 10%) we need large samples 310 $(n_i > 500)$ so that the power of the global hypothesis test (equation (13)) is greater than 80%; 311 for a prevalence of 25% with sample sizes $n_i \ge 200$ we obtain a power greater than 80%; and 312 for a very large prevalence (p = 50%) with sample sizes $n_i \ge 50$ we obtain a very higher 313 power, greater than 80%-90%, depending on the difference between the PVs. The power of 314 the method based on the individual hypothesis tests to an error $\alpha = 5\%$ is greater than that of 315 the global test based on the chi-square distribution due to the fact that its type I error is also 316 greater. Regarding the hypothesis tests based on the individual tests with Bonferroni's method 317 and Holm's method, their corresponding power is practically the same, and is also very 318 similar to the power of the global test based on the chi-square distribution. 319

320

- 321
- 322

323

324

Та	able 4. I	Powers f	or $PPV_1 =$	= 0.75 ,	$NPV_1 = 0$).95 , <i>PP</i>	$V_2 = 0.6$	0 and N	$PV_2 = 0.9$	95.
		S	$e_1 = 0.5357$	$, Sp_1 = 0.$	9802 , <i>Se</i> ₂	= 0.5455 ,	$Sp_2 = 0.9$	596		
			0	$\leq \rho^+ \leq 0.$.9805 , 0≤	$\leq \rho^- \leq 0.692$	33			
					<i>p</i> = 10%)				
		$ ho^{\scriptscriptstyle +}$ =	$0.25 \ \rho^{-} =$	0.17	$ ho^{\scriptscriptstyle +}$ =	0.49 $\rho^{-} =$	0.35	$ ho^{\scriptscriptstyle +}$ =	0.74 $\rho^{-} =$	0.52
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.
50	50	0.025	0.056	0.031	0.023	0.049	0.024	0.005	0.019	0.007
50	75	0.037	0.077	0.036	0.029	0.063	0.030	0.010	0.030	0.011
50	100	0.054	0.103	0.052	0.042	0.084	0.038	0.019	0.046	0.016
75	75	0.038	0.078	0.038	0.032	0.066	0.033	0.018	0.042	0.018
100	100	0.053	0.098	0.047	0.044	0.081	0.037	0.031	0.063	0.026
200	200	0.199	0.276	0.180	0.208	0.286	0.181	0.168	0.252	0.138
500	500	0.495	0.575	0.462	0.591	0.668	0.556	0.720	0.785	0.678
		S	$e_1 = 0.8571$	$, Sp_1 = 0.$	9048, Se_2	= 0.8727,	$Sp_2 = 0.8$	061		
			. 0	$\leq \rho^+ \leq 0.$	9354,0≤	$\rho^{-} \le 0.66$	14			
				,	p = 25%	,)				
		ρ^+ =	$= 0.23 \ \rho^{-} =$	0.17	$ ho^+=$	0.47 $\rho^{-} =$	0.33	$ ho^+=$	0.70 $\rho^{-} =$	0.50
<i>n</i> ₁	<i>n</i> ₂	$\rho^+ =$ Global	$\frac{10.23 \ \rho^-}{\alpha = 5\%}$	0.17 Bonf.	$\rho^+ =$ Global	$\frac{0.47 \ \rho^-}{\alpha = 5\%}$	0.33 Bonf.	$\rho^+ =$ Global	$\frac{0.70 \ \rho^-}{\alpha = 5\%}$	0.50 Bonf.
n_1	n_2	$\rho^+ =$ Global 0.259	$\alpha = 5\%$	0.17 Bonf. 0.230	$\rho^+ =$ Global 0 254	$0.47 \ \rho^{-} =$ $\alpha = 5\%$ 0.345	0.33 Bonf. 0.230	$\rho^+ =$ Global 0 195	$0.70 \ \rho^{-} =$ $\alpha = 5\%$ 0.334	0.50 Bonf. 0.210
<i>n</i> ₁ 50 50	<i>n</i> ₂ 50 75	$ \rho^{+} = $ Global 0.259 0.409	$\frac{10.23 \ \rho^{-} =}{\alpha = 5\%}$ $\frac{10.23 \ \rho^{-} =}{0.335 \ 0.496}$	0.17 Bonf. 0.230 0.378	$ \rho^{+} = $ Global 0.254 0.454	$\begin{array}{r} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.345 \\ 0.543 \end{array}$	0.33 Bonf. 0.230 0.424	$ \rho^{+} = $ Global 0.195 0.467	$\begin{array}{r} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \end{array}$	0.50 Bonf. 0.210 0.470
n_1 50 50 50	n_2 50 75 100	$ \rho^{+} = $ Global 0.259 0.409 0.505	$\frac{\alpha = 5\%}{0.335}$ 0.496 0.584	0.17 Bonf. 0.230 0.378 0.462	$ \rho^{+} = $ Global 0.254 0.454 0.598	$\begin{array}{r} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.345 \\ 0.543 \\ 0.677 \end{array}$	0.33 Bonf. 0.230 0.424 0.556	$ \rho^+ = $ Global 0.195 0.467 0.683	$\begin{array}{r} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \end{array}$	0.50 Bonf. 0.210 0.470 0.675
n_1 50 50 50 50 75	<i>n</i> ₂ 50 75 100 75	$ \rho^{+} = $ Global 0.259 0.409 0.505 0.416	$\frac{0.23 \ \rho^{-}}{\alpha = 5\%} = \frac{\alpha = 5\%}{0.335}$ $\frac{0.496}{0.584}$ 0.498	0.17 Bonf. 0.230 0.378 0.462 0.382	$ \rho^{+} = $ Global 0.254 0.454 0.598 0.469	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \end{array}$	0.33 Bonf. 0.230 0.424 0.556 0.436	$ \rho^+ = $ Global 0.195 0.467 0.683 0.501	$\begin{array}{r} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476
n_1 50 50 50 75 100	n_2 50 75 100 75 100	$\rho^+ =$ Global 0.259 0.409 0.505 0.416 0.528	$\frac{0.23 \ \rho^-}{0.335} = \frac{\alpha = 5\%}{0.335}$ $\frac{0.496}{0.584}$ $\frac{0.498}{0.606}$	0.17 Bonf. 0.230 0.378 0.462 0.382 0.488	$ \rho^{+} = $ Global 0.254 0.454 0.598 0.469 0.625	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \end{array}$	0.33 Bonf. 0.230 0.424 0.556 0.436 0.579	$ \rho^{+} = $ Global 0.195 0.467 0.683 0.501 0.718	$\begin{array}{r} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685
<i>n</i> ₁ 50 50 50 75 100 200	n_2 50 75 100 75 100 200	$ ho^+ =$ Global 0.259 0.409 0.505 0.416 0.528 0.822	$\begin{array}{r} 0.23 \rho^- = \\ \hline \alpha = 5\% \\ \hline 0.335 \\ 0.496 \\ 0.584 \\ 0.498 \\ 0.606 \\ 0.862 \end{array}$	0.17 Bonf. 0.230 0.378 0.462 0.382 0.488 0.790	$ ho^+ =$ Global 0.254 0.454 0.598 0.469 0.625 0.891	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \end{array}$	0.33 Bonf. 0.230 0.424 0.556 0.436 0.579 0.873	$ \rho^+ = $ Global 0.195 0.467 0.683 0.501 0.718 0.974	$\begin{array}{r} 0.70 \ \rho^- = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964
<i>n</i> ₁ 50 50 50 75 100 200 500	n_2 50 75 100 75 100 200 500	$ \rho^{+} = $ Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996	$\begin{array}{c} 0.23 \rho^- = \\ \hline \alpha = 5\% \\ \hline 0.335 \\ 0.496 \\ 0.584 \\ 0.498 \\ 0.606 \\ 0.862 \\ 0.999 \end{array}$	0.17 Bonf. 0.230 0.378 0.462 0.382 0.488 0.790 0.996	$ \rho^{+} = $ Global 0.254 0.454 0.598 0.469 0.625 0.891 1	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \end{array}$	0.33 Bonf. 0.230 0.424 0.556 0.436 0.579 0.873 1	$ \rho^+ = $ Global 0.195 0.467 0.683 0.501 0.718 0.974 1	$\begin{array}{c} 0.70 \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1
$ \begin{array}{r} n_1 \\ 50 \\ 50 \\ 50 \\ 75 \\ 100 \\ 200 \\ 500 \\ \end{array} $	n_2 50 75 100 75 100 200 500	$ ho^+ =$ Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996 S	$\frac{10.23 \ \rho^{-}}{\alpha = 5\%}$ $\frac{10.23 \ \rho^{-}}{0.335}$ $\frac{10.496}{0.496}$ $\frac{10.496}{0.584}$ $\frac{10.498}{0.606}$ $\frac{10.606}{0.862}$ $\frac{10.999}{0.999}$ $\frac{10.23 \ \rho^{-}}{10.23}$	$\begin{array}{r} 0.17\\ \hline \text{Bonf.}\\ 0.230\\ 0.378\\ 0.462\\ 0.382\\ 0.488\\ 0.790\\ 0.996\\ \hline , Sp_1=0. \end{array}$	$\rho^{+} = \frac{\rho^{+}}{0.454}$ 0.254 0.454 0.598 0.469 0.625 0.891 1 6786, Se ₂	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \\ = 0.9818 \ , \end{array}$	$\begin{array}{r} 0.33\\ \hline 0.230\\ 0.424\\ 0.556\\ 0.436\\ 0.579\\ 0.873\\ 1\\ Sp_2=0.3 \end{array}$	$\rho^{+} = \frac{\rho^{+}}{0.195}$ 0.467 0.683 0.501 0.718 0.974 1 455	$\begin{array}{c} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1
n_1 50 50 50 75 100 200 500	n_2 50 75 100 75 100 200 500	$ \rho^{+} = Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996 S$	$\frac{0.23 \ \rho^{-}}{\alpha = 5\%}$ $\frac{\alpha = 5\%}{0.335}$ $\frac{0.496}{0.584}$ $\frac{0.498}{0.606}$ $\frac{0.862}{0.999}$ $\frac{1}{e_{1}} = 0.9643$	$\begin{array}{c} 0.17 \\ \hline \text{Bonf.} \\ 0.230 \\ 0.378 \\ 0.462 \\ 0.382 \\ 0.488 \\ 0.790 \\ 0.996 \\ \hline , Sp_1 = 0. \\ 0 \le \rho^+ \le \end{array}$	$\rho^{+} = \frac{\rho^{+}}{\text{Global}}$ 0.254 0.454 0.598 0.469 0.625 0.891 1 6786, Se ₂ 0.7071, 0	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \\ \hline = 0.9818 \\ , \\ 0 \le \rho^{-} \le 0.5 \end{array}$	$\begin{array}{r} 0.33\\ \hline 0.230\\ 0.424\\ 0.556\\ 0.436\\ 0.579\\ 0.873\\ 1\\ \hline Sp_2=0.3 \end{array}$	$\rho^{+} = \frac{\rho^{+}}{\text{Global}}$ 0.195 0.467 0.683 0.501 0.718 0.974 1 455	$\begin{array}{c} 0.70 \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1
	n_2 50 75 100 75 100 200 500	$ \rho^{+} = $ Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996 S	$\frac{a = 5\%}{a = 5\%}$ $\frac{a = 5\%}{0.335}$ $\frac{a = 5\%}{0.496}$ $\frac{a = 5\%}{0.496}$ $\frac{a = 5\%}{0.496}$ $\frac{a = 5\%}{0.498}$	$\begin{array}{c} 0.17\\ \hline \text{Bonf.}\\ 0.230\\ 0.378\\ 0.462\\ 0.382\\ 0.488\\ 0.790\\ 0.996\\ \hline , Sp_1 = 0.\\ 0 \leq \rho^+ \leq \end{array}$	$\rho^{+} = \frac{0.254}{0.254}$ 0.454 0.598 0.469 0.625 0.891 1 6786, Se ₂ 0.7071, 0 p = 50%	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \\ = 0.9818 \\ , \\ \rho \leq \rho^{-} \leq 0.5 \\ \hline \rho \end{array}$	$\begin{array}{r} 0.33\\ \hline 0.230\\ 0.424\\ 0.556\\ 0.436\\ 0.579\\ 0.873\\ 1\\ Sp_2=0.3 \end{array}$	$ \rho^{+} = $ Global 0.195 0.467 0.683 0.501 0.718 0.974 1 455	$\begin{array}{c} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1
n_1 50 50 50 75 100 200 500	n_2 50 75 100 75 100 200 500	$ \rho^{+} = $ Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996 S $\rho^{+} = $	$\frac{0.23 \ \rho^{-}}{\alpha = 5\%}$ $\frac{\alpha = 5\%}{0.335}$ $\frac{0.496}{0.496}$ $\frac{0.584}{0.498}$ $\frac{0.606}{0.862}$ $\frac{0.999}{e_{1}} = 0.9643$ $\frac{1}{2} = 0.18 \ \rho^{-} = 0.1$	$\begin{array}{c} 0.17\\ \hline \text{Bonf.}\\ 0.230\\ 0.378\\ 0.462\\ 0.382\\ 0.488\\ 0.790\\ 0.996\\ \text{, } Sp_1 = 0.\\ 0 \leq \rho^+ \leq \hline 0.13 \end{array}$	$\rho^{+} = \frac{\rho^{+}}{0.454}$ 0.254 0.454 0.598 0.469 0.625 0.891 1 6786, Se ₂ 0.7071, 0 $p = 50\%$ $\rho^{+} = \frac{\rho^{+}}{0} = \frac{\rho^{+}}$	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \\ = 0.9818 \\ , \\ 0 \le \rho^{-} \le 0.5 \\ \hline 0.35 \ \rho^{-} = \end{array}$	$\begin{array}{r} 0.33\\ \hline 0.230\\ 0.424\\ 0.556\\ 0.436\\ 0.579\\ 0.873\\ 1\\ Sp_2 = 0.3\\ \hline 0.25\\ \end{array}$	$\rho^{+} = \frac{\rho^{+}}{0.195}$ 0.467 0.683 0.501 0.718 0.974 1 455 $\rho^{+} = \frac{\rho^{+}}{0.975}$	$\begin{array}{c} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \\ \hline 0.53 \ \rho^{-} = \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1
n ₁ 50 50 75 100 200 500	n ₂ 50 75 100 75 100 200 500	$ \rho^{+} = $ Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996 S $ \rho^{+} = $ Global	$\frac{\alpha = 5\%}{\alpha = 5\%}$ $\frac{\alpha = 5\%}{0.335}$ $\frac{0.496}{0.584}$ $\frac{0.498}{0.606}$ $\frac{0.862}{0.999}$ $\frac{\alpha = 0.9643}{\alpha = 5\%}$	$\begin{array}{c} 0.17\\ \hline \text{Bonf.}\\ 0.230\\ 0.378\\ 0.462\\ 0.382\\ 0.488\\ 0.790\\ 0.996\\ \text{, } Sp_1=0.\\ 0\leq \rho^+\leq\\ \hline 0.13\\ \hline \text{Bonf.} \end{array}$	$\rho^{+} = \frac{\rho^{+}}{\text{Global}}$ 0.254 0.454 0.598 0.469 0.625 0.891 1 6786, Se_2 0.7071, 0 p = 50% \rho^{+} = \frac{\rho^{+}}{\text{Global}}	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \\ = 0.9818 \\ , \\ 0 \le \rho^{-} \le 0.5 \\ \hline 0.35 \ \rho^{-} = \\ \hline \alpha = 5\% \end{array}$	$\begin{array}{r} 0.33\\ \hline 0.230\\ 0.424\\ 0.556\\ 0.436\\ 0.579\\ 0.873\\ 1\\ \hline Sp_2 = 0.3\\ \hline 0.25\\ \hline \text{Bonf.} \end{array}$	$\rho^{+} = \frac{\rho^{+}}{\text{Global}}$ 0.195 0.467 0.683 0.501 0.718 0.974 1 455 $\rho^{+} = \frac{\rho^{+}}{\text{Global}}$	$\begin{array}{c} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \\ \hline \\ 0.53 \ \rho^{-} = \\ \hline \alpha = 5\% \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1 0.38 Bonf.
n_1 50 50 50 75 100 200 500 n_1 n_1 50	n_2 50 75 100 75 100 200 500 n_2 n_2 50	$ \rho^{+} = $ Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996 S $\rho^{+} = $ Global 0.890	$\frac{\alpha = 5\%}{\alpha = 5\%}$ 0.335 0.496 0.584 0.498 0.606 0.862 0.999 $\frac{\alpha}{e_1} = 0.9643$	$\begin{array}{r} 0.17\\ \hline \text{Bonf.}\\ 0.230\\ 0.378\\ 0.462\\ 0.382\\ 0.488\\ 0.790\\ 0.996\\ \text{, } Sp_1 = 0.\\ 0 \leq \rho^+ \leq \\ \hline 0.13\\ \hline \text{Bonf.}\\ 0.893\\ \end{array}$	$\rho^{+} = \frac{\rho^{+}}{0.454}$ 0.254 0.454 0.598 0.469 0.625 0.891 1 6786, Se ₂ 0.7071, C p = 50% $\rho^{+} = \frac{\rho^{+}}{0.935}$	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \\ = 0.9818 \\ 0 \le \rho^{-} \le 0.5 \\ \hline 0.35 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.969 \end{array}$	$\begin{array}{r} 0.33\\ \hline 0.230\\ 0.424\\ 0.556\\ 0.436\\ 0.579\\ 0.873\\ 1\\ \hline Sp_2 = 0.3\\ \hline 0.25\\ \hline \text{Bonf.}\\ 0.941\\ \end{array}$	$ \rho^{+} = $ Global 0.195 0.467 0.683 0.501 0.718 0.974 1 455 $ \rho^{+} = $ Global 0.977	$\begin{array}{c} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \\ \hline \\ 0.53 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.989 \\ \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1 0.38 Bonf. 0.978
n_1 50 50 50 75 100 200 500 n_1 50 50	n_2 50 75 100 75 100 200 500 n_2 n_2 50 75	$ \rho^{+} = $ Global 0.259 0.409 0.505 0.416 0.528 0.822 0.996 S $ \rho^{+} = $ Global 0.890 0.978	$\frac{0.23 \ \rho^{-}}{\alpha = 5\%}$ $\frac{\alpha = 5\%}{0.335}$ $\frac{0.496}{0.584}$ $\frac{0.498}{0.606}$ $\frac{0.862}{0.999}$ $\frac{1}{e_{1}} = 0.9643$ $\frac{1}{e_{1}} = 0.9643$ $\frac{1}{e_{2}} = 0.9643$	$\begin{array}{r} 0.17\\ \hline \text{Bonf.}\\ 0.230\\ 0.378\\ 0.462\\ 0.382\\ 0.488\\ 0.790\\ 0.996\\ \hline, Sp_1 = 0.\\ 0 \le \rho^+ \le \\ \hline 0.13\\ \hline 0.893\\ 0.977\\ \hline \end{array}$	$\rho^{+} = \frac{\rho^{+}}{0.254}$ 0.254 0.454 0.598 0.469 0.625 0.891 1 6786, Se ₂ 0.7071, 0 p = 50% $\rho^{+} = \frac{\rho^{+}}{0.935}$ 0.995	$\begin{array}{c} 0.47 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.345 \\ 0.543 \\ 0.677 \\ 0.557 \\ 0.699 \\ 0.923 \\ 1 \\ = 0.9818 \\ , \\ 0 \le \rho^{-} \le 0.5 \\ \hline 0.35 \ \rho^{-} = \\ \hline \alpha = 5\% \\ 0.969 \\ 0.997 \end{array}$	$\begin{array}{r} 0.33\\ \hline 0.230\\ 0.424\\ 0.556\\ 0.436\\ 0.579\\ 0.873\\ 1\\ \hline Sp_2 = 0.3\\ \hline 0.25\\ \hline 0.941\\ 0.993\\ \hline \end{array}$	$ \rho^{+} = $ Global 0.195 0.467 0.683 0.501 0.718 0.974 1 455 $ \rho^{+} = $ Global 0.977 0.999	$\begin{array}{c} 0.70 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.334 \\ 0.606 \\ 0.776 \\ 0.608 \\ 0.793 \\ 0.983 \\ 1 \\ \hline \\ 0.53 \ \rho^{-} = \\ \hline \alpha = 5\% \\ \hline 0.989 \\ 0.999 \\ \hline \end{array}$	0.50 Bonf. 0.210 0.470 0.675 0.476 0.685 0.964 1 0.38 Bonf. 0.978 0.999

Global: Global hypothesis test based on the chi-square distribution. $\alpha = 5\%$: Individual hypothesis tests each one to an error $\alpha = 5\%$.

0.992

0.999

0.983

0.998

0.995

0.999

0.994

0.999

0.999

0.999

0.984

0.998

Bonf.: Bonferroni's method.

_

		S	$e_1 = 0.5278$	$, Sp_1 = 0.$.9969 , Se ₂	= 0.5357,	$Sp_2 = 0.9$	9802		
			0	$\leq \rho^+ \leq 0$.9841 , 0≤	$\leq \rho^{-} \leq 0.391$	0			
					<i>p</i> = 10%	,)				
		$ ho^{\scriptscriptstyle +}$ =	0.25 $\rho^{-} =$	0.10	$ ho^{\scriptscriptstyle +}$ =	0.49 $\rho^{-} =$	0.19	$ ho^{\scriptscriptstyle +}$ =	0.74 $\rho^{-} =$	0.29
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	В
50	50	0.030	0.059	0.030	0.019	0.048	0.020	0.007	0.019	0.
50	75	0.031	0.063	0.032	0.023	0.054	0.023	0.009	0.024	0.
50	100	0.033	0.064	0.033	0.030	0.063	0.030	0.010	0.031	0.
75	75	0.033	0.057	0.032	0.025	0.055	0.025	0.015	0.036	0.
100	100	0.034	0.067	0.033	0.026	0.059	0.026	0.026	0.054	0.
200	200	0.123	0.182	0.094	0.122	0.177	0.095	0.108	0.168	0.
500	500	0.666	0.770	0.662	0.669	0.781	0.667	0.699	0.811	0.
		S	$e_1 = 0.8444$	$-, Sp_1 = 0.$.9852 , Se ₂	= 0.8571,	$Sp_2 = 0.9$	048		
			0	$\leq \rho^+ \leq 0$.9511,0≤	$\leq \rho^{-} \leq 0.377$	79			
					<i>p</i> = 25%	Ó				
		$ ho^{\scriptscriptstyle +}$ =	0.24 $\rho^{-} =$	0.09	$ ho^+=$	0.48 $\rho^{-} =$	0.19	$ ho^+=$	$0.71 \ \rho^{-} =$	0.2
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	В
50	50	0.172	0.247	0.142	0.154	0.234	0.127	0.107	0.198	0.
50	75	0.422	0.537	0.396	0.398	0.521	0.378	0.365	0.541	0
50	100	0.627	0.734	0.615	0.641	0.755	0.638	0.674	0.779	0
75	75	0.434	0.549	0.400	0.432	0.555	0.410	0.402	0.552	0
100	100	0.635	0.753	0.634	0.655	0.774	0.656	0.666	0.796	0.
200	200	0.965	0.981	0.964	0.977	0.987	0.974	0.989	0.994	0
500	500	1	1	1	1	1	1	1	1	
			$Se_1 = 0.95$	$, Sp_1 = 0$.95, $Se_2 =$	0.9643 , <i>Sp</i>	$p_2 = 0.678$	36		
			0	$\leq \rho^+ \leq 0$.8388 , 0≤	$\leq \rho^{-} \leq 0.333$	33			
					<i>p</i> = 50%	, D				
		$ ho^{\scriptscriptstyle +}$ =	$0.21 \ \rho^{-} =$	0.08	$ ho^{\scriptscriptstyle +}$ =	0.42 $\rho^{-} =$	0.17	$ ho^{\scriptscriptstyle +}$ =	$0.63 \ \rho^{-} =$	0.2
n_1	n_2	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	Bonf.	Global	$\alpha = 5\%$	В
50	50	0.929	0.969	0.942	0.954	0.983	0.966	0.965	0.992	0
50	75	0.994	0.998	0.995	0.999	0.999	0.999	0.999	1	0
50	100	1	1	1	1	1	1	1	1	
75	75	0.995	0.998	0.995	0.997	0.999	0.998	1	1	
100	100	1	1	1	1	1	1	1	1	
200	200	1	1	1	1	1	1	1	1	
500	500	1	1	1	1	1	1	1	1	

337 Bonf.: Bonferroni's method.

338

335 336

334

As conclusions of the results obtained in the simulation experiments, the global hypothesis test based on the chi-square distribution behaves well in terms of the type I error (it does not overwhelm the nominal error of 5%), the same as the individual tests along with Bonferroni's method or Holm's method. The method based on the individual tests to a global error $\alpha = 5\%$ should not be used as it may clearly overwhelm the nominal error.

From the results obtained, we propose the following method to compare the PVs of two BDTs subject to a case-control sampling: 1) Applying the hypothesis test based on the chisquare distribution (equation (13)) to an error α , 2) If the global hypothesis test is not significant, the equality hypothesis of the PVs is not rejected; if the global hypothesis test is significant to an error α , the investigation of the causes of the significance is made by testing the individual tests (equation (14)) and applying Bonferroni's method or Holm's method to an error α .

351

352 *3.2. Effect of the prevalence*

The estimation and comparison of the PVs of two BDTs subject to a case-control sampling 353 requires knowledge of the disease prevalence, of an estimation of the disease prevalence 354 355 obtained from another study, e.g. a health survey. To study the effect of a misspecification of the prevalence in the comparison of the PVs of two BDTs and in the estimators of the PVs, 356 we carried out simulation experiments similar to those made to study the type I errors and the 357 358 powers. For this purpose, we took as the prevalence for the inference an overestimation (and an underestimation) equal to 5% and to 10% of the value of the prevalence set, and we have 359 studied the type I errors and the powers of the global test and of the Bonferroni and Holm 360 methods and the relative root mean square error (*RRMSE*) of the estimator of each PVs. Thus, 361 for each estimator we calculated the relative root mean square error (RRMSE) defined as 362

363
$$RRMSE(\hat{P}V_i) = \frac{\sqrt{\frac{1}{N}\sum_{k=1}^{N} (\hat{P}V_{ik} - PV_i)^2}}{PV_i},$$

where PV_i is the PPV or the NPV of the *i*th BDT (i=1,2) and $\hat{P}V_{ik}$ is its estimator calculated from the *k*th sample (k=1,...,N), and N=10,000. For the values of the parameters we took as prevalences $p = \{10\%, 25\%, 50\%\}$ respectively, and to estimate the PVs we took as prevalences $p' = p \pm d \times p$ with $d = \{5\%, 10\%\}$.

In Table 6, we show some of the results obtained for the type I errors and the powers of the 368 global test and the Bonferroni method (the results of the Holms method are not shown as they 369 370 are practically identically to those obtained with the Bonferroni method). In the Table we show the results when there is no misspecification of the prevalence (p' = p) and when the 371 prevalence is underestimated (p' < p) and overestimated (p' > p). From the results of these 372 experiments, it is verified that the type I errors of the methods studied do not overwhelm the 373 nominal error $\alpha = 5\%$, and in general terms there are no important differences between the 374 type I errors when there is a misspecification of the prevalence and when there is not. 375 Regarding the powers, the conclusions are also very similar: there are no important 376 differences between the powers when there is a misspecification of the prevalence and when 377 there is not. Regarding the estimators, in Table 6 we show some of the results obtained for the 378 RRMSEs (in %) of the estimators of the PVs of the two BDTs. There is no important 379 difference between the RRMSEs when there is a misspecification of the prevalence (p' < p380 or p' > p) and the RRMSEs when there is no misspecification of the prevalence (p' = p). In 381 382 general terms, this difference is not usually over 5% when the samples are small, and this is even lower when the samples are large. Consequently, misspecifications (5% or 10%) of the 383 disease prevalence do not have any important effect on the type I errors and on the powers of 384 the global hypothesis test and on the alternative methods (Bonferroni and Holm), and nor do 385 they have an important effect on the estimators of the PVs. 386

		Tał	ole 6. Et	ffect of a	ı misspe	cificatio	on of the	e prevale	ence.		
					Туре	I errors					
			P	$PPV_1 = PP$	$V_2 = 0.90$, $NPV_1 = $	$NPV_2 = 0$.80			
$Se_1=0.2571$, $Sp_1=0.9905$, $Se_2=0.2571$, $Sp_2=0.9905$, $\rho^+=0.75$, $\rho^-=0.75$, $p=25\%$											
	1	p' = p	= 25%	p' = 2	2.50%	p' = 2	3.75%	p'=2	6.25%	p'=2	7.50%
n_1	n_2	Global	Bonf.	Global	Bonf.	Global	Bonf.	Global	Bonf.	Global	Bonf.
50	50	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001
50	75	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002
50	100	0.002	0.003	0.002	0.003	0.002	0.003	0.002	0.003	0.002	0.003
75	75	0.003	0.007	0.003	0.008	0.003	0.008	0.003	0.007	0.003	0.007
100	100	0.006	0.010	0.006	0.011	0.006	0.011	0.006	0.010	0.006	0.009
200	200	0.010	0.020	0.010	0.020	0.010	0.020	0.010	0.019	0.010	0.019
500	500	0.020	0.024	0.020	0.024	0.020	0.024	0.020	0.024	0.020	0.023
					Po	wers					
			$PPV_1 =$	0.90 , <i>PP</i>	$V_2 = 0.70$, $NPV_1 =$	0.80 , <i>NP</i>	$V_2 = 0.90$			
	Se_1	= 0.2571,	$Sp_1 = 0.9$	9905 , Se ₂	= 0.70 , \$	$Sp_2 = 0.90$	$, \rho^{+} = 0.1$	29, $\rho^{-} = 0$	0.22 , <i>p</i> =	25%	
		p' = p	= 25%	<i>p</i> '=2	2.50%	<i>p</i> '=2	3.75%	<i>p</i> '=2	6.25%	<i>p</i> '=2	7.50%
<i>n</i> ₁	n_2	Global	Bonf.	Global	Bonf.	Global	Bonf.	Global	Bonf.	Global	Bonf.
50	50	0.999	0.992	0.999	0.993	0.999	0.992	0.999	0.992	0.999	0.991
50	75	1	0.996	1	0.995	1	0.996	1	0.996	1	0.995
50	100	1	0.998	1	0.997	1	0.997	1	0.998	1	0.998
75	75	1	1	1	1	1	1	1	1	1	1
100	100	1	1	1	1	1	1	1	1	1	1
200	200	1	1	1	1	1	1	1	1	1	1
500	500	1	1	1	1	1	1	1	1	1	1
			R	RMSEs of	the estim	ators of P	Vs of BD	<u>DT 1</u>			
			$PPV_1 =$	0.90 , <i>PP</i>	$V_2 = 0.70$, $NPV_1 =$	0.80, NP	$V_2 = 0.90$			
	Se_1	= 0.2571,	$Sp_1 = 0.9$	$9905, Se_2$	= 0.70 , \$	$Sp_2 = 0.90$	$, \rho^{+} = 0.1$	29, $\rho^{-} = 0$	0.22 , <i>p</i> =	25%	
		p' = p	= 25%	<i>p</i> '=2	2.50%	<i>p</i> '=2	3.75%	<i>p</i> '=2	6.25%	<i>p</i> '=2	7.50%
n_1	n_2	$\hat{P}PV_1$	$\hat{N}PV_1$	$\hat{P}PV_1$	$\hat{N}PV_1$	$\hat{P}PV_1$	\hat{NPV}_1	$\hat{P}PV_1$	$\hat{N}PV_1$	$\hat{P}PV_1$	$\hat{N}PV_1$
50	50	26.8	1.8	31.1	2.7	29.3	2.1	28.3	2.1	29.7	3.2
50	75	20.0	1.7	22.9	2.9	21.6	2.0	20.9	2.3	21.8	3.1
50	100	15.6	1.6	18.3	3.0	16.8	1.9	15.9	2.2	17.8	3.0
75	75	18.4	1.4	22.3	2.5	21.2	1.7	19.3	2.0	21.9	2.8
100	100	14.2	1.2	18.0	2.2	16.0	1.6	14.9	1.9	17.1	2.5
200	200	8.0	0.9	9.4	1.8	8.9	1.5	8.5	1.6	8.9	1.9
500	500	4.1	0.5	5.4	1.5	4.6	1.2	4.5	1.2	5.1	1.6
			R	<i>RMSEs</i> of	the estim	ators of P	Vs of BE	DT 2			
		p' = p	= 25%	<i>p</i> '=2	2.50%	<i>p</i> '=2	3.75%	<i>p</i> '=2	6.25%	<i>p</i> '=2	7.50%
n_1	n_2	$\hat{P}PV_2$	$\hat{N}PV_2$	$\hat{P}PV_2$	$\hat{N}PV_2$	$\hat{P}PV_2$	$\hat{N}PV_2$	$\hat{P}PV_2$	$\hat{N}PV_2$	$\hat{P}PV_2$	\hat{NPV}_2
50	50	10.8	2.3	14.3	2.4	13.0	2.3	11.4	2.6	13.6	2.7
50	75	10.3	2.2	12.4	2.2	11.1	2.2	10.8	2.5	11.8	2.6
50	100	9.1	2.0	11.0	2.1	9.8	2.1	9.6	2.5	11.3	2.5
75	75	10.0	1.8	12.1	2.0	10.9	1.9	10.5	2.1	12.4	2.3
100	100	8.9	1.6	10.6	1.8	9.5	1.7	9.3	1.9	10.9	2.1
200	200	6.7	1.1	8.0	1.6	6.9	1.2	7.0	1.4	8.1	1.7
500	500	4.5	0.7	5.5	13	47	0.0	17	1.0	55	1.5

Global: Global hypothesis test based on the chi-square distribution. Bonf.: Bonferroni's method.

393 4. Example

The results obtained were applied to the study by Matovu et al (2010) on the diagnosis of 394 Human African Trypanosomiasis (HAT) in Uganda. HAT, also known as sleeping sickness, is 395 a parasitic disease caused by protozoa belonging to the genus Trypanosoma, and it is 396 transmitted to human beings by a bite from the tsetse fly (genus Glossina) infected by other 397 people or animals that host human pathogenic parasites. In some rural areas of Africa, the 398 disease prevalence may reach 50% in periods of epidemics, and is a significant cause of death. 399 400 Matovu et al (2010) applied two diagnostic tests to a sample of 75 cases and another sample of 65 controls. In Table 7 (observed frequencies) we can see the frequencies obtained 401 402 (constructed from the data provided by Matovu et al) when applying the PCR-*Oligochromatography* (*PCR-OC*, variable T_1) test and the *NASBA-Oligochromatography* 403 (NASBA-OC, variable T_2) test to both samples of individuals. In order to illustrate the method 404 405 proposed in this article, two values were considered for the prevalence of HAT: 10% and 50%. The first case (p = 10%) corresponds to a situation of low disease prevalence, and the 406 second one (p = 50%) corresponds to a situation of a HAT epidemic. In Table 7, we can also 407 see the estimations of the sensitivities and the specificities (and their standard errors, SE) of 408 409 the BDTs and the correlations.

- 410
- 411

Table 7. Study by Matuvo et al.

Observed frequencies										
		Case				Cont	rol			
	$T_2 =$	$1 T_2 = 0$	Total			$T_2 = 1$	$T_{2} = 0$	Total		
$T_1 = 1$	57	4	61		$T_1 = 1$	1	4	5		
$T_1 = 0$	6	8	14		$T_1 = 0$	0	60	60		
Total	63	12	75		Total	1	64	65		
		Sensi	tivities, sp	ecificities	and correla	tions				
$\hat{S}e_1 \pm S$	ΈE	E $\hat{S}e_2 \pm SE$		Ś	$\hat{S}p_1 \pm SE$	$\hat{S}p_2 \pm SE$		$\hat{ ho}^{-}$		
0.813 ± 0	.045	0.840 ± 0.042	0.538	0.9	23 ± 0.033	0.985 ± 0	.015	0.433		

412 For a prevalence value equal to 10%, the estimations of the PVs are $\hat{P}PV_1 = 0.540$,

413 $\hat{P}PV_2 = 0.858$, $\hat{N}PV_1 = 0.978$ and $\hat{N}PV_2 = 0.982$, and the estimated variance and covariance

414 matrix of the estimators of the PVs is

415
$$\hat{\Sigma}_{\hat{\omega}} = \begin{pmatrix} 0.01158 & 0.00562 & 0.00015 & 0.00005 \\ 0.00562 & 0.01456 & 0.00006 & 0.00006 \\ 0.00015 & 0.00006 & 0.00003 & 0.00001 \\ 0.00005 & 0.00006 & 0.00001 & 0.00002 \end{pmatrix}.$$

416 The value of the test statistic for the test

417

$$H_0: PPV_1 = PPV_2 \text{ and } NPV_1 = NPV_2$$

 $H_1: \text{ at least one equality is not true,}$

418 is $Q^2 = 6.954$ (*P*-value = 0.031) and therefore null hypothesis of the global test is rejected.

Testing the individual hypothesis tests it is found that the value of the test statistic for the $H_0: PPV_1 = PPV_2$ is equal to 2.606 (two sided p-value = 0.009), and that the value of the test statistic for the test $H_0: NPV_1 = NPV_2$ is equal to 0.886 (two sided p-value = 0.375). Applying Bonferroni's (Holm's) method the equality hypothesis of the negative predictive values is not rejected and the equality hypothesis of the two positive predictive values is rejected. The positive predictive value of the *NASBA-OC* test is significantly greater than that of the PCR-OC test (95% CI: 0.079 to 0.558).

For a HAT prevalence equal to 50%, the estimations of the PVs are $\hat{P}PV_1 = 0.914$, $\hat{P}PV_2 = 0.982$, $\hat{N}PV_1 = 0.834$ and $\hat{N}PV_2 = 0.860$, and estimated variance and covariance matrix of the estimators of the PVs is

429
$$\hat{\Sigma}_{\hat{\omega}} = \begin{pmatrix} 0.00117 & 0.00026 & 0.00032 & 0.00010 \\ 0.00026 & 0.00031 & 0.00005 & 0.00006 \\ 0.00032 & 0.00005 & 0.00116 & 0.00058 \\ 0.00010 & 0.00006 & 0.00058 & 0.00102 \end{pmatrix}$$

430 The value of the test statistic for the test

431
$$H_0: PPV_1 = PPV_2 \text{ and } NPV_1 = NPV_2$$
$$H_1: \text{ at least one equality is not true,}$$

is $Q^2 = 5.048$ (*P*-value = 0.080), and therefore with an error $\alpha = 5\%$ we do not reject the 432 equality of the positive predictive values and the negative predictive values of both diagnostic 433 tests, although there are signs of significance and, therefore, an increase in the two sample 434 sizes may be necessary. Solving the individual hypothesis tests it is found that the value of the 435 test statistic for the test H_0 : $PPV_1 = PPV_2$ is equal to 2.21 (two sided p-value = 0.027), and 436 that the value of the test statistic for the $H_0: NPV_1 = NPV_2$ is equal to 0.892 437 (two sided p-value = 0.373). If each individual hypothesis test is solved to an error $\alpha = 5\%$, 438 then $H_0: PPV_1 = PPV_2$ is rejected and $H_0: NPV_1 = NPV_2$ is not rejected, and the result is 439 contradictory to that obtained with the global test to an error $\alpha = 5\%$. 440

441

442 6. More than two BDTs

Let us consider that J BDTs $(J \ge 3)$ are applied to all of the individuals in the case sample 443 and the control sample. For each BDT we define the random variable T_i in a similar way to 444 how this was done in Section 2. Let Se_i and Sp_i be the sensitivity and the specificity of the 445 *j*th BDT, with con j = 1, ..., J. Let $n_{1_{i_1...i_j}}$ be the number of individuals with the disease for 446 whom $T_1 = i_1, \ldots, T_J = i_J$, with $i_j = 1$ when the result of the *j*th BDT is positive and $i_j = 0$ 447 when it is negative. In a similar way, $n_{2i_1...i_r}$ is the number of without the disease for whom 448 $T_1 = i_1, \dots, T_J = i_J$. Let us consider the probabilities $\xi_{hi_1,\dots,i_J} = P(T_1 = i_1, T_2 = i_2, \dots, T_J = i_J)$, with 449 h = 1, 2. Thus, for example for three BDTs, using the dependence model of Torrance-Rynard 450 and Walter (1997), these probabilities are 451

452
$$\xi_{1i_{1}i_{2}i_{3}} = \prod_{j=1}^{3} Se_{j}^{i_{j}} \left(1 - Se_{j}\right)^{1 - i_{j}} + \sum_{j,k,j < k}^{3} \left(-1\right)^{|i_{j} - i_{k}|} \varepsilon_{jk}^{+}$$

453 and

454
$$\xi_{2i_1i_2i_3} = \prod_{j=1}^{3} Sp_j^{1-i_j} \left(1 - Sp_j\right)^{i_j} + \sum_{j,k,j < k}^{3} \left(-1\right)^{|i_j - i_k|} \varepsilon_{jk}^{-},$$

with $i_j = 0, 1$, $i_k = 0, 1$ and j, k = 1, 2, 3, and where ε_{jk}^+ (ε_{jk}^-) is the covariance between the *j*th BDT and the *k*th BDT for individuals with the disease (without the disease). The estimators of these probabilities are $\hat{\xi}_{hi_1...i_j} = n_{hi_1...i_j}/n_h$, with h = 1, 2. The sensitivity and the specificity of the *j*th BDT are

459
$$Se_{j} = \sum_{\substack{i_{1}, \dots, i_{J} = 0 \\ i_{j} = 1}}^{1} \xi_{1i_{1}, \dots, i_{J}} \text{ and } Sp_{j} = \sum_{\substack{i_{1}, \dots, i_{J} = 0 \\ i_{j} = 0}}^{1} \xi_{2i_{1}, \dots, i_{J}},$$

460 and its estimators are

461
$$\hat{S}e_j = \frac{\sum_{i_1,\dots,i_J=0}^{1} n_{1i_1,\dots,i_J}}{n_1}$$
 and $\hat{S}p_j = \frac{\sum_{i_1,\dots,i_J=0}^{1} n_{2i_1,\dots,i_J}}{n_2}}{n_2}$.

462 The estimators of the variances-covariances of these estimators are 463 $\hat{V}ar(\hat{S}e_j) = \hat{S}e_j(1-\hat{S}e_j)/n_1$, $\hat{V}ar(\hat{S}p_j) = \hat{S}p_j(1-\hat{S}p_j)/n_2$, $\hat{C}ov(\hat{S}e_j, \hat{S}e_k) == \hat{\varepsilon}_{jk}^+/n_1$ and

464 $\hat{C}ov(\hat{S}p_j,\hat{S}p_k) = \hat{\varepsilon}_{jk}/n_2$, and the rest of the covariances are equal to zero. If we know the 465 prevalence *p* (or and an estimation), the estimators of the PVs of the *j*th BDT are

$$\hat{P}PV_{j} = \frac{pn_{2}\sum_{\substack{i_{1},\dots,i_{j}=0\\i_{j}=1}}^{1}n_{1i_{1},\dots,i_{j}}}{pn_{2}\sum_{\substack{i_{1},\dots,i_{j}=0\\i_{j}=1}}^{1}n_{1i_{1},\dots,i_{j}} + qn_{1}\sum_{\substack{i_{1},\dots,i_{j}=0\\i_{j}=1}}^{1}n_{2i_{1},\dots,i_{j}}}$$

467 and

$$\hat{N}PV_{j} = \frac{qn_{1}\sum_{\substack{i_{1},\dots,i_{J}=0\\i_{j}=0}}^{1}n_{2i_{1},\dots,i_{J}}}{qn_{1}\sum_{\substack{i_{1},\dots,i_{J}=0\\i_{j}=0}}^{1}n_{2i_{1},\dots,i_{J}} + pn_{2}\sum_{\substack{i_{1},\dots,i_{J}=0\\i_{j}=0}}^{1}n_{1i_{1},\dots,i_{J}}}.$$

Let $\boldsymbol{\theta} = (Se_1, ..., Se_J, Sp_1, ..., Sp_J)^T$ be the vector whose components are the sensitivities and the specificities, and let $\boldsymbol{\omega} = (PPV_1, ..., PPV_J, NPV_1, ..., NPV_J)^T$ be the vector whose components are the PVs. The variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, with a dimension $2J \times 2J$, is similar to that given in expression (10), where $\sum_{\hat{S}e}$ and $\sum_{\hat{S}p}$ are matrixes with a dimension $J \times J$. Applying the delta method, the variance-covariance matrix of $\hat{\boldsymbol{\omega}}$, with a dimension $2J \times 2J$, has an expression similar to that given in equation (11).

The PVs of each one of the *J* BDTs depend on the same parameters (the sensitivity and the specificity of the *j*th diagnostic test) and, therefore, these parameters can be compared simultaneously. The global hypothesis test to simultaneously compare the PVs of the *J* BDTs is

479
$$H_0: PPV_1 = PPV_2 = \dots = PPV_J \text{ and } NPV_1 = NPV_2 = \dots = NPV_J$$
$$H_1: \text{ at least one equality is not true,}$$

480 which is equivalent to the hypothesis test

468

481
$$H_0: \mathbf{A}\boldsymbol{\omega} = 0 \quad \text{vs} \quad H_1: \mathbf{A}\boldsymbol{\omega} \neq 0$$

482 where the matrix **A**, with a dimension $2(J-1) \times 2J$, is

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_0 \\ \mathbf{A}_0 & \mathbf{A}_1 \end{pmatrix},$$

where A_0 is a matrix with a dimension $(J-1) \times J$ whose elements are all equal to 0, and A_1 is a matrix with a dimension $(J-1) \times J$ where each component (i,i) is equal to 1, each element (i,i+1) is equal to -1 for i=1,...,J-1, and the rest of the elements in this matrix are equal to 0. Applying the multivariate central limit theorem it is verified that $\sqrt{n_1 + n_2} (\hat{\omega} - \omega) \xrightarrow[n_1 + n_2 \to \infty]{} N_{2J} (\mathbf{0}, \boldsymbol{\Sigma}_{\omega})$. Then, the statistic $Q^2 = (\hat{\omega} \mathbf{A})^T (\mathbf{A} \hat{\boldsymbol{\Sigma}}_{\hat{\omega}} \mathbf{A}^T)^{-1} \mathbf{A} \hat{\omega}$ is distributed according to Hotelling's *T*-squared distribution with a dimension 2(J-1) and $n_1 + n_2$ degrees of freedom, where 2(J-1) is the dimension of the vector $\mathbf{A}\hat{\omega}$. When $n_1 + n_2$ is large, the statistic Q^2 is distributed according to a central chi-squared distribution with 2(J-1) degrees of freedom when the null hypothesis is true, i.e.

493
$$Q^{2} = \left(\hat{\boldsymbol{\omega}}\mathbf{A}\right)^{T} \left(\mathbf{A}\hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\omega}}} \mathbf{A}^{T}\right)^{-1} \mathbf{A}\hat{\boldsymbol{\omega}} \xrightarrow[n \to \infty]{} \mathcal{X}^{2}_{2(J-1)}$$

Finally, the method to compare the PVs of the *J* BDTs would consist of the following steps: 494 1) Solve the global hypothesis test to an error α calculating the statistic 495 $Q^2 = (\hat{\boldsymbol{\omega}} \mathbf{A})^T (\mathbf{A} \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\omega}}} \mathbf{A}^T)^{-1} \mathbf{A} \hat{\boldsymbol{\omega}}$ based on the chi-squared distribution; 2) if the global test is not 496 497 significant to an error α then we do not reject the homogeneity of the J PVs, but if the hypothesis test is significant then the causes of significance are investigated comparing the 498 PPVs (NPVs) in pairs (equation (14)) and applying an adjustment method of the *p*-value 499 based on multiple comparisons (e.g. Bonferroni or Holm). 500

501

502 7. Discussion

The comparison of the positive and negative predictive values of two binary diagnostic tests is an important topic in the study of Statistical Methods in Diagnostic Medicine. Subject to a cross-sectional sampling, this topic has been subject to different studies. In this article we studied the simultaneous comparison of the predictive values of two diagnostic tests subject to a case-control sampling, analysing and comparing several methods. These methods consisted of a global test based on the chi-square distribution, a method based on the individual comparisons each one to a nominal error α , and another three methods based on individual

510 comparisons along with a multiple comparison method. The multiple comparison methods 511 that were used were Bonferroni's method and Holm's method, which are methods based on 512 the p-values of the individual hypothesis tests and are very easy to apply.

Simulation experiments were carried out to study the type I errors and the power of the 513 four methods proposed. These experiments were based on the generation samples with type I 514 bivariate binomial distributions, which are the distributions that are inherent to case-control 515 516 design, since from these samples proportions of marginal totals are estimated. The results have shown that the global hypothesis test based on the chi-square distribution behaves well 517 in terms of type I error, and does not overwhelm the nominal error $\alpha = 5\%$. Regarding its 518 power, in general this strongly depends on the disease prevalence, and it is necessary to have 519 very large samples $(n_i > 500)$ when the prevalence is small and relatively small sample sizes 520 $(n_i \ge 50)$ when the prevalence is high, so that the power will be high. The simulation 521 experiments also showed that the methods based on individual hypothesis tests along with 522 523 multiple comparison methods have type I errors and very similar power to those of the global test based on the chi-square distribution. Consequently, both methods can be used to compare 524 the PVs of the two BDTs. Furthermore, the experiments also showed that the comparison of 525 526 the predictive values of two diagnostic tests cannot be made independently i.e. comparing the two positive predictive values and comparing the two negative predictive values 527 independently to an error $\alpha = 5\%$, as it is possible to obtain a type I error that clearly 528 overwhelms the nominal error set. Based on the results of the simulation experiments, a 529 method has been proposed to compare the predictive values of two diagnostic tests subject to 530 531 a case-control sampling. This method, which is similar to that proposed by Roldán-Nofuentes et al (2012), consists of the following steps: 1) Simultaneously comparing the predictive 532 533 values applying the global hypothesis test based on the chi-square distribution (equation (13)) to an error α ; 2) If the global hypothesis test is not significant, then the equality hypothesis of 534

the PVs is not rejected. If the global hypothesis test is significant to an error α , then the causes of the significance are studied solving the individual hypothesis tests (equation (14)) and applying Bonferroni's method or Holm's method to an error α . This procedure that we propose is similar to the Analysis of Variance: firstly, the global test is solved and, if this is significant, then the causes of the significance are studied starting with paired comparisons along with some multiple comparison method.

Simulation experiments were carried out to study the effect of a misspecification of the prevalence in the asymptotic behaviour of the global hypothesis test based on the chi-square distribution and on the methods based on multiple comparisons. From the results obtained, we can conclude that light or moderate overestimations or underestimations of the prevalence do not have an important effect on the behaviour of these hypothesis tests.

546 The proposed model has been applied to a real example on the diagnosis of the Human African Trypanosomiasis (HAT) in Uganda, disease that is a major public health problem in 547 some African countries, and whose correct diagnosis is essential for a proper treatment. The 548 549 results obtained have shown that, when the prevalence is small, the positive predictive value of the NASBA-OC test is significantly greater than that of the PCR-OC test, and there are no 550 significant differences between the negative predictive values of both diagnostic tests. 551 Therefore, when the prevalence of HAT is small, the NASBA-OC test is a better test than the 552 PCR-OC test to confirm the presence of the HAT. When the prevalence of HAT is very high, 553 554 the equality of the predictive values has not been rejected (although an increase of the two samples may be convenient), and therefore it is not rejected that both diagnostic tests are 555 equally valid to confirm and to exclude the presence of the HAT. 556

557 Finally, the global hypothesis test was extended to the situation in which we 558 simultaneously compare the PVs of more than two BDTs, and for this we propose a method 559 which is similar to that proposed for two BDTs. To be able to calculate the global test statistic, $Q^2 = \hat{\omega}^T \mathbf{A}^T \left(\mathbf{A} \hat{\Sigma}_{\hat{\omega}} \mathbf{A}^T \right)^{-1} \mathbf{A} \hat{\omega}$, it is necessary for the matrix $\mathbf{A} \hat{\Sigma}_{\hat{\omega}} \mathbf{A}^T$ to be nonsingular. For two BDTs, the matrix $\mathbf{A} \hat{\Sigma}_{\hat{\omega}} \mathbf{A}^T$ is non-singular when it is verified that $n_{110} + n_{101} > 0$ and that $n_{210} + n_{201} > 0$; therefore, if $n_{110} = n_{101} = 0$ and $n_{210} = n_{201} = 0$ then the method proposed to compare the PVs cannot be applied.

565 Acknowledgements

This research was supported by the Spanish Ministry of Economy, Grant Number MTM2016-76938-P.

568

569 **References**

- 570 Bennett BM. On comparison of sensitivity, specificity and predictive value of a number of
- 571 diagnostic procedures. Biometrics 1972;28:793-800.
- Bennett BM. On tests for equality of predictive values for t diagnostic procedures. Statistics inMedicine 1985;4:535-9.
- 574 Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R
 575 Istituto Superiore di Scienze Economiche e Commerciali di Firenze 1936;8:3-62.
- Holm S. A simple sequential rejective multiple testing procedure. Scandinavian Journal ofStatistics 1979;6:65-70.
- Kocherlakota S, Kocherlakota, K. Bivariate discrete distributions. New York: Marcel DekkerINC; 1992.
- 580 Kosinski AS. A weighted generalized score statistic for comparison of predictive values of
- diagnostic tests. Statistics in Medicine 2013;32:964-977.
- 582 Leisenring W, Alonzo T, Pepe MS. Comparisons of predictive values of binary medical
- diagnostic tests for paired designs. Biometrics 2000;56:345-351.

- 584 Matuvo E, Mugasa CM, Ekangu RA, Deborggrave S, Lubega GW, Laurent T, Schoone GJ,
- 585 Schallig HD, Büscher P. Phase II evaluation of sensitivity and specificity of PCR and NASBA
- 586 followed by oligochromatography for diagnosis of human African trypanosomiasis in clinical
- samples from D.R. Congo and Uganda. PLOS Neglected Tropical Diseases2010;4: e737.
- 588 Mercaldo ND, Kit FL, Zhou XH. Confidence intervals for predictive values with an emphasis to
- case-control studies. Statistics in Medicine 2007;26:2170-2183.
- 590 Moskowitz CS, Pepe MS. Comparing the predictive values of diagnostic tests: sample size
- and analysis for paired study designs. Clinical Trials 2006;3:272-9.
- 592 Pepe MS (2003). The statistical evaluation of medical tests for classification and prediction. New
- 593 York: Oxford University Press; 2003.
- 594 Roldán-Nofuentes JA, Luna del Castillo JD, Montero-Alonso MA. Global hypothesis test to
- 595 simultaneously compare the predictive values of two binary diagnostic tests. Computational
- 596 Statistics and Data Analysis, Special issue "Computational Statistics for Clinical Research"
- **597 2012;56:1161-1173**.
- Torrance-Rynard VL, Walter SD. Effects of dependent errors in the assessment of diagnostic
 test performance. Statistics in Medicine 1997;16:2157-2175.
- Vacek PM. The effect of conditional dependence on the evaluation of diagnostic tests.Biometrics 1985;41:959-968.
- Wang W, Davis CS, Soong SJ. Comparison of predictive values of two diagnostic tests from
 the same sample of subjects using weighted least squares. Statistics in Medicine
 2006;25:2215-2229.
- 605
- 606
- 607
- 608

Appendix A 609

Performing algebraic operations in equation (11) it is found that: 610

611
$$Var(PPV_1) = \left(\frac{p^2Se_1 + pQ_1}{Q_1^2}\right)^2 Var(Se_1) + \left(\frac{pqSe_1}{Q_1^2}\right)^2 Var(Sp_1),$$

612
$$Var(PPV_2) = \left(\frac{p^2Se_2 + pQ_2}{Q_2^2}\right)^2 Var(Se_2) + \left(\frac{pqSe_2}{Q_2^2}\right)^2 Var(Sp_2),$$

613
$$Var(NPV_1) = \left(\frac{pqSp_1}{(1-Q_1)^2}\right)^2 Var(Se_1) + \left(\frac{q(1-Q_1)-q^2Sp_1}{(1-Q_1)^2}\right)^2 Var(Sp_1),$$

614
$$Var(NPV_2) = \left(\frac{pqSp_2}{(1-Q_2)^2}\right)^2 Var(Se_2) + \left(\frac{q(1-Q_2)-q^2Sp_2}{(1-Q_2)^2}\right)^2 Var(Sp_2),$$

615
$$Cov(PPV_1, PPV_2) = \left(\frac{pQ_1 - p^2Se_1}{Q_1^2}\right) \left(\frac{pQ_2 - p^2Se_2}{Q_2^2}\right) Cov(Se_1, Se_2) + \frac{p^2q^2Se_1Se_2}{Q_1^2Q_2^2} Cov(Sp_1, Sp_2),$$

616

$$Cov(PPV_{1}, NPV_{1}) = \frac{pq}{Q_{1}^{2}(1-Q_{1})^{2}} \Big[(pQ_{1}-p^{2}Se_{1})Sp_{1}Var(Se_{1}) + \{q(1-Q_{1})-q^{2}Sp_{1}\}Se_{1}Var(Sp_{1}) \Big],$$

617

$$\frac{pq(pQ_{1}-p^{2}Se_{1})}{Q_{1}^{2}(1-Q_{2})^{2}}Sp_{2}Cov(Se_{1},Se_{2}) + \frac{pq\{q(1-Q_{2})-q^{2}Sp_{2}\}}{Q_{1}^{2}(1-Q_{2})^{2}}Se_{1}Cov(Sp_{1},Sp_{2}),$$

$$Cov(PPV_2, NPV_1) =$$

6

¹⁸
$$\frac{pq}{Q_2^2(1-Q_1)^2} \Big[(pQ_2 - p^2Se_2)Sp_1Cov(Se_1, Se_2) + \{q(1-Q_1) - q^2Sp_1\}Se_2Cov(Sp_1, Sp_2) \Big],$$

619

$$Cov(PPV_{2}, NPV_{2}) = \frac{pq}{Q_{2}^{2}(1-Q_{2})^{2}} \Big[(pQ_{2}-p^{2}Se_{2})Sp_{2}Var(Se_{2}) + \{q(1-Q_{2})-q^{2}Sp_{2}\}Se_{2}Var(Sp_{2}) \Big]$$

620 and

$$Cov(NPV_{1}, NPV_{2}) = \frac{p^{2}q^{2}Sp_{1}Sp_{2}}{(1-Q_{1})^{2}(1-Q_{2})^{2}}Cov(Se_{1}, Se_{2}) + \left(\frac{q(1-Q_{1})-q^{2}Sp_{1}}{(1-Q_{1})^{2}}\right)\left(\frac{q(1-Q_{2})-q^{2}Sp_{2}}{(1-Q_{2})^{2}}\right)Cov(Sp_{1}, Sp_{2}),$$

622 where q = 1 - p and $Q_i = P(T_i = 1) = p \times Se_i + q \times (1 - Sp_i)$.

623

624 Appendix B

Let us assume that we are going to solve K hypothesis test H_{0k} vs H_{1k} with k = 1,...,K. Let $p_{[1]} \le p_{[2]} \le ... \le p_{[K]}$ be the *p*-values obtained ordered from the lowest to the highest, and therefore $p_{[k]}$ is the *p*-value that corresponds to the hypothesis test $H_{0[k]}$ vs $H_{1[k]}$. Holm's method [12] consists of the following steps:

629 Step 1. If $p_{[1]} \le \alpha/K$ hypothesis $H_{0[1]}$ is rejected and we go to the next step; if $p_{[1]} > \alpha/K$ 630 no null hypothesis is rejected and the process finishes.

Step 2. If $p_{[2]} \le \alpha/(K-1)$ hypothesis $H_{0[2]}$ is rejected and we go to the next step; if $p_{[2]} > \alpha/(K-1)$ we do not reject the null hypotheses $H_{0[k]}$ with k = 2, ..., K and the process finishes....

634 Step *K*. If $p_{[K]} \le \alpha$ hypothesis $H_{0[K]}$ is rejected and the process finishes; and if $p_{[K]} > \alpha$ 635 $H_{0[K]}$ is not rejected and the process finishes.