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Abstract

The mammalian immune system protects individuals from infection and disease. It is a
complex system of interacting cells and molecules and extensive work, principally with
laboratory mice, has investigated its function. Wild and laboratory animals lead very
different lives, and this is reflected in there being substantial immunological differences
between them. Here we use network analyses to study a unique data set of 120 immune
measures of wild and laboratory mice, where immune measures define nodes and
correlations of immune measures across individual mice define edges between immune
measures. To date, there has only been very limited network analyses of the immune
system, which is surprising because such analyses may be important to better
understand its organisation and functionality. We found that the immunological
networks of wild and laboratory mice were similar in some aspects of their mesoscale
structure, particularly concerning cytokine response communities. However, we also
identified notable differences in node membership of network communities between the
wild and laboratory networks, pointing to how the same immune system acts and
interacts differently in wild and in laboratory mice. These results show the utility of
network analysis in understanding immune responses and also the importance of
studying wild animals in additional to laboratory animals.

Author summary

The mammalian immune system is a complex system that protects individuals from
infection and disease. Most of our understanding of the immune system comes from
studies of laboratory animals, particularly mice. However, wild and laboratory animals
lead very different lives, potentially leading to substantial immunological differences
between them and so possibly limiting the utility of laboratory animals as informative
model systems. As a complex interacting set of cells and molecules, the immune system
is a biological network. Therefore, we used network analyses to study the immune
system, specifically a unique data set of immune measures of wild and laboratory mice,
where 120 different immune measures define nodes of the network. We found that the
networks of wild and laboratory mice were similar in some aspects of their grouping
structure, particularly concerning communities of nodes of cytokine responses. However,
we also identified notable differences in node membership of communities between the
wild and laboratory networks, pointing to how the same immune system behaves
differently in wild and in laboratory mice. These results show the utility of network
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analysis in understanding immune responses and also the importance of studying wild
animals in addition to laboratory animals.

Introduction 1

The vertebrate immune system defends animals against infection and disease. 2

Understanding how the immune system functions has been a long-standing area of 3

study, not only to understand the basic biology of this important system, but also to be 4

able to manipulate it for therapeutic benefit. Almost all that we know about the 5

mammalian immune system has been discovered by studying laboratory animals, mainly 6

mice. Remarkably little is known about the immune responses of wild mammals, nor 7

how well the immune responses of laboratory animals reflect those of wild animals. The 8

operation of the immune system is affected by the environment – especially infections – 9

and wild animals are continuously exposed to a myriad of infections stimulating immune 10

responses, but in contrast, laboratory animals do not have this high-level exposure. 11

Indeed, the few studies of the immune state of wild animals have shown quantitative 12

differences in measures of immune state between wild and laboratory animals [1]. 13

The vertebrate immune system is a complex of interacting cells and soluble 14

molecules whose function, at its heart, is to recognise foreign antigen molecules, to then 15

remove, destroy or nullify them, while usually retaining a molecular memory of the 16

antigen in question. The multiple components of the vertebrate immune system are 17

typically categorised into cellular and humoral components, both of which contribute to 18

the innate and adaptive parts of the immune response. The immune system is dynamic, 19

so that different components of the immune system respond depending on the type of 20

antigen and its location in the individual. For example, immune responses to viruses 21

infecting lung cells are qualitatively very different to the immune responses directed 22

against macroscopic worms living in the gut [2]. Pathogens are not passive partners in 23

the face of the immune responses directed against them, and so combat the immune 24

response via a number of strategies. These strategies include molecularly hiding from 25

the immune system, actively immunomodulating the immune system for their own 26

benefit, or by changing their antigenic repertoire, so staying-ahead of an immunological 27

memory already acquired against them [3]. Effector cells and molecules of the immune 28

system act against invading pathogens, but these effects can also cause harm to the 29

individual, so-called immunopathology [4]. Therefore, a tightly-controlled, well 30

regulated immune system is needed to protect an individual from pathogen-induced 31

harm, without causing direct harm to the individual in the process. 32

The immune system is a regulated, homeostatic system, typically responding to 33

multiple antigenic stimulations at once. The principal actors of the immune system are 34

populations of cells, including T cells (including CD4+ T helper cells that facilitate 35

immune function and CD8+ T cytotoxic cells that act against infected cells), B cells 36

(that are responsible for antibody responses), as well as other populations of cells 37

including Natural Killer cells, Dendritic cells, and other myeloid cells. Critical to the 38

successful function of the immune system is regulation and coordination of the 39

components of the immune system, which is achieved by a suite of soluble signalling 40

molecules called cytokines. Cytokines include interferons (molecules produced by host 41

cells upon infection) and interleukins (cytokines produced by white blood cells, 42

leukocytes) among others. Cytokines allow cells of the immune system to signal their 43

state, and so provide positive and negative regulation of different components of the 44

immune system. Immune systems that are in different functional and effector states will 45

therefore likely have different underlying quantitative networks of the coordinating 46

cytokine molecules. 47

Because it is a complex interacting set of cells and molecules, the immune system is 48
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a biological network. Applying network analysis to immunological data may therefore 49

provide new insights into the function and organisation of the immune system. Because 50

of the different immunological state of wild and laboratory animals [1, 5], their immune 51

systems may also differ in the structure of interactions among different immune 52

components, which will be revealed by network analysis. 53

Here we apply network analysis to a data set that has comprehensively measured the 54

immune state of wild mice and laboratory mice, affording us the opportunity to 55

examine the commonalities and the differences between the behaviour of the immune 56

system in these animals. In particular, we analyse the community structure [6], which 57

aims to reveal groups (i.e., communities) of densely connected nodes (which here are 58

measures of the immune response) and the connectivity among the detected 59

communities. We then compare the wild and laboratory mice in terms of community 60

structure and also compare the biological groupings of immune measures and the 61

grouping derived from community detection. As such, this analysis provides a 62

comprehensive network analysis of the immune system, and gives new insights into the 63

functional immunological differences between wild and laboratory animals. 64

Methods 65

Data 66

We used a data set of the immune state of 460 wild mice (Mus musculus domesticus), 67

collected from 12 sites in the southern UK, and 102 laboratory mice. We assembled this 68

data set in previous work, which is available within the publication and associated 69

supplementary materials [5]. There were 126 immune measures, from which we removed 70

six as is explained in the next section. Therefore, there are 120 immune measures 71

available for each mouse. These immune measures are classified into six categories, two 72

of which are further divided into sub-categories, as shown in Fig 1. 73
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Fig 1. Categories of immune measures. The numbers in the parentheses are the number of immune measures within
that category. The symbol and colour associated with each category are used in the subsequent figures. The MFI category
and the FACS category are divided into three and seven sub-categories, respectively.

The first category is antibodies, which has two measures: the serum concentration of 74

immunoglobulins G (IgG) and E (IgE). The second category is serum proteins, which 75

has three measures: concentration of the acute phase proteins serum amyloid P (SAP), 76

Haptoglobin, and alpha-1 antitrypsin (AAT). The third category has three 77

non-immunological body phenotype measures: the body mass, spleen mass and the 78

number of spleen cells. The fourth category is ex vivo activation state measured as 79

mean fluorescence index (MFI) and has a total of 15 measures. We grouped the 15 80

measures into three sub-categories: MFI of natural killer (NK) cells (eight measures), 81

MFI of B cells (six measures), and MFI of Dendritic cells (which has one measure). The 82

fifth category is fluorescence activated cell sorted (FACS)-derived percentages of cells 83

and has a total of 52 measures grouped into seven sub-categories: NK cells (26 84

measures), Myeloid cells (seven measures), T cells (six measures), CD8+ T cells (four 85

measures), CD4+ T cells (four measures), B cells (four measures) and Dendritic cells 86

(one measure). The sixth category is cytokine responses (CRs). A CR is the 87

concentration of a cytokine produced after in vitro stimulation. There are nine types of 88

cytokines: Interleukin (IL)-1β, IL-4, IL-6, IL-10, IL-12p40, IL-12p70, IL-13, IFN-γ and 89

Macrophage Inflammatory Protein (MIP)-2α. Each of the nine types of cytokines is 90

produced after four types of stimulation and one control. Three stimulations are with 91

pathogen-associated molecular patterns (PAMPs), namely CpG, peptidoglycan (PG) 92

and lipopolysaccharide (LPS). The other stimulation is with a mitogen, specifically 93

anti-CD3 and anti-CD28 antibodies (CD3/CD28). The control culture is unstimulated 94
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(RPMI). Thus, the nine types of cytokines combined with the five culture conditions 95

gives a total of 45 CR measures. 96

Data preprocessing 97

We preprocessed the data as follows. The concentrations of cytokines were measured 98

using Bioplex Pro kits (M60-009RDPD & MD0-00000EL, Bio-Rad, UK). Therefore, the 99

range of cytokine concentrations for which data were robust is defined by empirically 100

derived standard curves. When the observed concentration of a cytokine fell outside the 101

standard range of these assays [5], the readings were classified as out of range (OOR), 102

being either below (“OOR<”) or above (“OOR>”) the standard range. We set “OOR 103

<” measures to 0.001 [5], and treated “OOR >” as a missing value. 104

We removed the age and IgA measures [5] because they were absent for all the 105

laboratory mice. In the FACS category we removed the %D+G2Hi+G2Lo+H+, 106

%D+G2Hi+G2Lo+H-, %D-G2Hi+G2Lo+H+ and %D-G2Hi+G2Lo+H- measures 107

because they were absent for all wild and laboratory mice. As a result of removing these 108

six measures, we had a final total of 120 immune measures. 109

Many of the 120 immune measures had missing values, i.e., they were not observed 110

for some mice. In particular, in the CR category there were 223 wild mice (48%) and 75 111

laboratory mice (74%) without any of the 45 CR measures. Because of the central 112

importance of cytokines in immune responses, we decided to remove these mice instead 113

of removing the CR measures. Before removing these mice, the percentage of missing 114

values in the whole data set was 34% for the wild mice and 37% for the laboratory mice. 115

After removing the mice that had all of the CR measures missing, the data set consisted 116

of 237 wild mice with 12% of missing values and 27 laboratory mice with 12% of missing 117

values. In the CR category, the percentage of missing values dropped from 49% to 1.3% 118

for the wild mice and from 74% to 1.5% for the laboratory mice after this removal. 119

Finally, we imputed the remaining missing values. For each of the immune measures 120

that had missing values, we calculated the average value from the available observations 121

and replaced the missing values by this calculated average. We carried out this 122

imputation procedure separately for the wild and for the laboratory mice. 123

Correlation networks 124

We built correlation networks separately for the wild mice and for the laboratory mice 125

as follows. We used the N = 120 immune measures as nodes of the network. We then 126

calculated the Pearson correlation coefficient between each pair of immune measures by 127

regarding the mice as samples. We placed an edge if, and only if, the correlation value 128

exceeded a prescribed threshold. The threshold was the largest possible value with 129

which the remaining network was connected (i.e., when the network consisted of a single 130

connected component). 131

Community detection 132

We combined a stochastic block model (SBM) [7] and a consensus clustering approach 133

to uncover the mesoscopic block structure of the correlation networks. In the 134

microcanonical formulation of the SBM that we used, one minimizes the description 135

length of the network [8], such that one partitions the nodes in the network G into B 136

blocks to find b = {b1, . . . , bN}, where bi ∈ {1, 2, . . . , B} is the group membership of 137

node i. The probability of generating the observed network G given partition b is 138

denoted by P (G|θ,b), where θ is the set of the additional parameters that control the 139

connectivity between blocks. The probability that the observed network G is generated 140
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by a partition b is given by the following Bayesian posterior probability: 141

P (b|G) =
P (G|θ,b)P (θ,b)

P (G)
. (1)

The numerator of Eq (1) can be written as P (G|θ,b)P (θ,b) = exp(−H), where 142

H = − lnP (G|θ,b)− lnP (θ,b) (2)

is the description length of network G. Maximizing Eq (1) is equivalent to minimizing 143

the description length. We used the non-degree corrected version of the SBM algorithm 144

because it yielded smaller description lengths. Specifically, after 103 minimizing 145

attempts, the average and standard deviation of the description length for the corrected 146

and the non-corrected version was equal to 2575±3 and 2526±4, respectively, for the 147

wild mice and 2118±5 and 2047±5, respectively, for the laboratory mice. 148

To infer the best partition given by the SBM, we employed a Markov Chain Monte 149

Carlo (MCMC) algorithm [9] using the graph-tool library [10]. We start from an initial 150

partition b0, which is obtained from an agglomerative heuristic method [9]. Then, in 151

each step, we propose a move by selecting a node i and choosing a new tentative group 152

membership b
′

i for node i with a specific probability that imposes no bias and preserves 153

the ergodicity [9]. The proposed move b→ b
′
, where b

′

j = bj for all j 6= i, is accepted 154

or rejected according to the Metropolis-Hastings criterion [11,12]. This procedure 155

preserves the detailed balance and minimizes the final description length. Each attempt 156

to move a node is applied sequentially, such that nodes are visited one by one in a 157

random order. 158

When all the N nodes have attempted to move once, we say that a sweep has been 159

completed. Because the method is stochastic, a different block structure may appear in 160

each run of the algorithm. To cope with this stochasticity, we implemented the 161

consensus clustering procedure composed of the following three phases. In the first 162

phase, we identify the most probable number of communities of the network. To this 163

end, we ran the algorithm for 102 different initial partitions of the nodes. Then, for each 164

initial condition, we carried out MCMC sweeps and recorded the maximum and 165

minimum values of the description length across sweeps. The node partitions were 166

accepted as being stable if 103 sweeps were completed with less than two record 167

breakings of the description length, where a record breaking is defined by the 168

appearance of the description length value that is larger than the largest value among 169

all the previous sweeps. For each of the 102 initial conditions, we recorded, at an 170

interval of 102 MCMC sweeps, the number of communities 104 times. Then, for each 171

initial condition, we selected the number of communities that appeared the most times 172

in the 104 observations. Finally, we determined the number of communities of the 173

network as the most probable number of communities among the 102 initial conditions. 174

In the second phase, we fixed the number of communities to the value determined in the 175

first phase and inferred the probability that each node belongs to each community as 176

follows. For each of another 102 different initial partitions of nodes, we underwent the 177

same transient period of MCMC sweeps as in the first phase. Then, for each of the 102 178

initial conditions, we collected 105 configurations at an interval of 102 MCMC sweeps 179

and calculated the fraction of the 105 configurations in which each node belonged to 180

each community. Finally, for each initial condition, we defined the community of each 181

node as the community to which the node belonged the most times. Therefore, at the 182

end of the second phase, we had 102 node partitions. In the third phase, we performed 183

a consensus clustering procedure. To this end, we counted the number of times that 184

each pair of nodes belonged to the same community among the 102 node partitions 185

found in the second phase. We then concluded that any pair of nodes belonged to the 186

same community if they did so in at least 90% of the 102 node partitions. If a node did 187
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not belong to the same community with any other node in at least 90% of the 102 node 188

partitions, then this node was judged to form a single-node community. 189

Comparing two communities 190

We estimated the similarity between a single community in the wild mouse network and 191

a single community in the laboratory mouse network in two ways. First, we counted the 192

number of nodes shared by the two communities. Second, we computed the Jaccard 193

index J between the two communities, defined by 194

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
, (3)

where A and B are the set of nodes in the two communities being compared, and |A|, 195

for example, is the number of nodes in A. 196

Similarity between community structures 197

In the statistical analysis, we computed the similarity between two community 198

structures. The networks to be compared were always composed of the same set of 199

nodes but may have different edges. Therefore, the different community structures in 200

the present study are equivalent to different partitions of the same set of nodes. Many 201

similarity measures to compare community structures are available [13]. They can be 202

roughly classified into pair counting methods, cluster matching methods, and 203

information-theoretic methods [13–15]. We used five types of similarity measures, four 204

of which are pair counting methods, with the other one being an information-theoretic 205

method. 206

The pair counting methods first classify all the possible N(N − 1)/2 pairs of nodes 207

into four categories. We denote by w11 the number of node pairs that belong to the 208

same community in both networks, by w10 the number of node pairs that are in the 209

same community in the first network but not in the second network, by w01 the number 210

of node pairs that are in the same community in the second network but not in the first 211

network and by w00 the number of node pairs that are not in the same community in 212

either network. The total number of pairs of nodes is given by 213

w11 + w10 + w01 + w00 = N(N − 1)/2. The four similarity measures based on 214

pair-counting are as follows [13]: the Jaccard index J = w11/(w11 + w10 + w01); the 215

Rand similarity coefficient R = 2(w11 + w00)/N(N − 1); the Fowlkes-Mallows similarity 216

coefficient FM = w11/
√

(w11 + w10)(w11 + w01); the Minkowski coefficient 217

M =
√

(w10 + w01)/(w01 + w11). 218

The other similarity measure based on information theory is the variation of 219

information (VI) [14], which is defined as follows. Denote the two node partitions to be 220

compared by X = {X1, X2, . . . , Xk} and Y = {Y1, Y2, . . . , Yl}, where k and l are the 221

number of communities in partition X and Y , respectively. The VI between the two 222

partitions is defined as VI(X,Y ) = −
∑
i,j rij [log(rij/pi) + log(rij/qj)], where 223

pi = |Xi|/N , qj = |Yj |/N and rij = |Xi ∩ Yj |/N . 224

Similarity measures, including the ones described here, strongly depend on the 225

number and size of communities [13]. It is therefore difficult to assert whether the value 226

obtained for each similarity measure is large or small. To circumvent this problem, we 227

calculated the similarity between two partitions relative to that obtained from random 228

partitions. Given a similarity measure S calculated from the original data, the Z score 229

is defined as ZS = (S − µ)/σ, where µ and σ are the average and standard deviation, 230

respectively, of the same similarity measure calculated from random partitions. To 231

avoid possible dependence of the Z value on the number of samples (i.e., number of 232
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mice) on which the correlation matrix is calculated, we generated random partitions as 233

follows. As an example, for a given similarity measure, consider the comparison between 234

the community structure of the wild male mouse network and that of the wild female 235

mouse network. The male network is derived from the correlation matrix calculated 236

based on the 133 wild male mice; the female network is calculated based on the 104 wild 237

female mice. First, we calculated the similarity measure between the community 238

structure of the male network and that of the female network, giving S. Second, we 239

combined males and females and drew 10 pairs of uniformly random networks 240

maintaining the original number of mice in the two networks. In other words, in each 241

randomly drawn pair of networks, one network was derived from 133 mice and the other 242

network was derived from the remaining 104 mice. Third, for each of the randomly 243

drawn pair of networks, we carried out the community detection. Fourth, we calculated 244

the similarity measure between each pair of random networks. Finally, we calculated the 245

Z score on the basis of the 10 random pairs of networks. It should be noted that the Z 246

score of the Minkowski coefficient and the VI was multiplied by −1 because, differently 247

from the other three similarity measures, more similar partitions yield smaller values of 248

Minkowski coefficient or VI. Therefore, a negative Z value indicates that the pair of 249

original networks (e.g., male and female networks) is more different than are pairs of 250

random networks. If the Z score is significantly smaller than zero, we conclude that, in 251

this example, the male and female networks are significantly more different from each 252

other compared to the difference between randomly generated pairs of networks. 253

We used an interval of 102 MCMC sweeps in the first and second phases of the 254

community detection for the wild and laboratory networks. To obtain the random pairs 255

of networks used to calculate the Z score, and so to statistically compare the wild and 256

laboratory networks, we also used 102 MCMC sweeps. For the other comparisons (i.e., 257

sex, age and geographical site), we used different numbers of MCMC sweeps determined 258

as follows to avoid excessively long computational time. First, for each network to be 259

compared, we discarded transient sweeps before the obtained partitions were sufficiently 260

stable, where the number of MCMC sweeps to be discarded was determined using the 261

same criterion as in the Community Detection section. Then, for each partition we ran 262

a total of T = 103 MCMC sweeps. Next, we computed the autocorrelation function χ(t) 263

of the description length as a function of the number of sweeps t, which is given by 264

χ(t) =
1

(T − t)σ2
H

T−t∑
t′=1

[H(t′)− 〈H〉][H(t′ + t)− 〈H〉], (4)

where H(t) is the description length after t sweeps; 〈H〉 and σH are the average and the 265

standard deviation of the description length, respectively. For each network, we 266

averaged the autocorrelation function of the description length over 102 realizations to 267

obtain a smooth curve of the autocorrelation decay. The time-scale at which the 268

autocorrelation function decays towards zero is called the autocorrelation time τ . It is 269

expected that the autocorrelation function declines exponentially at large t as 270

χ(t) ∼ e−t/τ [16]. Therefore, for the other comparisons (i.e., sex, age and geographical 271

site), we set the number of MCMC sweeps as two autocorrelation times t = 2τ . In fact, 272

2τ for the wild and laboratory networks was equal to 18 and 19 MCMC sweeps, 273

respectively. Thus, using 102 MCMC sweeps guarantees sufficient statistical 274

independence between the configurations drawn. 275
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Results 276

Pairwise correlation between immune measures 277

Before analysing the data as networks, we compared the raw correlation matrices for the 278

wild and for the laboratory mice. These matrices are shown in Fig 2, where we grouped 279

the immune measures according to the categories of immune measures (Fig 1). Within 280

each category, the immune measures were arranged in descending order of the node 281

strength of the immune measures of the wild mice, where the node strength of an 282

immune measure i is defined as the sum of all correlation coefficient values between 283

nodes i and j over the N − 1 possible j other nodes. 284

Fig 2. Correlation matrices ordered according to the categories of immune measures. (A) Wild mice. (B)
Laboratory mice. The solid black lines separate different categories of immune measure. Within each category, the immune
measures are arranged in descending order of the node strength in the wild mouse correlation matrix, using this order for the
laboratory mouse correlation matrix too.

Figure 2 shows that, for both wild and laboratory mice, correlations are positive for 285

the majority of the CR pairs. Furthermore, correlations, both positive or negative, tend 286

to be strong within many of the categories of immune measures (i.e., diagonal blocks in 287

Fig 2), for both wild and laboratory mice. In particular, within the FACS NK cells 288

there is a large proportion of immune measure pairs that are strongly, negatively 289

correlated with each other, whereas approximately half of the immune measures in this 290

category are strongly, positively correlated within themselves. 291

To investigate quantitatively the similarity between the correlation matrices for the 292

wild and laboratory mice, we compared the strength for each node between the wild and 293

laboratory mice, which is shown in Fig 3A. The CR nodes tend to have the largest 294

strength values, while the FACS NK cell nodes tend to have small strength values, 295

which is consistent with the correlation matrices shown in Fig 2. Figure 3A also 296

indicates that the node strength is moderately correlated (with a Pearson correlation 297
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value of 0.68; p < 10−18) between the wild and laboratory mice. Comparison of the 298

pairwise correlation values between the wild and laboratory mice shows a moderate 299

correlation (with a Pearson correlation value of 0.51; p = 1.8× 10−17) (Fig 3B), where 300

each point represents a pair of nodes. Figure 3 suggests that the correlation matrices of 301

wild and laboratory mice show some similarity, but not identity. 302

Fig 3. Comparison of the connectivity between the wild and laboratory
mice. (A) Strength of individual immune measures. The colour and shape code of the
immune measures is as shown in Fig 1. (B) Pairwise correlation coefficients between
immune measures. In both, the dotted lines show the diagonal line.

Community structure of immune measure networks 303

We next analysed the community structure of networks by thresholding on the pairwise 304

correlation values, considering only positive correlations. We refer to these networks as 305

the wild network and the lab network in the following text. The wild and laboratory 306

mice differ in the distribution of the correlation coefficients among their immune 307

measures and therefore different threshold values were expected in the respective 308

networks. We found that the largest threshold to keep the wild network connected was 309

0.20, whereas it was 0.42 for the lab network. The edge densities were 0.16 and 0.13 for 310

the wild and lab network, respectively. We confirmed that the following results were 311

reasonably robust when we changed the threshold values to have edge densities of 0.20 312

and 0.25 for both the wild and lab networks (Figs S1 and S2). 313

We determined the community structure of the wild and lab networks using the 314

SBM. The final number of communities was equal to seven for both the wild and lab 315

networks, and so the two networks were similar in this respect. In the consensus 316

clustering, the community structure of the wild network is the same for all of the 102 317

node partitions. The community structure of the networks is shown in Fig 4. Note that 318

community SL in Fig 4D is a single-node community (the FACS NK cell % 319

D+G2Hi-G2Lo+H-) that did not robustly belong to any other community. 320
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Fig 4. Community structure of the networks. Panels (A) and (B) show the correlation matrix for the wild and
laboratory mice, respectively. In each correlation matrix, nodes are ordered according to the block structure detected by the
stochastic block modelling. The boundaries between the detected blocks are shown by the solid black lines. The wild and lab
networks are shown in (C) and (D), respectively, in a manner respecting the detected block structure.
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Both networks have three communities that are almost exclusively composed of CR 321

nodes, which we refer to as the CR communities. Of the 45 CR nodes, 42 and 41 nodes 322

belong to CR communities in the wild and lab networks, respectively. Moreover, the 323

interconnections between the three CR communities is qualitatively the same for both 324

networks. Specifically, there is one CR community that is densely connected to the 325

other two CR communities, which are in turn sparsely connected to each other. In the 326

wild network, community W7 has edge densities of 0.72 and 0.82 with communities W5 327

and W6, respectively, whereas the edge density between W5 and W6 is equal to 0.06 328

(Fig 5A). Analogously, in the lab network, L7 has edge densities of 0.60 and 0.83 with 329

L5 and L6, respectively, whereas the edge density between L5 and L6 is equal to 0.03 330

(Fig 5B). 331

Fig 5. Intra- and inter-community edge densities. (A) Wild network. (B) Lab network.

Despite these structural similarities, the wild and lab CR communities consist of 332

different sets of nodes. We examined this further by computing the number of common 333

nodes and the Jaccard index between each pair of a community in the wild and lab 334

networks (Fig 6). This shows that nodes in the CR communities L5 and L6 of the lab 335

network are scattered among different CR communities in the wild network. Particularly, 336

in the wild network, all of the IL-1β, IL-12p70 and IL-13 nodes (with each cytokine 337

type having five nodes) are each within one community, whereas in the lab network only 338

the IL-12p70 nodes are all within one community (Table S1). Moreover, communities 339

W7 and L7, which are strongly connected to the other two CR communities in the wild 340

and lab networks, respectively, have only two CR nodes in common with a Jaccard 341

index of 0.07 (Fig 6). In fact, L7 better corresponds to W6 rather than W7, and W7 342

better corresponds to L6 than L7. Therefore, although the mesoscale structure of the 343

CR communities is similar between the wild and lab networks, the composition of each 344

CR community is substantially different between the two networks. 345
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Fig 6. Similarity between communities of the wild and lab networks. (A) Number of common nodes. (B) Jaccard
index.

A majority of NK cell nodes (i.e., FACS and MFI nodes) belong to two communities 346

in both the wild network (i.e., communities W1 and W2) and the lab network (i.e., 347

communities L1 and L2). Communities W1 and L1 are predominately composed of NK 348

cell nodes and all the eight nodes that they share are FACS NK cell nodes. Among the 349

seven nodes shared by communities W2 and L2, five are NK cell nodes (three FACS NK 350

cells and two MFI NK cells). In both networks, the edges within each of these two NK 351

cell communities are denser than between the two NK cell communities, which seems to 352

be the main reason why a majority of NK cell nodes are divided between two 353

communities. Consistent with this observation, the pairwise correlations between nodes 354

within L1 and L2 are mostly strongly positive whereas those between L1 and L2 are 355

mostly strongly negative (Fig 4B). This result may imply negative biological regulation 356

among NK cell nodes. 357

In the wild network, T cells are confined in a single community, i.e., community W2 358

(Fig 4C), whereas they are dispersed among four communities in the lab network. This 359

result is likely due to greater functional interaction among these cells in wild, 360

antigen-experienced mice, compared with laboratory mice [17]. 361

Communities W2 and L3 are the largest communities in each network and share 15 362

nodes (Fig 6A). Moreover, these communities contain nodes of different types of 363

immune measures, with this mix being approximately consistent between the wild and 364

lab networks. 365

We have not considered negative pairwise correlations because the thresholds for 366

creating the networks from the correlation matrices were positive. Mindful that in 367

biological systems negative regulation is common, we also briefly analysed how the 368

immune measures are connected through negative correlations. In these so-called 369

negative networks, node pairs that are strongly negatively correlated were assumed to 370

form the edges. The negative networks have substantially more communities such that 371

their community structure is more difficult to interpret than in the case of the positive 372

networks (Fig S3). However, the CR nodes are predominately grouped together within 373

several communities in the negative networks for both wild and laboratory mice, similar 374

to the situation in the positive networks. In the wild negative network, which had nine 375
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communities, 43 out of the 45 CR nodes belonged to one of the two communities that 376

were almost exclusively composed of CR nodes (Fig S3). The lab negative network had 377

17 communities and 39 CR nodes belonged to one of the four communities 378

predominately composed of CR nodes. Because CR nodes tend to be strongly positively 379

correlated with each other, there is no direct connection between pairs of CR nodes in 380

the negative networks. However, in the SBM, a pair of nodes tend to belong to the 381

same community if they have similar patterns of connectivity to the other nodes in the 382

network. This is the case even if the direct connectivity between the two nodes is not 383

strong, or even absent. This property of the SBM explains why various CR nodes 384

belong to the same community despite the absence of the direct connectivity between 385

them. The results for the negative networks suggest that, for both wild and laboratory 386

mice, the groups of CR nodes have relatively similar patterns of negative connectivity 387

towards other CR or non-CR nodes. 388

Comparison of community structures 389

We next wanted to move from comparing individual nodes and categories of immune 390

measures between wild and lab networks, to statistically comparing the network 391

structure of the wild and lab networks. We also wished to statistically compare 392

networks that address additional features of wild mouse populations that may affect 393

their immune networks, specifically mouse sex, mouse age and the geographical site 394

where the wild mice were collected [5, 17]. 395

In the wild vs. lab comparison, there were 237 wild mice and 21 laboratory mice. In 396

the male vs. female sex comparison, there were 133 males and 104 females. In the age 397

comparison, we compared 120 old mice, which we defined to be more than 8.5 weeks old, 398

and 117 young mice, which were less than 8.5 weeks old. We selected the age threshold 399

of 8.5 weeks to make the size of the two groups approximately equal in size. In the site 400

comparison, there were 71 mice from the HW site (a mixed arable and beef farm near 401

Bristol, UK) and 166 mice from the other sites [5]. We selected this particular site 402

because it was the single site where most wild mice were sampled. 403

We compared each pair of networks in terms of the five similarity measures for 404

community structure. For each similarity measure, as a reference, we also randomised 405

the mice to create pairs of networks whose sizes matched those of the original networks. 406

On the basis of the values of the similarity measure for the randomised pairs we 407

calculated the Z score. A negative Z score implies that the pair of original networks are 408

more different than are the pairs of random networks. 409

The Z score for each of the four comparison types and each of the five similarity 410

measures is shown in Table 1. The largest absolute value of the Z score was obtained 411

when the wild and lab networks were compared with the Rand coefficient. In this case, 412

wild and laboratory community structures are significantly different from each other as 413

compared to pairs of randomised networks (Z = −2.93). This result is consistent with 414

those in the previous section, where we have shown that the set of nodes belonging to a 415

community differs between the wild and lab networks, although there is a resemblance 416

in the inter-community connectivity between the wild and lab networks. The Rand 417

coefficient is highly sensitive to the size of communities in the partitions being 418

compared [13]. Both the wild and lab networks have large communities, whereas the 419

randomly generated networks in general do not have similarly large communities. This 420

factor seems to account for this large negative Z score. 421

However, Table 1 shows that, for all but two combinations of the comparison type 422

and similarity measure, the Z scores are below a 95% significance level (i.e., |Z| < 1.96). 423

This is even the case for the comparison between the wild and lab networks with the 424

other four similarity measures. For the other three comparisons, we did not find 425

significance except in one case, the geographical comparison with the VI similarity 426
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measure with a Z score of −2.04. However, when correcting for the multiple 427

comparisons that we have made, neither of these two large negative Z scores remain 428

significant. Therefore, formally we conclude that we cannot detect differences in the 429

immune network structure between wild and lab, young and old, male and female mice, 430

or mice from different geographical sites. However, our results, taken as a whole are 431

strongly suggestive of immune networks differing between laboratory and wild mice, and 432

possibly between mice from different geographical locations too. This general failure to 433

achieve statistical significance may be due to the fact that the number of samples (i.e., 434

mice) from which the correlation matrices were calculated were relatively small as 435

compared to the number of nodes (i.e., immune measures). 436

Table 1. Similarity of the community structure of pairs of networks shown as the Z score. The similarity
measures used are the Jaccard index, Rand coefficient, Fowlkes-Mallows coefficient (FM), Minkowski coefficient and the
variation of information (VI).

Jaccard Rand FM Minkowski VI

Wild vs. laboratory 0.24 −2.93 0.16 1.34 0.19
Male vs. female −0.37 −0.09 −0.44 −0.48 −1.20
Young vs. old −0.96 1.16 −1.05 −0.86 −0.89
HW vs. other sites −1.42 0.59 −1.73 −0.85 −2.04

Discussion 437

We compared the structure of wild and lab mouse correlational networks that were 438

composed of a range of biologically interconnected immune measures. We found that the 439

wild and lab networks were similar in some aspects, such as the strong but chain-like 440

connectivity among the three CR communities, and division of NK cell nodes into two 441

communities. This similarity was not completely unexpected since both wild and 442

laboratory mice are the same species, and so have the same immune system with the 443

same components, which will necessarily have some, even substantial, shared function. 444

However, we also found considerable differences between the two networks, such as the 445

identity of nodes constituting the three CR communities and different arrangement of 446

the T cell nodes. The difference between the wild and lab networks shows how the same 447

immune system can behave differently in animals leading different lives [5]. 448

We found that immune measures of one category can have membership of distinct 449

network communities. In particular, the CR nodes were arranged into three 450

communities in both wild and lab mouse networks, with those communities having 451

similar connectivity; specifically, one community was strongly connected with the other 452

two, but these two other communities were not strongly connected to each other. 453

Despite this mesoscale similarity, the node composition of these communities differs 454

substantially between the wild and lab networks. This result might reflect different 455

regulation of the cytokine network in wild and lab mice (as in [5]), itself a consequence 456

of the different antigenic environment experienced by wild and laboratory mice. The 457

two largest communities in the wild and lab mouse networks (W2 and L3, respectively) 458

both predominantly consist of a mixture of cellular populations. Indeed, these are 459

cellular populations that are known to interact and to cross regulate each other, perhaps 460

most notably the CD4+ and CD8+ T cell populations. 461

The NK cell nodes were concentrated in two communities in each network – W1 and 462

W2, and L1 and L2 – though these communities also contained other node types. The 463

nodes within W2 contain many (specifically, eleven) markers of näıve, 464

antigen-inexperienced cells (NK, T and B cells), whereas in the lab network these eleven 465

were in L1, L2, L3 and L4. The lab mice are less antigen experienced, compared with 466
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the wild mice, and this would therefore appear to be reflected in the different 467

arrangements of the nodes within these communities. These different arrangements of 468

nodes representing these cellular markers may also be because of different 469

immunological states of wild and laboratory mice. 470

There has previously been some use of network concepts for investigating the 471

immune system and immune responses, but this has not been extensive. A number of 472

different network approaches have been used, which also include frameworks that do not 473

use networks in the sense of graph theory as in the work we present here [18–22]. There 474

are different types of cytokine and immune networks that are based on graph theory 475

and network analysis. First, there are cytokine networks that represent the state 476

transition pathways of cells, in which nodes are cells and edges are cytokines that 477

mediate a state transition of the cell [19,23,24]. Second, and perhaps the most common, 478

is where signalling networks of immune systems are analysed, where intercellular 479

signalling proteins (which can include cytokines) are nodes and activation and inhibition 480

of a node by another defines directed edges [21,25,26]. A third type are co-expression 481

networks, in which nodes are abundance of cytokines or other types of cells or proteins, 482

and undirected edges represent the co-expression of a pair of immune markers. The 483

strength of association between each pair of nodes has been quantified, for example, by 484

the Pearson correlation coefficient [27,28], as in the present study, or mutual 485

information [29,30]. These previous studies analysed data obtained from healthy human 486

donors [28], patients in preterm labour [27], individuals with Chronic Fatigue 487

Syndrome [29] or Gulf War Illness [30]. A final example of network analysis used the 488

proteome of sub-populations of immune cells, clustered these proteins into functional 489

modules, and then used known interactions among proteins to construct networks 490

showing putative interactions within and among functional modules [28]. In the present 491

work, we measured the correlation between a range of different measures of immune 492

state, which included cytokine responses, the number, type and state of different cell 493

populations, and the concentration of serum proteins, in wild and laboratory mice. 494

Therefore, our networks can be regarded as co-expression networks, though the scale of 495

these networks is larger than previous work. 496

The present study has some limitations. First, we necessarily discarded a 497

considerable portion of data during our pre-processing steps due to missing values. The 498

number of lab mice with sufficient immune measures after pre-processing was small (i.e., 499

27). However, it is of note that these laboratory animals are genetically inbred and 500

maintained under standard conditions, all aiming to substantially reduce the 501

inter-mouse variability. Among the wild mice, many animals, particularly the young 502

ones, were small, which limited the amount of serum and the number of splenocytes 503

that could be obtained, thereby limiting the amount of immunological data that could 504

be obtained from them. Studies of wild animals will routinely confront such limitations. 505

Therefore, the preprocessing of data that we have undertaken may provide a model for 506

how this matter can be addressed in similar analyses of analogous data of other wild 507

populations. A larger dataset would significantly enhance the precision of the present 508

findings. Second, we did not find consistent patterns in the statistical comparison of the 509

four pairs of groups (wild vs. lab; male vs. female; young vs. old; HW site vs. other 510

sites). Rather, the results depended on the similarity measure we used and only a few 511

combinations of the similarity measure and the comparisons that we made yielded 512

significant Z scores. However, adjusting for these multiple comparisons means that none 513

of these results remains formally significant. As above, this may be due to the relatively 514

small size of the data set, compared to the number of nodes. Specifically, to compare 515

two groups of wild mice, such as male and females, we divided the 237 wild mice into 516

two groups. The number of nodes, 120, may be too large for this quantity of data. The 517

same limitation was acknowledged in a study of co-expression immune response 518
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networks in which the number of participants in each group was relatively small [30]. 519

However, this is the best that we could achieve with the available data. Sampling wild 520

mice and making these multiple immune measures is a substantial piece of work and we 521

note that this data set is the largest existing immunological data set of wild rodents. 522

Third, we applied a simple thresholding to the correlation matrices to create the 523

correlation networks. The choice of the threshold value was not determined a priori, but 524

rather determined functionally by using the highest value that resulted in a single, 525

connected component network [31, 32]. A method to select the threshold value based on 526

an optimisation [32] and the use of network quantities directly applied to correlation 527

matrices [33–35] are alternative options that could be used in the future. We did not 528

opt to use these methods because the optimisation of the trade-off with the wiring 529

cost [32] is not relevant to the present data and stochastic block models directly 530

applicable to correlation matrices are not known. 531

The network analysis of wild mouse populations presented here is a novel analysis of 532

a novel dataset. It generates a holistic view of the mammalian immune system and the 533

dynamics of its function as the animals themselves interact with diverse and dynamic 534

environments. Humans are, arguably, immunologically more akin to wild mice than to 535

laboratory mice, and the diversity of immune state among people could also be analysed 536

using network analyses. Such an approach may usefully be used to ever better 537

understand the vertebrate immune system and its function in protecting individuals 538

from infection and disease. 539
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14. Meilă M. Comparing clusterings—an information based distance. J Multivar
Anal. 2007;98:873–895.

15. Karrer B, Levina E, Newman MEJ. Robustness of community structure in
networks. Phys Rev E. 2008;77:046119.

16. Newman M, Barkema G. Monte Carlo Methods in Statistical Physics. Oxford
University Press: New York, USA; 1999.

17. Abolins S, et al. The ecology of immune state in a wild mammal, Mus musculus
domesticus. PLoS Biol. 2018;4(16):e2003538.

18. Balkwill FR, Burke F. The cytokine network. Immunol Today. 1989;10:299–304.

19. Callard R, George AJT, Stark J. Cytokines, chaos, and complexity. Immunity.
1999;11:507–513.

20. Subramanian N, Torabi-Parizi P, Gottschalk RA, Germain RN, Dutta B.
Network representations of immune system complexity. WIREs Syst Biol Med.
2015;7:13–38.

21. Morel PA, Lee REC, Faeder JR. Demystifying the cytokine network:
mathematical models point the way. Cytokine. 2017;98:115–123.

22. Furman D, Davis MM. New approaches to understanding the immune response
to vaccination and infection. Vaccine. 2015;33:5271–5281.

23. Yates A, Chan CCW, Callard RE, George AJT, Stark J. An approach to
modelling in immunology. Brief Bioinform. 2001;2:245–257.

24. Frankenstein Z, Alon U, Cohen IR. The immune-body cytokine network defines a
social architecture of cell interactions. Biol Direct. 2006;1:32.

25. Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA,
Klamt S, et al. Discrete logic modelling as a means to link protein signalling
networks with functional analysis of mammalian signal transduction. Mol Syst
Biol. 2009;5:331.

26. Arnold KB, Szeto GL, Alter G, Irvine DJ, Lauffenburger DA. CD4+ T
cell-dependent and CD4+ T cell-independent cytokine-chemokine network
changes in the immune responses of HIV-infected individuals. Sci Signal.
2015;8:RA104.

May 9, 2019 18/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/638445doi: bioRxiv preprint 

https://doi.org/10.1101/638445
http://creativecommons.org/licenses/by/4.0/


27. Romero R, Grivel J, Tarca AL, Chaemsaithong P, Xu Z, Fitzgerald W, et al.
Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet
Gynecol. 2015;213:836.

28. Rieckmann JC, et al. Social network architecture of human immune cells unveiled
by quantitative proteomics. Nat Immunol. 2017;18:583.

29. Broderick G, Fuite J, Kreitz A, Vernon SD, Klimas N, Fletcher MA. A formal
analysis of cytokine networks in Chronic Fatigue Syndrome. Brain Behav Immun.
2010;24:1209–1217.

30. Broderick G, Kreitz A, Fuite J, Fletcher MA, Vernon SD, Klimas N. A pilot
study of immune network remodeling under challenge in Gulf War Illness. Brain
Behav Immun. 2011;25:302–313.

31. Rubinov M, Sporns O. Weight-conserving characterization of complex functional
brain networks. NeuroImage. 2011;56:2068–2079.

32. De Vico Fallani F, Latora V, Chavez M. A topological criterion for filtering
information in complex brain networks. PLoS Comput Biol. 2017;13:e1005305.

33. MacMahon M, Garlaschelli D. Community detection for correlation matrices.
Phys Rev X. 2015;5:021006.

34. Masuda N, Sakaki M, Ezaki T, Watanabe T. Clustering coefficients for
correlation networks. Front Neuroinform. 2018;12:7.

35. Masuda N, Kojaku S, Sano Y. Configuration model for correlation matrices
preserving the node strength. Phys Rev E. 2018;98:012312.

May 9, 2019 19/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/638445doi: bioRxiv preprint 

https://doi.org/10.1101/638445
http://creativecommons.org/licenses/by/4.0/

