
Title:  

ChIP-seq of plasma cell-free nucleosomes identifies cell-of-origin gene expression programs  

 

Authors: ​Ronen Sadeh​1,2​, Gavriel Fialkoff​1,2,#​, Israa Sharkia​1,2,#​, Ayelet Rahat​2​, Mor Nitzan​1​, Ilana            

Fox-Fisher​3​, Daniel Neiman​3​, Guy Meler​1,2​, Zahala Kamari​1,2​, Dayana Yaish​4​, Samir Abu-Gazala​5​,           

Tommy Kaplan​1​, Ruth Shemer​3​, David Planer​6​, Aviad Zick​7​, Eithan Galun​4​, Benjamin Glaser​8​, Yuval             

Dor​3​, Nir Friedman ​1,2,* 

Affiliations: 

1 ​School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel. 

2 ​Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel. 

3 ​Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel. 

4 ​The Goldyne Savad Institute for Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel. 

5 ​Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel. 

6 ​Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel. 

7 ​Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel. 

8 ​Dept of Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem  9112001, Israel. 

#​ equal contribution 

* ​contact author: nir.friedman@mail.huji.ac.il 

 

Abstract:  

Blood cell-free DNA (cfDNA) is derived from fragmented chromatin in dying cells. As such, it remains                

associated with histones that may retain the covalent modifications present in the cell of origin. Until now                 

this rich epigenetic information carried by cell-free nucleosomes has not been explored at the genome               

level. Here, we perform ChIP-seq of cell free nucleosomes (cfChIP-seq) directly from human blood              

plasma to sequence DNA fragments from nucleosomes carrying specific chromatin marks. We assay a              

cohort of healthy subjects and patients and use cfChIP-seq to generate rich sequencing libraries from low                

volumes of blood. We find that cfChIP-seq of chromatin marks associated with active transcription              

recapitulates ChIP-seq profiles of the same marks in the tissue of origin, and reflects gene activity in these                  

cells of origin. We demonstrate that cfChIP-seq detects changes in expression programs in patients with               
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heart and liver injury or cancer. cfChIP-seq opens a new window into normal and pathologic tissue                

dynamics with far-reaching implications for biology and medicine. 

One Sentence Summary: 

Chromatin immunoprecipitation and sequencing of histone modifications on blood-circulating         

nucleosomes (cfChIP-seq) provides detailed information about gene expression programs in different           

human organs. 

 

Main Text: 

Cell death throughout the human body results in the release of short nucleosome-size DNA fragments               

(cfDNA) into the circulatory blood system ​(Mandel and Metais 1948)​. The plasma of healthy individuals               

contains the equivalent of ~1000 genomes per ml, with a marked increase in the amount of cfDNA in                  

many pathologies (e.g. cancer) ​(Lu and Liang 2016) and physiological conditions (e.g. exercise) ​(Haller              

et al. 2017)​. cfDNA fragments are short-lived with an estimated half-life of less than one hour ​(De                 

Vlaminck et al. 2014; Jiang and Lo 2016; Schwarzenbach, Hoon, and Pantel 2011; Lo et al. 1999)​,                 

making them ideal biomarkers for noninvasive monitoring of active physiological and pathological            

processes. Indeed, genetic variation in cfDNA is used to detect fetal chromosomal aberrations in maternal               

plasma, graft rejection, mutations, and for monitoring tumor dynamics ​(Schwarzenbach, Hoon, and Pantel             

2011; Sun et al. 2015; Lu and Liang 2016; Wan et al. 2017)​. Importantly, cfDNA contains information                 

beyond genetic variation. For example, the precise genomic location of specific cfDNA sequences reflects              

nucleosome positions in the source tissue and may thus suggest the cfDNA’s cellular origins ​(Snyder et                

al. 2016)​; the underrepresentation of specific promoter sequences in cfDNA may reflect nucleosome-free             

regions associated with genes expressed in the source tissue ​(Ulz et al. 2016)​; and, cfDNA methylation                

patterns can be used to determine its tissue of origin ​(Guo et al. 2017; Zemmour et al. 2018;                  

Lehmann-Werman et al. 2016, 2018; Kang et al. 2017; Li et al. 2018; Xu et al. 2017; Shen et al. 2018;                     

Moss et al. 2018)​. Indeed, cfDNA methylation analysis demonstrated that most of the cfDNA pool of                

healthy individual originates from leukocytes, specifically neutrophils, and monocytes ​(Moss et al. 2018;             

Sun et al. 2015)​. 

Genomic DNA, the source of cfDNA, is packaged into nucleosomes complexes made of 150bp DNA and                

histone proteins which are heavily post-translationally modified. Upon cell death, the genome is             

fragmented to nucleosome sized DNA fragments, most still associated with the histone proteins, and              

released to the blood as cell-free nucleosomes (cf-nucleosomes) ​(Holdenrieder et al. 2001, 2005; Rumore              
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and Steinman 1990)​, and there is evidence that these nucleosomes carry histone modifications ​(Gezer et               

al. 2013; Bauden et al. 2015; Deligezer et al. 2011)​.  

In cells a plethora of histone modifications mark specific regions of the genome, such as enhancers and                 

promoters, and their level correlates with gene activity ​(Gates, Foulds, and O’Malley 2017; Guenther et               

al. 2007; Barski et al. 2007; Roadmap Epigenomics Consortium et al. 2015)​. For example, tri-methylation               

of Lysine 4 on histone H3 (H3K4me3) mark active and paused promoters ​(Barth and Imhof 2010;                

Guenther et al. 2007)​. Additional histone modification mark accessible enhancers (H3K4me1/2) or            

elongation by RNA Pol II at gene bodies (H3K36me3).  

We reasoned that if active chromatin marks are retained on circulating cf-nucleosomes, capturing and              

sequencing marked nucleosomes may inform on transcriptional activity within cells contributing to the             

cf-nucleosome pool (Figure 1A). Here, we develop a method to perform chromatin immunoprecipitation             

of modified nucleosomes directly from plasma followed by sequencing (cfChIP-seq). We show that             

cfChIP-seq can specifically capture nucleosomes with different active chromatin marks, and that these             

recapitulate the original genomic distribution of the modifications, and detect changes in gene expression              

programs in the cells of origin. 

Results 

ChIP-seq of cf-nucleosomes from plasma 

We devised a simple protocol for cf-nucleosome ChIP-seq (cfChIP-seq) from 2ml of plasma from healthy               

subjects and <0.5ml from patients with increased levels of cfDNA (Figure 1B, Methods). Briefly, to               

overcome the extremely low concentration of cf-nucleosomes and the high concentration of native             

antibodies in plasma we incorporated two modifications to standard ChIP-seq. First, we covalently             

immobilized the ChIP antibodies to paramagnetic beads (Figure 1B), which can be incubated directly in               

plasma without interferences with native antibodies. Second, we minimize material loss by using an on               

bead ligation ​(Lara-Astiaso et al. 2014; Gutin et al. 2018; Singh et al. 2014; Rhee and Pugh 2011)​, where                   

barcoded sequencing DNA adaptors are ligated directly to chromatin fragments prior to the isolation of               

DNA. The resulting protocol allows us to simply and efficiently enrich and sequence targeted chromatin               

fragments from low volumes of plasma.  

We performed cfChIP-seq on multiple plasma samples from healthy individuals with antibodies targeting             

marks of accessible/active promoters (H3K4me3), enhancers (H3K4me2, or H3K4me1), and gene body            

of actively transcribed genes (H3K36me3) with reproducible yields (Figure 1C, Table S1). Several lines              
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of arguments demonstrate the specificity of cfChIP-seq: (a) cfChIP-seq signal is consistent with reference              

ChIP-seq against the same modification in tissues ​(Roadmap Epigenomics Consortium et al. 2015)​. This              

is seen in the remarkable agreement of peaks in genome browser (Figures 1C, S1A), in the average                 

pattern around promoters and enhancers (Figures 1D, S1B), and in quantitative comparison of the signal               

across multiple genomic locations, such as all promoters, (​R > 0.8 Figures 1E, S1C). Essentially all                

promoters that are ubiquitously marked (housekeeping) by H3K4me3 in reference ChIP-seq are            

significantly enriched for this mark in cfChIP-seq (9,795/10,505 promoters 93%, ​p < 10​-1000​). Focusing on               

remaining marked promoters in cfChIP-seq, there is a significant overlap (1,324/2,311 promoters 57%, p              

<10​-288​) ​with promoters from monocytes and neutrophils that are the major contributors to the cfDNA               

pool ​(Moss et al. 2018; Sun et al. 2015) (Figures 1F). (b) performing cfChIP-seq with a mock antibody                  

resulted in dramatically lower yield, with no observable signal as seen for histone modifications (Table               

S1). (c) We estimated the rate of non-specific events in each sample (Methods), and used this background                 

noise model to evaluate the expected amount of signal originating from non-specific source in each assay                

(Table S1). These results show that for H3K4me3 the levels of non-specific reads is comparable to or                 

better than reference ChIP (Figure S1D) while for other antibodies such as H3K36me3 the performance is                

lower, but still informative (below). 

A potential concern is contamination by chromatin released from in-tube lysis of white blood cells               

however, this is highly unlikely for several reasons. (a) Fragment size distributions of cfChIP-seq              

correspond to DNA wrapped around mono- and di-nucleosomes (Figure 1F), consistent with apoptotic or              

necrotic cell death, but not with cell lysis, which results in much larger fragments ​(Mizuta et al. 2013)​. (b)                   

We identified hundreds of promoters carrying H3K4me3 that are absent in ChIP-seq from white blood               

cells (leukocytes, peripheral blood mononuclear cells; Figures 1F), these include promoters of genes that              

are expressed specifically in megakaryocytes, which reside in the bone marrow (Figures 1H and S1E). (c)                

We are able to detect disease-related chromatin from remote tissues from patients (below).  

Together, these results strongly suggest that cf-nucleosomes preserve the endogenous patterns of active             

histone methylation marks in the cells of origin and can be assayed with cfChIP-seq. 

 

cfChIP-seq of H3K4me3 correlates with gene expression 

Having established that cfChIP-seq captures active histone modifications, we next asked whether these             

reflect gene expression patterns in cells. We decided to focus first on H3K4me3 for several reasons: (a)                 

H3K4me3 ChIP signal is concentrated as narrow peaks at promoters of active and poised genes. This                
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allowed us to differentiate signal from noise. (b) H3K4me3 antibodies are well established in ChIP-seq               

assays in terms of specificity and sensitivity. (c) The localization of the mark at the promoter simplified                 

connecting ChIP-seq signal and the expression of the associated genes. (d) The level of H3K4me3 at                

promoters from tissue samples correlates with the level of transcription ​(Karlić et al. 2010; Weiner et al.                 

2015; Liu et al. 2005; Pokholok et al. 2005) and is predictive of gene expression levels ​(Karlić et al. 2010;                    

Weiner et al. 2015; Liu et al. 2005) (Figure S2A). ​Consistently, we find that H3K4me3 cfChIP-seq signal                 

of healthy subjects is in agreement with gene expression levels in leukocytes  (Figure 2A).  

We next estimated the specific H3K4me3 signal at each promoter as the total number of cfChIP-seq                

reads mapped to it above the estimated level of background (Figure 2B, Methods, and Supplemental               

Note). Comparison of the specific signal at individual promoters shows a good agreement with              

expression levels of cells contributing to cfDNA (R = 0.560, Figure 2C), similarly to a comparison of                 

ChIP-seq data and matched expression data from tissues ​(Roadmap Epigenomics Consortium et al. 2015)              

(0.600 < R < 0.675 Figure S2B), but not with gene expression levels of an irrelevant tissue (Figure S2C).  

Together, these results strongly suggest that H3K4me3 cfChIP-seq signal is informative of gene-specific             

expression levels in tissue of origin.  

 

cfChIP-seq detects expression changes 

Can cfChIP-seq profiles capture changes in gene expression that reflect the underlying physiology? To              

better understand the variation of cfChIP-seq signal among subjects and in different physiological             

conditions, we performed H3K4me3 cfChIP-seq on samples from a diverse cohort of subjects (clinical              

details summarized in Table S2). These include: 15 healthy subjects (ages 23 -52); Four patients admitted                

to the emergency room with acute myocardial infarction (AMI); Nine patients with gastrointestinal (GI)              

tract adenocarcinoma; and two patients that underwent a partial hepatectomy (PHx). Some of these              

subjects were sampled multiple times at different intervals (e.g., before and after medical procedure). In               

some of these subjects there are expected changes in the cfDNA content: Cancer subjects are known to                 

have large amount of tumor cfDNA ​(Swarup and Rajeswari 2007; Leon et al. 1977) ; AMI patients after                  

percutaneous coronary intervention (PCI) have increased amount of cfDNA from cardiomyocytes           

(Zemmour et al. 2018)​. In other cases, such as hepatectomy, we expect damage to the tissue following the                  

procedure. 

To get a bird's eye view of the differences in cfChIP-seq signal among samples, we performed                

hierarchical clustering of 17,750 promoters of RefSeq genes that have a signal in at least one sample                 
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(Methods). This clustering includes cfChIP-seq samples from our cohort and representative reference            

ChIP-seq ​(Roadmap Epigenomics Consortium et al. 2015) processed with the same pipeline (Methods).             

The clustering shows several trends (Figure 3A).  

A large group of 9,376 genes show relatively small differences among samples. The genes in this cluster                 

tend to be highly expressed, housekeeping genes with CpG-island at their promoters (Figure S3).  

The remaining 8,374 genes display a rich tapestry of patterns. To investigated these patterns, we trimed                

the cluster hierarchy at 35 clusters, and summarized their average profile across samples (Figure 3B). To                

provide orthogonal view, we also summarized the average expression levels of genes in each cluster in                

two expression databases (Methods): The GTEx compendium ​(GTEx Consortium 2015) contains samples            

from multiple tissues, and the BLUEPRINT Epigenome Project ​(Stunnenberg, International Human           

Epigenome Consortium, and Hirst 2016) focuses on specific hematopoietic cell types sorted from blood,              

cord blood, and bone marrow samples. Combining these patterns with enrichments analysis ​(Kuleshov et              

al. 2016)​ allowed us to assign putative names to clusters (Figure 3 and Table S3). 

Several clusters show moderate to high signal in cfChIP-seq from healthy subjects (e.g clusters 16-26).               

Some of these have high signal in cells that contribute significantly to the cfDNA pool in healthy                 

individuals such as neutrophils and monocytes (clusters 20 and 26) ​(Moss et al. 2018; Sun et al. 2015)​.                  

Cluster 23 has strong cfChIP-seq signal and very low ChIP signal in all tissues. This cluster is enriched                  

for genes such as GP6 and GP9 that are expressed in megakaryocytes and their protein products function                 

in platelets, suggesting large contribution of bone marrow-residing megakaryocytes, or their immediate            

progenitors, to the cfDNA pool. We also identified clusters with strong patient-specific cfChIP-seq             

signals. These clusters are enriched for genes that are expressed in GI tract (clusters 1 and 4) with                  

corresponding strong cfChIP-seq signal in GI cancers. Genes expressed in heart (clusters 3 and 5) with                

corresponding strong cfChIP-seq signal in AMI patients. And, genes expressed in liver (clusters 9 and 30)                

with corresponding strong cfChIP-seq signal in PHx and some AMI patients that also experienced liver               

injury (see below). In contrast, genes specific to T-lymphocytes that have long half life and hence are not                  

major contributors to the cfDNA pool are found in cluster 8 that indeed show low cfChIP-seq signal.  

 

Multiple sources for differences in cfChIP-seq signal 

What drives the observed differences between cfDNA profiles? (Figure 3) cfChIP-seq measures the             

cf-nucleosome pool that results from combined contribution from multiple cells. Thus, we need to              

consider two scenarios for generating the observed differences (Figure 4A). (Scenario 1) Differences in              
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the proportion of cells that contributed to the cf-nucleosome pool. Such changes lead to coordinated               

changes in the cfChIP-seq signal of genes that are constitutive in the particular cell type (e.g., ALB,                 

complement, and cytochrome-C genes in hepatocytes). (Scenario 2) Changes in the expression of a              

pathway (e.g., glycolysis) or a broader program (e.g., proliferation) in a subset of cells will also result in                  

coordinated changes in the signal of multiple genes. ​More generally the changes we observe would be                

superimposition of both types of changes.  

The observations above suggest that some of the differences between samples are due to differences in                

contributions from cell types. For example, cluster 30 is highly enriched for liver-expressed genes.              

However, other differences potentially reflect changes in transcriptional programs. For example, type I             

interferon response in cluster 31, and histone 1 gene cluster in cluster 18 represent programs that can be                  

activated in various cell types.  

cfChip detects cell-type expression programs 

To better understand the contribution of cell types to the patterns of cfChIP-seq signal, we set out to                  

define cell-type/tissue - specific signatures. Briefly, using the reference ChIP-seq compendium ​(Roadmap            

Epigenomics Consortium et al. 2015)​, we searched for genomic locations (e.g., promoters) that have high               

signal in the cell type in question and low, or non-existent, signal in all other cell types (Methods, Table                   

S4). We then estimated the cumulative signal of each cell type-specific signature in each cfChIP-seq               

sample (Figure S4A, Methods). In healthy subjects most signal is from neutrophils and monocytes, and               

lower but significant signal from liver, in agreement with cfDNA methylation analysis ​(Moss et al. 2018)                

(Figure 4B). Testing significance against the null hypothesis of non-specific (background) signal, shows             

that liver-specific signature although much weaker than those of monocytes and neutrophils, is             

significantly higher than background. This is consistent with the estimates of 1-2% liver contribution to               

the cfDNA pool ​(Moss et al. 2018)​. In contrast, the heart-specific and brain-specific signatures are not                

observed in a significant manner above background (Figure 4B), consistent with cfDNA methylation             

analysis. 

In patients we see contribution of additional cell-types/tissues. These changes are consistent with             

predictions. For example, we detected heart-specific signature (Figure S4B) in samples from AMI patient              

undergoing percutaneous coronary intervention (PCI) (Figure 4C). We see good agreement between the             

strength of the cfChIP-seq heart signature, the levels of troponin measured in the blood, and the estimate                 

of heart cfDNA based on heart-specific differentially methylated CpGs ​(Zemmour et al. 2018) (Figure              

4C). When examining the changes in heart signature from admittance to the emergency room to post-PCI                

checkup (Figure 4D), we see an increase in heart signature immediately following the procedure, as               
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previously reported by assaying cfDNA methylation ​(Zemmour et al. 2018)​. 

Another example involves a patient undergoing partial hepatectomy (PHx) . We expected that during and               

following the surgical procedure we will see increase in liver cell death. Indeed, we observe dramatic                

changes during the operation which persist for a few days and slowly decay to original levels (Figure 4F).                  

These changes are strikingly consistent with measurements of the classic marker for liver damage, the               

enzyme ALT. A noticeable difference is that the cfChIP-seq liver signature dropped back to normal levels                

about 2 days earlier than ALT, likely reflecting the shorter half life of cfDNA (<2 hours) compared to                  

ALT (~47 hours) in the circulation ​(Giannini, Testa, and Savarino 2005)​. 

For an unbiased view of contributions of different cell types to cfDNA, we evaluated our panel of                 

cell-type specific signatures across cfChIP-seq samples (Figure 4G and Table S5). This analysis shows              

that in all samples we can detect signatures of a range of cell types from the blood (e.g., monocytes and                    

neutrophils), and organs (e.g., liver). Of note, there is a decrease in blood cell types in samples with                  

increased cfDNA load, consistent with smaller proportion of cfDNA from these cells. These samples              

include the the cancers C001 and C002 (cfDNA: 46.7, 84, 122ng/ml for C001.1, C002.1, and C002.2,                

respectively, compared to 4.5, and 11.75 ng/ml for healthy subjects H012.1, and H013.1, respectively)              

and AMI patient M004 (cfDNA: 21.13ng/ml and 35% of cfDNA originating from heart based on analysis                

of DNA methylation markers).  

This unbiased approach reveals a more complex picture in AMI patients. In addition to the heart signature                 

discussed above, in some AMI patients both before and shortly after PCI, we observe a significant                

increase in liver cell signature. This signature includes clear signal at liver-specific genes, such as               

Albumin and complement genes (Figure S4C). This increase is presumably a result of the well-known               

phenomenon of liver injury in AMI patients secondary to low organ perfusion and liver hypoxia ​(Ebert                

2006)​. To confirm our cfChIP-seq observations we analysed the cfDNA methylation status for             

liver-specific DNA methylation regions indicative of liver cell death ​(Lehmann-Werman et al. 2018)​.             

Indeed, we observe excellent agreement between liver cfChIP-seq signature levels and liver cfDNA             

estimates (R​2​=0.96, Figure 4H).  

In samples from GI tract cancer patients we observe signal from tissues that are not observed in healthy                  

subjects. Most evidently we observe signal originating from GI tissue and GI smooth muscle, which is in                 

agreement with the primary sites of the tumors. A weaker but significant GI signature was evident even                 

when the primary tumor was removed by surgery (patients C003-C007).  

Together, these results demonstrate that differences in the tissues of origin contribute to the differences in                
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cfChIP-seq signal among subjects. In particular, in patients the differences correspond to the tissue where               

ongoing pathological processes take place, such as heart, liver, and gastrointestinal tissue.  

 

cfChIP-seq signal reflects gene programs activity patterns 

Since cfChIP-seq signal correlates with the gene expression programs in the cell of origin, we proceeded                

to inquire whether ​cfChIP-seq can reveal more dynamic transcriptional programs beyond the information             

on tissue of origin. To test this hypothesis, we evaluated the H3K4me3 cfChIP-seq signal in gene                

signatures representing different cellular processes, protein complexes and transcriptional responses          

based on gene expression studies ​(Liberzon et al. 2015; Drew et al. 2017; Giurgiu et al. 2019; Kamburov                  

et al. 2013)​ (Methods, Table S6). 

This analysis uncovered multiple signatures that differ from expected signal --- that is, the amount of                

H3K4me3 cfChIP-seq signal captured for a signature in a subject is significantly different from the               

observed signature in an averaged reference composed of a large cohort of healthy subjects (33 samples)                

(Methods, Table S7). For example, a strong signature of Heme Metabolism is observed in M002 who                

suffered from hypoxia (Figure 5A). The blood counts of M002 indeed show high RDW and low RBC and                  

HGB, indicating higher production rate of red blood cells. During red blood cell production, erythroblasts               

lose their nucleus to become erythrocytes, presumably releasing their nucleosomes to the bloodstream             

(Lam et al. 2017; Moss et al. 2018)​. In C001 and C002 where the majority of the cfDNA originated from                    

the tumors, we observe a sharp decrease in this signature consistent with overall reduction in the                

contribution of the non-tumor cells (Figure 4G). Thus, this signature is indicative of a specific               

hematopoietic cellular differentiation process.  

Other signatures, such as glycolysis, unfolded protein response (UPR), and ribosomal protein genes             

reflect processes that can take place in multiple cell types, but are known to be upregulated in cancers                  

(Hanahan and Weinberg 2011; Cubillos-Ruiz, Bettigole, and Glimcher 2017; Bhat et al. 2015)​. Indeed,              

we see upregulation of these pathways in cancer patients (Figure 5A). In C001 and C002 we see large                  

increase in glycolysis signature, in agreement with the metabolic reprogramming, known as the Warburg              

effect, that is considered a hallmark of advanced cancers ​(Hanahan and Weinberg 2011)​. Interestingly,              

we observe increased UPR and ribosomal proteins signatures in C002 but not in C001, suggesting that                

these tumors are molecularly different. In other cancer samples, the amount of tumor derived cfDNA is                

probably too low to pass a significance test by our current analysis. This could be improved in the future                   

by correction to the fraction of tumor derived cfDNA from the total cfDNA.  
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Another example is Interferon-alpha response that is normally induced due to the presence of pathogens               

such as viruses and bacteria. We observe dramatic increase in interferon signature in M004, who seems to                 

undergo a more severe heart damage compared to other AMI patients in terms of troponin levels and                 

cfChIP-seq heart markers (Figure 4C). Induction of interferon response was recently shown to promote a               

fatal response to AMI ​(King et al. 2017) 

Looking at protein complexes signatures, we find a dramatic downregulation in the signature of the               

SWI/SNF (BAF) tumor suppressor, and chromatin remodeling complex in C001 and C002. Genes             

encoding for this complex are collectively mutated in ~20% of human cancers including GI-tract cancers               

(Kadoch et al. 2013)​. This decrease is SWI/SNF signature likely reflects tumor-specific transcriptional             

programs and not merely tissue of origin (i.e GI tract) since the signature is lower in liver tissue compared                   

with GI tract tissues (Figure S4D), yet the significant reduction of the SWI/SNF signature is observed                

only in the cancer patients cfChIP-seq, but not in patients with liver injury. 

Together, these observations demonstrate that cfChIP-seq reflects detailed changes in gene expression            

programs beyond cell type-specific programs. 

cfChIP-seq allows to dissect patient-specific molecular phenotypes 

A hallmark of cancer cells is genetic alterations that lead to dysregulated gene expression programs               

(Hanahan and Weinberg 2011)​. Identification of such cancer-specific transcriptional programs can assist            

diagnosis and treatment choice ​(Bradner, Hnisz, and Young 2017)​. We tested each sample for genes               

whose signal was elevated compared to “reference” healthy samples. As a control, unrelated healthy              

samples outside the reference set were in high correlation with healthy reference, with few genes (usually                

less than 100) showing significantly elevated signal (Figure 5B). In contrast, samples from patients              

revealed hundreds to thousands of genes with significantly elevated signal (Figure 5B, Table S8).              

Examining these genes for enrichment in annotated gene lists ​(Kuleshov et al. 2016) recapitulated some               

of the results discussed above (Figure 4F, Table S5). For example, genes with abnormally high H3K4me3                

mark in C001 were enriched for gene sets of GI tract and Brain consistent with the pathology of this                   

patient (Table S5).  

To test for cancer-specific signatures in the H3K4me3 cfChIP-seq signal we analysed expression profiles              

from The Cancer Genome Atlas and GTEx projects ​(GTEx Consortium 2015; Cancer Genome Atlas              

Research Network et al. 2013)​. For each tumor type we identified a set of genes whose expression is                  

significantly higher in the tumor compared to normal tissues (Methods, Table S9). We then tested for                

significant overlaps between the set of genes with higher H3K4me3 signal in a cfChIP-seq sample and the                 
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set of genes over-expressed in a tumor type (Methods). For example, the set of genes with high signal in                   

C002.1 has significant overlap (​q < 10​-60​) with GI-tract adenocarcinoma genes, but only negligible overlap               

with non GI cancer such as diffuse large b-cell lymphoma (DLBC) (Figure 5C). The analysis of all                 

samples against all tumor types (Figure 5C and Table S10) shows that only samples from cancer patients                 

have significant enrichment of tumor related gene expression, while healthy and MI patients do not.               

Importantly, the enrichment for cancers of the GI tract is in line with the diagnosed pathology.  

Focusing on specific genes that are known to be upregulated in GI tract cancers ​(Nissan et al. 2012; Rodia                   

et al. 2016; Wu et al. 2018) we observe a clear increase of the H3K4me3 cfChIP-seq signal in the patients                    

compared to healthy reference (Figure 5D). Among these genes we find the carcinoma markers              

CEACAM5 and CEACAM6. The protein products of these genes are used in an antibody-based assay for                

clinical cancer diagnosis ​(Duffy 2001)​. A second colorectal cancer marker, the long non-coding RNA              

CCAT1 (colorectal cancer associated transcript 1)​(Ozawa et al. 2017) shows strong signal in one of the                

cancer patients (C002) but not in healthy subjects. Another example is the non-coding antisense RNA               

EGFR-AS1 that mediates cancer addiction to EGFR and when highly expressed can render tumors              

insensitive to anti EGFR antibodies ​(Tan et al. 2017)​. While cfChIP-seq signal for EGFR is detected in all                  

cancers, EGFR-AS1 is detected only in C002. This finding, which would not be detected by cfDNA                

mutation analysis, raises the exciting possibility that cfChIP-seq can be informative for treatment choice              

beyond genomic mutations.  

 

Analysis of enhancer and gene body marks 

Our analysis of the active promoter mark H3K4me3 provided rich information regarding transcriptional             

programs in tissue of origin. Can we gain information from additional chromatin marks that are associated                

with enhancer and gene activity? Mono and di-methylation of H3 lysine 4 (H3K4me1 and H3K4me2,               

respectively) are found in two types of genomic regions: 1) promoter flanking regions at the boundaries of                 

regions marked with H3K4me3. 2) poised/active enhancers, where the H3K4me3 is barely detected ​(Visel              

et al. 2009)​. cfChIP-seq of these marks recapitulates the expected distribution (Figures 1C, 1D). Around               

active promoters, the H3K4me2 and H3K4me1 flank the main H3K4me3 peak and correlate with              

H3K4me3 (Figure S5A). Additionally, in non genic region adjacent to the IFNB1 locus, we clearly see                

H3K4me1 and H3K4me2 signal with little or no H3K4me3 coinciding with regions annotated as              

enhancers by ChromHMM ​(Roadmap Epigenomics Consortium et al. 2015) (Figure 6A). As expected,             

not all the blood enhancers in this region have cfChIP signal since not all blood cells contribute to the                   
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cfDNA pool (e.g B cells). 

We chose to focus on H3K4me2 cfChIP-seq for enhancer analysis since this antibody had low               

background and high reproducibility (Figure S5B). Comparing cfChIP-seq of the same blood sample with              

the H3K4me2 and H3K4me3 antibodies shows expected differences (Figures 1C, 1D, 6A). While we see               

H3K4me3 cfChIP-seq signal almost exclusively at promoters, a large fraction of the reads from              

H3K4me2 cfChIP-seq are mapped to putative enhancer regions based on ChromHMM (Figure S5C).  

We next examined enhancers’ tissue-specificity. We assigned each putative enhancer region to a cell type               

or combination of cell types. To ensure that we are not biased by TSS H3K4me2 signal or noise, we                   

focused on enhancers of size larger than 600bp that are at least 5Kb from the nearest TSS and do not                    

overlap a gene body. This smaller set of regions (48,525/2,345,831 regions) can be safely assumed to be                 

enhancers. Using the predictions from Roadmap Epigenomics compendium, we assigned for each            

cell-type a set of distal enhancers that are annotated only in that cell-type. Examining the number of reads                  

in these groups (Figure S5D) in healthy samples recapitulated the observations for H3K4me3 with high               

coverage for neutrophils and monocytes, less in liver and T-cells, and essentially none in heart and brain.  

Comparing H3K4me2 signal in two samples from a colorectal cancer patient (C002.1 and C002.2) against               

healthy samples, we again recapitulate the observations made above with H3K4me3 signal - the cancer               

samples have lower neutrophils and monocytes signal, and higher signal in colon-specific enhancers,             

which are barely present in healthy samples (Figure 6B). 

We next examined the coordination between promoter marking with H3K4me3 and enhancer marking             

with H3K4me2. As expected, we find examples of coordinated promoter:enhancer activation (Figure 6C,             

CDX1). The intestine-specific transcription factor CDX1 is expressed weakly in colon but not in              

leukocytes and its expression is dramatically increased in GI cancers. Indeed, we observe strong promoter               

H3K4me3 signal only in cancer patients but not in healthy subjects (Figure S5E). The strong H3K4me3                

signal in C002 promoter is accompanied by a pronounced H3K4me2 signal over large GI-specific              

enhancer regions in the vicinity of the gene only in C002 (Figure 6C), suggesting that CDX1 is activated                  

through these enhancers in colon tissue. We also find examples for enhancer swapping (Figure 6D). The                

transcription factor TCF3 has strong promoter H3K4me3 signal in every subject tested including C002              

(Figure S5E), and is expressed in many tissues including leukocytes. However, the H3K4me2 signal in               

the vicinity of the gene is strikingly different, with only cancer samples showing clear H3K4me2 signal in                 

regions that correspond to putative colon enhancers (Figure 6D, regions E2 and E4). Interestingly, we               

only observe cancer-specific increase in H3K4me2 when the signal correspond to putative fetal colon              

enhancers (compare E1 with E2, E4, and E5), consistent with de-represion of fetal oncogenes. Altogether,               
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these results suggest that CDX1 is activated through different enhancers in different tissues and these               

differences can be captured by cfChIP-seq and add important information on tissue of origin beyond the                

promoter signal. 

Tri-methylation of H3 lysine 36 (H3K36me3) is found at the body of transcribed genes. Unlike               

H3K4me3, which marks transcription start sites at both poised and active genes, H3K36me3 requires              

active transcription elongation to be deposited, and is hence more indicative of gene activity ​(Guenther et                

al. 2007)​. Despite the high background of H3K36me3 in cfChIP (Figure S1D), we do observe the typical                 

enrichment at gene bodies (Figures 1D and S6A) and the signal is in correlation to leukocyte H3K36me3                 

and RNA-seq (Figures S6B and S6C). Comparing the H3K36me3 signal from a healthy subject to that of                 

a colorectal adenocarcinoma patient, we see 3580 genes that have H3K36me3 that are significantly              

increased by at least 4 fold in the cancer sample (Figure S6D).  

Genes with H3K36me3 mark in this cancer sample can be assigned to three main classes. Class I includes                  

3404 genes that are marked by both marks in healthy and cancer samples (e.g., DHX9, Figure 6E). The                  

other two classes involve H3K36me3 marks observed only in the cancer sample. 1290 Class II genes are                 

marked with H3K4me3 in both healthy and cancer samples (e.g., SAP18 and SKA1, Figure 6E) and                

provide new information beyond H3K4me3. In contrast, 163 Class III genes are not marked with either                

signal in healthy samples (e.g., VWA2, Figure 6E).  

Contrasting the set of highly expressed genes in colorectal adenocarcinoma (COAD) from analysis of the               

TCGA expression profiles (Methods), with these three classes, we observe that each of them captures               

different parts of these sets (Figure 6F). Specifically, there are 24 COAD genes that were not detected by                  

H3K4me3 and are detected by H3K36me3. Moreover, there are 48 COAD genes (10 in Class II and 38 in                   

Class III) for which the change in H3K4me3 signal is further corroborated by H3K36me3 signal. 

Altogether, these results demonstrate how cfChIP-seq can probe the state of various genomic             

functionalities including promoters, enhancers, and gene bodies. Each is highly informative on            

transcriptional activity in cells of origin, but in a complementary manner, suggesting increased             

information that can be obtained by combining data from different histone marks.  

 

Discussion 

With advances in sequencing technologies there is a growing interest in using cfDNA as a non-invasive                

assay for monitoring human physiology. Here we introduce cfChIP-seq, a new method, to infer the               

transcriptional programs of dying cells from plasma cell-free nucleosomes. We have established            
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capability for genome-wide mapping of plasma cf-nucleosomes carrying histone marks associated with            

active transcription. We demonstrated that cfChIP-seq signal is informative about the cf-nucleosomes            

tissue of origin, and used this information to detect various pathophysiological states including heart and               

liver injury, and cancer. Notably, our results show that cfChIP-seq detects activation of genes that are                

normally not expressed in healthy subjects, allowing us to identify abnormal transcriptional processes.             

The assay requires a modest amount of plasma (2ml or less), low sequencing depth, is inexpensive, fully                 

automatable, and provides a sensitive and robust signal. Moreover, the assay leaves most of the original                

sample intact, allowing reuse for multiple assays, such as genomic sequencing, methylation analysis, or              

cfChIP-seq with additional antibodies, which is important in situations where blood volume is a limiting               

factor.  

Most current cfDNA-based methods rely on detecting genomic alterations in cfDNA to quantify the              

contribution of cfDNA from cells with altered genomic sequence, such as fetus, a transplant, or mutated                

genes in tumors ​(Schwarzenbach, Hoon, and Pantel 2011; Sun et al. 2015; Lu and Liang 2016; Wan et al.                   

2017)​. Thus, these methods are biased towards a set of pre-selected genes, and are blind to events that                  

involve turnover and death of cells whose genome is identical to the host genome. More recent                

approaches leverage epigenetic information in cell free DNA. Extremely deep sequencing of total cfDNA              

to identify nucleosomes and transcription factors positions ​(Snyder et al. 2016) and occupancy ​(Ulz et al.                

2016) reflect tissue of origin and gene expression. However, they rely on detecting changes in coverage                

over target regions, with a signal of source tissue imposed on the background of normal cells (e.g.,                 

detection of an event causing nucleosome depletion in 10% of the cells requires 90% occupancy to be                 

distinguished from 100% occupancy). Thus, such methods avoid sampling noise by using extremely deep              

sequencing coverage (100s of million reads per sample). Even with such sequencing depth, there is a                

prohibitive harsh detection limit for events in rare subsets of cells ​(Snyder et al. 2016)​. A promising                 

alternative is assaying DNA CpG methylation along the sequence to identify cell of origin ​(Guo et al.                 

2017; Zemmour et al. 2018; Lehmann-Werman et al. 2016, 2018; Kang et al. 2017; Li et al. 2018; Xu et                    

al. 2017; Shen et al. 2018)​. DNA methylation serves as a stable epigenetic memory and is largely                 

unchanged upon dynamic cellular responses. As such, it is highly informative regarding cell lineage, but               

much less about transient changes in expression. Moreover, unbiased analysis of DNA methylation             

requires high sequencing depth since most CpGs are methylated.  

cfChIP-seq has the potential to circumvent some of these limitations. Targeted enrichment of active marks               

results in dramatic reduced representation of the genome such that fewer sequencing reads (~two orders               

of magnitude less) are required to obtain informative signal. Since we target marks associated with active                
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transcription, we are assaying a positive signal, where few reads are indicative of the presence of a                 

particular cell type or expression program. This is in contrast to methods such as occupancy or DNA                 

methylation that either measure negative signal (lack of nucleosome occupancy) or both negative and              

positive signals (e.g., %methylated).  

Intensive research during the last two decades established the connection between specific histone marks              

and chromatin-templated processes including transcription, replication, and damage repair. Leveraging          

this rich and complex information to circulating cfDNA analysis has the potential to unravel physiological               

processes in remote organs, such as cell proliferation, hypoxia, inflammation, metabolic changes, and             

cancerous transformation, with minimal invasiveness. All of these processes involve activation of large             

transcriptional programs, which leave unique imprint on chromatin.  

Assaying modified cf-nucleosomes, either used alone or in combination with existing biomarkers, has             

multiple potential medical applications, such as disease detection (e.g., detecting unknown tumors),            

improved diagnosis (e.g., replacing tissue biopsy with liquid biopsy), and non-invasive monitoring of             

disease progression and treatment efficacy. Moreover, the use of minimally invasive, easy to collect assay               

opens up a wide range of opportunities for studying basic questions in human physiology that have not                 

been accessible until now.  
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Materials and Methods 

Patients 

All clinical studies were approved by the relevant local ethics committees. The study was approved by the                 

Ethics Committees of the Hebrew University-Hadassah Medical Center of Jerusalem. Informed consent            

was obtained from all subjects or from their legal guardians before blood sampling. 

Sample collection 

Blood samples were collected in VACUETTE® K3 EDTA tubes, transferred immediately to ice and 1X               

protease inhibitor cocktail (Roche) and 10mM EDTA were added. The blood was centrifuged (10              

minutes, 1500 × g, 4​ºC​), the supernatant was transferred to fresh 14ml tubes, centrifuged again (10                

minutes, 3000 × g, 4​ºC​), and the supernatant was used as plasma for ChIP experiments. The plasma was                  

used fresh or  flash frozen and stored at -80​ºC for long storage​. 

 

cfChIP-seq 

Bead preparation 

50​μg of antibody were conjugated to 5mg of epoxy M270 Dynabeads (Invitrogen) according to              

manufacturer instructions. The antibody-beads complexes were kept at 4​ºC in PBS, 0.02% azide solution.  

 
AB  Company Catalog Number 

IgG  Cell signalling 2729S 
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H3K4Me1 Diagenode C15410194 

H3K4Me2 Diagenode C15410035 

H3K4Me3 Diagenode C15410003 

H3K36Me3 Diagenode C15410192 

 

Immunoprecipitation, NGS library preparation, and sequencing 

0.2mg of conjugated beads (~2​μg of antibody) were used per cfChIP-seq sample. The antibody-beads              

complexes were added directly into the plasma (1-2 ml of plasma) and allowed to bind to cf-nucleosomes                 

by rotating overnight at 4​ºC​. The beads were magnetized and washed 8 times with blood wash buffer                 

(BWB 50mM Tris-HCl , 150mM NaCl, 1% Triton X-100, 0.1% Sodium DeoxyCholate, 2mM EDTA ,               

1X protease inhibitors cocktail), and three times with 10mM Tris pH 7.4. All washes were done with                 

150ul buffer on ice by shifting the beads from side to side on a magnet. Do not use vacuum to remove                     

supernatant during washes in buffers that do not contain detergents. 

 

On-beads chromatin barcoding and library amplification was done as previously described ​(Lara-Astiaso            

et al. 2014; Gutin et al. 2018) except for the ​DNA elution and cleanup step where ​the beads were                   

incubated for 1 hour at 55ºC in 50μl of chromatin elution buffer (10mM Tris pH 8.0, 5mM EDTA,                  

300mM NaCl, 0.6% SDS) supplemented with 50 units of proteinase K (Epicenter), and the DNA was                

purified by 0.9 X SPRI cleanup (Ampure xp, agencourt). The purified DNA is eluted in 25 μl EB (10mM                   

tris pH 8.0) and 23 μl of the eluted DNA were used for PCR amplification with Kapa hotstart polymerase                   

(16 cycles). The amplified DNA was purified by 0.8 X SPRI cleanup and eluted in 12 μl EB. The eluted                    

DNA concentration was measured by Qubit and the fragments size was analysed by tapestation              

visualization. ​Note: If too much adapter dimers were still visible by tapestation post library amplification,               

we recommend pooling samples and performing additional X 0.8 SPRI DNA cleanup, or separating the               

pooled samples on a 4% agarose gel (E-Gel® EX Agarose Gels, 4%, Invitrogen), and gel purification of                 

fragments larger than adapter dimers (>150bp). DNA libraries were paired end sequenced by Illumina              

NextSeq 500. 

  

Sequence analysis  

Reads were aligned to the human genome (hg19) using bowtie2 with ‘no-mixed’ and ‘no-discordant’              
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flags. We discarded reads with low alignment scores and duplicate fragments. See Table S1 for read                

number, alignment statistics, and numbers of unique fragments for each sample.  

 

Roadmap Epigenome atlas 

We downloaded aligned read data from the Roadmap Epigenome Consortium database (Table S11). For              

our analysis we discarded pre-natal, ESC, and cell-line samples, resulting with 64 tissues and cell types                

(Table S12). The aligned read files were then processed with the same pipeline as cfChIP-seq samples. 

 

Tumor-type Gene Signatures 

We downloaded RNA-seq data from the TCGA and GTEx projects as analysed by the Xena project                

(Vivian et al. 2017) (Table S11). We defined the set of genes that are over-expressed in a tumor type to                    

satisfy three requirements: 1) Significantly higher expression in tumor samples compared to the             

corresponding tissue samples (t-test, ​q ​< 0.001 after FDR correction); 2) Significantly higher expression              

compared to all healthy samples (t-test, ​q ​< 0.001 after FDR correction); and 3) Median expression in the                  

tumor is higher than median expression in each of the healthy samples. 

 

Expected healthy expression level 

To best emulate expression profiles, we performed ​in silico mix of the four cells types that contribute the                  

most to cfDNA ​(Moss et al. 2018)​: neutrophils, 32%; monocytes 32%; erythrocyte progenitors 20%; and               

NK cells 5%. The gene expression for these cell types was downloaded from BLUEPRINT consortium               

website (Table S11). 

  

TSS/Enhancer location catalogue 

We downloaded the Roadmap Epigenome Consortium ChromHMM annotation of all consolidated tissues            

(Table S11). Using these annotations we constructed a catalogue of potential functional sites (enhancers,              

TSSs, and genes). We extended the catalogue to include 3kb regions centered on TSS of annotated                

transcripts in the UCSC gene database and ENSEMBL transcript database (Table S11). We used the               

combined catalogue to define regions along the genome. We used different version of the catalogue for                

analysis of each antibody, to match the mark. For H3K4me3 analysis we used only TSSs, for H3K36me3                 

analysis we used only gene bodies, and for H3K4me2 we had annotations of TSSs and enhancers. In each                  
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version of the catalogue, the remaining mappable genome regions were assigned to background, and tiled               

at 5kb windows. See Supplemental Note for more detailed procedures.  

We quantified the number of reads covering each region in the catalogue in each of our samples and atlas                   

samples. We estimated locally adaptive model of non-specific reads along the genome for each of the                

samples, and extracted counts that represent specific ChIP signal in the catalogue for each sample               

(Supplemental Note). These were then normalized (Supplemental Note) and scaled to 1M reads in the               

reference healthy samples. 

 

Tissue Signatures  

To define tissue specific signatures of a specific modification, we examined binned representation of the               

atlas according to our catalogue. For each tissue we defined a signature of unique windows with signal in                  

one of the samples of the target tissue and without coverage in all others (Supplemental Note).  

 

Gene level analysis 

For each gene we defined the set of windows that match the gene (TSS in H3K4me3/2 and gene body in                    

H3K36me3). The signal for a gene is the aggregate signal-background over windows associated with it               

(Supplemental Note). 

 

Statistical analysis  

We test whether a signature is present in the analysis of Figure 4. Formally, we examined whether we can                   

reject the null hypothesis that the number of reads in signature windows will be Poisson distribution                

according to background rate (Supplemental Note). We compute p-value of the actual number of observed               

reads in signature windows as the probability of having this number or higher according to the null                 

hypothesis. Rejection of the null hypothesis for a specific signature is an indication that some of the                 

windows in the signature carry the modification in question in a subpopulation of cells contributing to the                 

cf-nucleosome pool.  

The second test is whether a gene presents a high signal with respect to its level in healthy baseline                   

subjects (Figure 5B). We use average signal from 5 healthy samples to define the average number of                 

reads in each window. We then estimate two sample-specific parameters: 1) background rate (discussed              

above) and 2) a scaling factor that rescales average expectations to the sequencing depth of the specific                 
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sample (Supplemental Note). Together, these define the expected coverage of each gene-associated group             

of windows under the null-hypothesis that the subject is from the healthy population. We compute p-value                

of the actual number of observed reads in the gene windows as the probability of having this number or                   

higher according to the null hypothesis.  

 

Pathways and complexes 

We downloaded a large collection of gene expression signatures representing different cellular processes,             

protein complexes, and transcriptional responses ​(Liberzon et al. 2015; Drew et al. 2017; Giurgiu et al.                

2019; Kamburov et al. 2013) (Table S11). Each such pathway (or complex) is represented by a list of                  

genes participating in it. Not all of the pathways represented genes with coherent co-expression, and so                

we filtered the compendium to include only pathways that behave coherently across the 64 Roadmap               

Epigenomics reference samples (Table S6; Supplemental Note). 

The score assigned to a pathway on a sample is the sum of normalized signal for the genes in the pathway.                     

We evaluated each pathway on 33 healthy samples, to estimate distribution of scores in healthy reference.                

We then evaluate scores in other samples using the Z-score of this distribution. The significance of scores                 

was determined by two-tailed test assuming Z-scores from a normal distribution.  
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Figure 1: ​ ​Immunoprecipitation of chromatin from plasma 

A. cfChIP-seq method outline. Chromatin fragments from different cells are released to the            

bloodstream. These fragments are immunoprecipitated, and sequenced. Interpretation of the          

resulting sequences informs of gene activity programs in the tissue of origin. As an example,               

death of liver cells releases to the blood nucleosomes from the ALB promoter marked with               

H3K4me3. These are mixed with other circulating nucleosomes from other cells with the ALB              

promoter not marked by H3K4me3. After immunoprecipitation of H3K4me3 cf-nucleosomes and           

sequencing, we can detect fragments of DNA aligned to ALB promoters. These are indicative of               

death of liver cells since ALB promoter is not marked by H3K4me3 in other cell types. 

B. cfChIP-seq protocol, using antibody covalently bound to paramagnetic beads. Target fragments           

are immunoprecipitated directly from plasma. After washing the plasma, on-bead-ligation is           

performed to add sequencing adapters (with indexing barcodes) to the fragments. Reverse            

crosslinking and PCR amplification results in sequencing-ready libraries. 

C. Example of cfChIP-seq signal on a segment of chromosome 12. Top tracks are cfChIP-seq signals               

from two healthy subjects. The lower tracks are published ChIP-seq results from human white              

blood cells (leukocytes) ​(Roadmap Epigenomics Consortium et al. 2015)​. In each group we show              

four tracks corresponding to cfChIP-seq (or ChIP) of four marks -- H3K4me3 (red), H3K4me2              

(green), H3K4me1 (blue), and H3K36me3 (purple). 

D. Meta analysis of cfChIP-seq signal over active promoters and enhancers. In each plot the orange               

line denotes average of corresponding control regions (inactive genes and enhancers), providing            

an estimate of the background. 

E. Comparison of H3K4me3 cfChIP-seq from a healthy subject against ChIP-seq from leukocytes            

(Roadmap Epigenomics Consortium et al. 2015)​. Each dot corresponds to a gene with the              

coordinates showing its coverage (after normalization) in the two samples: x-axis healthy            

cfChIP-seq sample, y-axis leukocytes cfChIP-seq. 

F. Analysis of promoters of RefSeq genes with a significant cfChIP-seq signal (methods) in healthy              

subjects. cfChIP-seq captures most housekeeping promoters (ones that are marked in most            

samples in the reference compendium). The remaining 2000 non-housekeeping genes in           

cfChIP-seq show large overlaps with non-housekeeping promoters marked in neutrophils and           

monocytes, the two blood cell types that contribute most to cfDNA in healthy subjects. 

G. Size distribution of sequenced cfChIP-seq fragments shows clear pattern of mono- and            

26 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2019. ; https://doi.org/10.1101/638643doi: bioRxiv preprint 

https://paperpile.com/c/3T8YYb/vQ4S
https://paperpile.com/c/3T8YYb/vQ4S
https://doi.org/10.1101/638643
http://creativecommons.org/licenses/by-nc-nd/4.0/


di-nucleosome fragment sizes. 
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Figure 2: H3K4me3 cfChIP-seq signal is correlated with expression levels 

A. Meta-plot and heat map for genes at different gene expression levels. 

B. Schematic of how we estimate specific-signal at each promoter (Methods, Supplemental Note). 

C. Comparison of H3K4me3 cfChIP-seq signal from a healthy subject (H012.1) with expected gene             

expression levels (Methods). Each dot is a gene. x-axis: normalized number of H3K4me3 reads              

in gene promoter. y-axis: expected expression in number of transcripts/million (TPM). 
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Figure 3: cfChIP-seq detects a rich tapestry of expression profiles 

A. Heatmap showing patterns of the relative H3K4me3 cfChIP-seq coverage on 17,750 RefSeq            

genes that are marked in at least one of the samples. The normalized coverage on the gene                 

promoter (Methods) was log-transformed (log2(1+coverage)) and then adjusted to zero mean for            

each gene across the samples. The samples include cfChIP-seq samples from a compendium that              

includes healthy subjects, cancer patients, acute myocardial infarction (AMI) patients, and           

patients treated with partial hepatectomy (see text).  

B. Average profiles for 35 clusters from the heatmap of (A). Top panel: number of genes in the                 

cluster. Middle panel: top half is average of relative H3K4me3 signal from cfChIP-seq samples              

and Roadmap epigenomics ​(Roadmap Epigenomics Consortium et al. 2015) ChIP-seq samples,           

bottom half is the same for RNA expression from GTEx tissues ​(GTEx Consortium 2015) and               

BLUEPRINT blood types ​(Stunnenberg, International Human Epigenome Consortium, and Hirst          

2016)​. Specific samples are highlighted on the right, and specific clusters are highlighted below. 

C. Elaboration of specific rows in B (see guidelines) against the highlighted clusters. Bars show              

change from mean for the cluster in the specific sample/tissue/cell-type. 
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Figure 4: cfChIP-seq identifies cell-type specific expression programs 

A. Schematic representation of two mechanisms leading to change in cfChIP-seq signal. Scenario 1             

represents change in the proportion of cell types that contribute to the cfDNA pool. Scenario 2                

depicts change in expression of specific genes and programs in a specific cell-type. 

B. Evaluation of average signal (normalized reads/Kb) for signatures of different cell types in 33              

healthy samples from 15 donors. Each dot is a sample, and boxplot summarize distribution of               

values in the group. Dots marked in red are ones where the signatures are significantly different                

from background signal (Methods). We observe evidence for H3K4me3 signal in promoters            

specific to neutrophils, monocytes, NK cells, liver cells, and T-cells. We observe mild signal, but               

not significantly above background, from B-cells, and no signal from heart or brain. These              

proportions are consistent with independent estimates based on DNA CpG methylation marks            

(Moss et al. 2018)​.  

C. H3K4me3 cfChIP-seq signal in heart-specific windows in representative samples of healthy           

subjects and acute myocardial infarction (AMI) patients (see Table S2 for details). ​Inset​:             

measured troponin levels and percent cfDNA from cardiomyocyte as measured using DNA CpG             

methylation markers ​(Zemmour et al. 2018)​ from the same blood draws. 

D. Changes in signature strength in an AMI (M001) patient before/after PCI. Signatures strength are              

normalized to healthy subjects. Note the increase in heart and decrease in liver signatures post               

PCI.  

E. Changes in cfChIP-seq liver signature (brown bars) and ALT levels (liver damage biomarker,             

black line) from blood samples of a patient treated with partial hepatectomy (PH01). 

F. Heatmap showing significance of selected cell-type signatures in healthy subjects and patients.            

Each cell in the map is divided in half, the top left half represents statistical significance (FDR                 

corrected q-value) and the bottom half density of reads in the signature (normalized reads per kb)                

(see Table S5, Methods). 

G. Comparison to external indication of hepatocyte death: x-axis: percent cfDNA from hepatocyte as             

measured using DNA CpG methylation markers ​(Lehmann-Werman et al. 2018)​. y-axis: strength            

of cfChIP-seq signal at liver-specific signature (relative to healthy subjects). 
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Figure 5: cfChIP-seq identifies changes in expression programs 

 

A. Examples for changes in cfChIP-seq signal strength of specific gene programs across patient             

samples (Methods). To evaluate a specific program, we sum the normalized coverage of genes in               

the program in each sample. We compute the distribution of values over reference cohort (33               

samples from 15 healthy subjects), and use these to score deviation in patients and healthy               

samples not included in the reference cohort (color: Z-score according to healthy samples;             

q-value: p-value assuming gaussian distribution with FDR correction; * ​q < 10​-3​, ** ​q ​< 10​-6​).                

Black triangles represent multiple samples (sorted according to collection time) from the same             

subject (Table S2). 

B. Detection of significant high coverage genes in a sample. Top: a sample of a healthy subject,                

bottom: sample from GI-tract cancer patient (Table S2). For each gene we compare mean              

normalized coverage in a reference cohort (x-axis) against the normalized coverage in the sample              

(y-axis). Both counts are log-transformed (log2(1+coverage). For a gene to be significant it has to               

be above the y=x+2 line (e.g., 4-fold difference) and pass a test whether the observed number of                 

reads is significantly higher than we would expect based on healthy value (corrected q-value              

shown by color scale; Methods).  

C. Heatmap showing enrichment of tumor-specific signatures (Methods) in the group of significantly            

high coverage genes (as in 4B). Each cell is divided in half, the top left half represents statistical                  

significance (FDR corrected q-value) and the bottom half overlap with the signature (% number              

of genes in signature). Inset: illustration of the overlap for two signatures (DLBC: diffuse large               

B-cell lymphoma; COAD: colorectal adenocarcinoma) against high coverage genes in C002.1. 

D. Examples of cancer-associated genes and their signal in different samples. Similar to 4A, except              

that units are normalized counts for the gene. The values in samples from healthy subject are                

close to 0. 
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Figure 6: cfChIP-seq of additional marks is informative on enhancer usage and gene expression 

A. Browser view of cfChIP-seq tracks from a healthy subject in the locus adjacent to IFNB1.               

ChromHMM tracks show prediction of enhancers according to combination of histone           

modification and chromatin accessibility assays ​(Roadmap Epigenomics Consortium et al. 2015)​.           

Arrows mark regions with enriched di- and mono-methylation.  

B. Normalized H3K4me2 coverage over a group of tissue specific enhancers (Methods) highlights            

differences between healthy subjects and two samples from a cancer patient with GI-tract             

adenocarcinoma (Table S3). Shown are the distribution of normalized coverage/enhancer for           

monocyte-specific (left) and colon-specific (right) enhancers.  

C. Browser track around the TCF3 gene. Shown are H3K4me3 and H3K4me2 cfChIP-seq            

normalized signal (top tracks) and tissue-specific chromHMM annotations (bottom panel).          

Specific enhancers are labeled (see text). 

D. Same as in Figure 6C around the CDX1 gene. 

E. Same as in Figure 6C around the CEACAM5 gene. 

F. Browser views at genes that demonstrate different H3K4me3 and H3K36me3 classes. Class I:             

genes are marked with both H3K4me3 and H3K36me3 in healthy and cancer patient samples.              

Class II: genes are marked by H3K4me3 in both, but with H3K36me3 only in the cancer patient                 

samples (gain of H3K36me3). Class III: genes are not marked in healthy subject samples and are                

marked by both marks in the cancer patient samples (gain of both marks). 

G. Venn diagram (zoom in view) showing the relations of genes from the three classes (F) with the                 

set of genes that show increased H3K4me3 and the set of colorectal adenocarcinoma (COAD)              

genes. 
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