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Abstract:  

Genomic DNA is packed by histone proteins that carry a multitude of post-translational modifications              

that reflect cellular transcriptional state. Cell-free DNA (cfDNA) is derived from fragmented chromatin in              

dying cells, and as such it retains the histones markings present in the cells of origin. Here, we pioneer                   
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chromatin immunoprecipitation followed by sequencing of cell-free nucleosomes (cfChIP-seq) carrying          

active chromatin marks. Our results show that cfChIP-seq provides multidimensional epigenetic           

information that recapitulates the epigenetic and transcriptional landscape in the cells of origin. We              

applied cfChIP-seq to 268 samples including samples from patients with heart and liver pathologies, and               

135 samples from 56 metastatic CRC patients. We show that cfChIP-seq can detect pathology-related              

transcriptional changes at the site of the disease, beyond the information on tissue of origin. In CRC                 

patients we detect clinically-relevant, and patient-specific information, including transcriptionally active          

HER2 amplifications. cfChIP-seq provides genome-wide information and requires low sequencing depth.           

Altogether, we establish cell-free chromatin immunoprecipitation as an exciting modality with potential            

for diagnosis and interrogation of physiological and pathological processes using a simple blood test.  

One Sentence Summary: 

ChIP-seq of plasma-circulating nucleosomes (cfChIP-seq) from a simple blood test provides detailed            

information about gene expression programs in human organs, and cancer. 

Main Text: 

Genomic DNA is packaged into nucleosome complexes made up of ~150bp DNA wrapped around              

histone proteins which are heavily post-translationally modified. The modifications are intimately coupled            

with transcriptional processes 1–4 --- monomethylation and trimethylation of Histone 3 Lysine 4             

(H3K4me1 and, H3K4me3) mark active and paused enhancers and promoters respectively, and            

trimethylation  of Histone 3 Lysine 36 (H3K36me3) marks elongation by RNA Pol II at gene bodies 2,5–8. 

Upon cell death, the genome is fragmented and chromatin, mostly in the form of nucleosomes, is released                 

into the circulation as cell-free nucleosomes (cf-nucleosomes) 9–11, that retain some histone modifications             
12–14. We reasoned that capturing and DNA sequencing of modified nucleosomes from plasma may inform               

on a multitude of DNA-templated activities, including transcription, within the cells of origin (Figure 1A).               

This currently inaccessible epigenetic information extends beyond cfDNA modalities examined to date            
15–32. 

Here, we perform Chromatin Immunoprecipitation and sequencing of cell-free nucleosomes directly from            

human plasma (cfChIP-seq). We show that cfChIP-seq recapitulate the original genomic distribution of             

marks associated with transcriptionally active promoters, enhancers, and gene bodies, demonstrating that            

plasma nucleosomes retain the epigenetic information of their cells of origin. We applied cfChIP-seq on               

~250 samples from more than hundred subjects including 61 self declared healthy donors, four patients               
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with acute myocardial infarction, 29 patients suffering from autoimmune, metabolic, or viral liver             

diseases and 56 metastatic colorectal carcinoma (CRC) patients. We identified bone marrow            

megakaryocytes, but not erythroblasts, as major contributors to the cfDNA pool in healthy donors. We               

show pathology-related changes in hepatocytes transcriptional programs beyond changes in cells of            

origin. In CRC patients we detect the disease with high sensitivity and demonstrate that cfChIP-seq can                

identify subgroups of CRC patients with distinct cancer-related transcriptional programs, and with            

potential implications to diagnosis and treatment.  

Results 

ChIP-seq of cf-nucleosomes from plasma 

We devised a simple protocol for cf-nucleosome ChIP-seq (cfChIP-seq) from small amounts of plasma --               

2ml of plasma from healthy donors and <0.5ml from patients with increased levels of cfDNA (Methods).                

Briefly, to overcome the extremely low concentration of cf-nucleosomes and the high concentration of              

native antibodies in plasma, we incorporated two modifications to standard ChIP-seq protocols (Figure             

1B). First, we covalently immobilized the ChIP antibodies to paramagnetic beads, which can be incubated               

directly in plasma avoiding competition with native antibodies. Second, we maximize efficiency by using              

an on bead adaptor ligation 33–36, where barcoded sequencing-DNA adaptors are ligated directly to              

chromatin fragments prior to the isolation of DNA. The resulting protocol allows us to simply and                

efficiently enrich and sequence targeted chromatin fragments from low volumes of plasma.  

We performed cfChIP-seq on multiple plasma samples from healthy individuals with antibodies targeting             

marks of accessible/active promoters (H3K4me3 or H3K4me2), enhancers (H3K4me2, or H3K4me1),           

and gene body of actively transcribed genes (H3K36me3) (Figure 1C). cfChIP-seq profiles obtained from              

on the same blood sample with different antibodies show the expected patterns (Figures 1C, 1D). While                

we see H3K4me3 cfChIP-seq signal almost exclusively at promoters, a large fraction of the reads from                

H3K4me2 cfChIP-seq are mapped to putative enhancer regions (Methods, Figure S1A).  

cfChIP-seq is highly specific, as argued by several lines of evidence: (a) cfChIP-seq signal is consistent                

with reference ChIP-seq in tissues 4, evident by the remarkable agreement of peaks in genome browser                

(Figures 1C, S1B), in the average pattern around promoters and enhancers (Figures 1D, S1C), and in                

quantitative comparison of the signal across multiple genomic locations, such as all promoters, (R > 0.8                

Figures 1E, S1D). Essentially all promoters that are ubiquitously marked (housekeeping) by H3K4me3 in              
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reference ChIP-seq are significantly enriched for this mark in cfChIP-seq (9,795/10,505 promoters 93%, p              

< 10-1000). Focusing on marked promoters from non-housekeeping genes in cfChIP-seq, there is significant              

overlap (1,324/2,311 promoters 57%, p <10-288) with promoters from monocytes and neutrophils that are              

the major contributors to the cfDNA pool 16,31 (Figure 1F). (b) Performing cfChIP-seq with a mock                

antibody resulted in dramatically lower yield, without the enrichment seen for histone modifications             

(Table S1). (c) We estimated the rate of non-specific events in each sample (Methods) and used this                 

background noise model to evaluate the expected amount of signal originating from a non-specific source               

in each assay (Methods, Table S1). These results show that for H3K4me3 the levels of non-specific reads                 

are comparable to or lower than reference ChIP (Figure S1E) while for other antibodies such as                

H3K36me3 the performance is reduced, but remains highly informative (below). 

The signal obtained by cfChIP-seq is not due to white blood cells lysed during sample handling. Several                 

avenues of evidence show this. (a) Fragment size distributions of cfChIP-seq correspond to DNA wrapped               

around mono- and di-nucleosomes (Figures 1G, and S2A), consistent with apoptotic or necrotic cell              

death, but not with cell lysis, which results in much larger (>10kb) fragments 37. (b) We identified 676                  

promoters carrying H3K4me3 that are absent in ChIP-seq from white blood cells (leukocytes, peripheral              

blood mononuclear cells; Figures 1F), these include promoters of genes that are expressed specifically in               

megakaryocytes, which reside in the bone marrow (below). (c) In patients, we detect disease-related              

chromatin from remote tissues including heart, liver, and colon (below).  

Together, these results strongly suggest that cf-nucleosomes originate in cells that have died in vivo, and                 

preserve the endogenous patterns of active histone methylation marks in the cells of origin and can be                 

assayed by cfChIP-seq. 

cfChIP-seq detects changes in cell free nucleosome origins 

To appreciate the variability in cfChIP-seq signals between samples, we examined several self-reported             

healthy donors. We found a high similarity of signal between individuals that was in the range of the                  

observed similarity between samples obtained on different days from the same donor (Figure S2B,              

Supplemental Note). We next turned to examine the differences between samples from healthy donors              

and samples from a cancer patient with advanced stage metastatic CRC. We expected that a large fraction                 

of the cfDNA in advanced cancer patients will be from tumor origin 18,31. Indeed, samples from this                 

patient had a substantial increase in cfDNA concentration (84-122 ng/ml vs 4-10 ng/ml for healthy               

donors), the majority of which is most likely of  tumor, or tumor-adjacent origin. 

Comparing these cancer samples to healthy samples we observe dramatic differences in cfChIP-seq signal              
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of H3K4me3, H3K4me2, and H3K36me3 (Figure 2A). These include specific, and statistically significant             

increases in H3K4me3 (1,639 regions), H3K4me2 (2,595 regions), and H3K36me3 (5,416 regions)            

(Methods). Many of these regions show no signal in samples from healthy donors. Genes associated with                

these regions include several classic CRC markers, such the long non-coding RNA CCAT1 (colorectal              

cancer associated transcript 1)38, CRC-specific transcription factors such as CDX1, and the carcinoma             

associated antigen EPCAM (Figure 2A). In addition, we observed increased H3K4me3 modification at             

the promoter of the non-coding antisense RNA EGFR-AS1 39. While H3K4me3 cfChIP-seq signal at the               

promoter for EGFR is detected in both healthy and cancer samples, EGFR-AS1 is detected only in the                 

cancer patient. This finding, which can not be detected by cfDNA mutation analysis, highlights the               

potential relevance of cfChIP-seq for treatment choice beyond genomic mutations. 

cfChIP-seq signals are enriched with promoters and genes related to CRC and not other cancer types. To                 

systematically test for cancer-specific signatures in cfChIP-seq signal we analyzed expression profiles            

from The Cancer Genome Atlas (TCGA) and GTEx projects 40,41. For each cancer type we generated a                 

cancer-specific signature composed of the set of genes whose expression is significantly higher in the               

tumor compared to normal tissues (Methods, Table S2). We then tested for significant overlaps between               

the set of genes with a higher cancer-specific cfChIP-seq signal and the set of genes in each cancer                  

signature (Methods). The set of genes with high H3K4me3 signal in the cancer patient has a significant                 

overlap (303 of 739 genes, q < 10-90) with GI-tract adenocarcinoma genes (COAD), but only a negligible                 

overlap with non-GI cancers such as diffuse large b-cell lymphoma (DLBC)  (Figure S3A).  

Tissue-specific enhancers can also be detected by cfChIP-seq. Since H3K4me2 marks promoter proximal             

and enhancer regions we examined how H3K4me2 signal at enhancers differentiates the cancer sample              

from samples of healthy donors. To ensure that we are not biased by promoter signal, we focused on                  

regions of a size larger than 600bp that are at least 5Kb from the nearest TSS and do not overlap a gene                      

body. This smaller set of regions (48,525/2,345,831 regions) can be safely assumed to be of enhancers.                

Using the Roadmap Epigenomics compendium chromatin annotations, we assigned for each cell-type a             

set of unique distal enhancers. Comparing H3K4me2 signal in healthy samples to a sample from a                

colorectal cancer patient, we observed significantly higher signal in colon-specific enhancers, which are             

barely present in healthy samples (Figure S3B). 

The activity of elongating RNA polymerase at gene bodies can be monitored by H3K36me3 cfChIP-seq.               

Unlike H3K4me3, which marks transcription start sites at both poised and active genes, Tri-methylation              

of H3 lysine 36 (H3K36me3) requires active transcription elongation to be deposited, and is hence more                
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indicative of gene activity 2. Despite the high background of H3K36me3 in cfChIP-seq (Figure S1D), we                

do observe the typical enrichment at gene bodies (Figures 1D and S3C) and the signal in healthy donors                  

correlates with leukocyte RNA-seq (Figure S3D). Comparing the H3K36me3 signal from a healthy donor              

to that of a colorectal adenocarcinoma patient, we observe 5,416 genes that are hyper H3K36               

tri-methylated, by at least 4 fold in the cancer sample compared to healthy donors (Figure 2A). 

The signal from H3K4me3 and H3K36me3 cfChIP-seq corroborates the cancer origin of nucleosomes.             

Examining the ~5400 genes with increased H3K36me3 signal in this cancer sample, we distinguish              

between three main classes. Class I includes ~3,400 genes that are marked by both H3K36me3 and                

H3K4me3 in healthy and cancer samples (e.g., DHX9, Figure 2B). Class II contains ~1,300 genes that are                 

marked with H3K4me3 in both healthy and cancer samples (e.g., SAP18 and SKA1, Figure 2B) but differ                 

in H3K36me3 signal, which provides new information beyond H3K4me3. Finally, 159 Class III genes are               

not marked with either signal in healthy samples (e.g., VWA2, Figure 2B). Contrasting the set of highly                 

expressed COAD signature genes, with these three classes, we observe that each class captures different               

parts of these sets (Figure 2C). Specifically, 68 COAD genes that were not differentially marked by                

H3K4me3 are detected as active by H3K36me3. Moreover, for 113 COAD genes (32 in Class II and 81 in                   

Class III) the change in H3K4me3 signal is further corroborated by H3K36me3 signal. 

Altogether, these results demonstrate the ability of cfChIP-seq to probe the state of various genomic               

features including promoters, enhancers, and gene bodies. Moreover cfChIP-seq detects functional           

changes of these features in samples from a cancer patient. The observed changes are consistent with                

independent studies of this type of cancer. These results strongly support the notion that the nucleosomes                

captured by, cfChIP-seq were modified in, and originate from the remote solid tissue. The multiple               

modification assays and their analysis demonstrates that each of these features is highly informative on               

various aspects of transcriptional activity in the cells of origin. 

cfChIP-seq is highly sensitive 

The ability of cfChIP-seq to detect rare molecular events in the cfDNA pool is dictated by several factors:                  

1. The number of informative molecules in the sampled plasma; 2. The capture rate of marked                

informative molecules; and, 3. The signal to noise ratio (SNR) of the assay. We examine each of these in                   

detail. 

The number of informative molecules in the plasma depends on the number of the relevant marked                

nucleosomes in each cell of interest. This number is proportional to the size of the genomic region in                  

question and the amount of cells of interest that had shed their nucleosomes to the blood (Figure 3A). For                   
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example, there are 30 cardiomyocyte-specific promoters with varying lengths that consist of 366             

nucleosomes that are marked with H3K4me3 only in cardiomyocytes, these promoters drive expression of              

many cardiomyocyte-specific genes such as the troponins TNNT2 and TNNI3 and the cardiac myosin              

heavy chain MYH6. All the marked molecules originating from these regions in cardiomyocytes are              

informative for detecting cardiomyocyte presence. Assuming a 1% contribution of cardiomyocyte to a             

cf-nucleosomes pool of ~1,000 genomes/ml, we expect ~7,320 informative nucleosomes in a 2ml sample.              

Estimates for different cell types are given in (Figure S4A).  

To evaluate the capture rate of marked molecules, we used our prior knowledge of the genomic                

distribution of H3K4me3 marked nucleosomes, which are highly localized to transcription start sites             

(Figure 1C, D). Using this prior knowledge we distinguish between non-specific capture (in regions              

without TSSs) to specific capture (in TSSs that are known to be constitutively marked by H3K4me3). We                 

can then contrast the amount of input molecules against the number of uniquely sequenced reads to                

estimate the probability of specific capture and the probability of nonspecific capture (Figures S4B and               

S4C, Methods). With these assumptions and by using two different approaches (Methods), we estimate              

the H3K4me3 specific capture probability to range between 0.01% and 0.1% across dozens of cfChIP-seq               

experiments (Figure S4D).  

Based on these estimates we modeled the detection probability for a signature as a function of the percent                  

contribution to the cf-nucleosome pool, and the number of informative nucleosomes (Figure 3B). This              

estimate assumes independence of the concentration of plasma nucleosomes and capture rate. This             

assumption was verified by spiking increasing amounts of yeast-derived nucleosomes into a healthy donor              

plasma (Figure 3C). Assuming 10ml of plasma, which is standard in the field, and using realistic                

background and capture rates, we predict that detection of a cell-type that contributes 0.1% to the                

cf-nucleosome pool, requires >200 uniquely marked nucleosomes (>50 promoters). This is much lower             

than the number of informative H3K4me3 nucleosomes in several tissue signatures such as heart, liver, or                

CRC, and an order of magnitude lower than the number of potential informative H3K4me2, and               

H3K36me3 nucleosomes (Figures 3B and S4A). Such a sensitivity approaches the range that is thought to                

be required for early detection of cancer via ctDNA 42. 

To evaluate these predictions in practice, we took advantage of sequences unique to the Y chromosome                

and titrated male-derived plasma into female-derived plasma. We evaluated the sensitivity for genomic             

signatures of different sizes at male-specific locations on the Y chromosome (Figures 3D and S4D),               

detecting the presence of male chrY when it was present in 1.5% of the genomes in the plasma (~30                   
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copies, Figure 3D). These numbers are consistent with our estimates based on the parameters of the                

specific experiment (Figure S4E and S4F). 

This collection of technical experiments, and their analysis, establish the quantitative nature of the              

method, provide a robust and cross-validated estimate of the sensitivity of the assay and the main                

parameters underlying this sensitivity. Importantly, this analysis assumed a single (and rare) modification             

is assayed, however, a combination of several modifications will no doubt increase the effective              

sensitivity, and bolster confidence in specific co-occurring findings, as we demonstrated (above).. 

cfChIP-seq of H3K4me3 correlates with gene expression 

Having established that cfChIP-seq captures active histone modifications, and identifies differential           

modification states in diseased tissues, we decided to systematically evaluate the extent to which these               

reflect gene expression patterns in the cells of origin. We focused on the well characterized H3K4me3                

mark since the signal is highly focused at promoters and is predictive of gene expression levels 43–45.  

To validate the relationship between promoter H3K4me3 and gene expression levels, we used 56              

Roadmap Epigenomics samples that have matching gene expression and H3K4me3 ChIP-seq profiles. For             

each gene, we compared the expression levels of the gene to promoter H3K4me3 ChIP-seq signal across                

all samples (Methods). We find that for a large group of genes (10,150/14,313 genes), H3K4me3               

ChIP-seq signal is significantly correlated with differences in expression levels of the gene (pearson             

; Figure 4A). Most of the genes that do not have significant correlation are either genes that.28≤r≤0.990                  

have high H3K4me3 levels in their promoters in most samples (housekeeping, 1,616/4,163 genes, e.g.,              

RAD23A) or genes with low levels of expression in all tissues (1,299/4,163 genes).  

Next, we examined the relation between transcriptional levels and cfChIP-seq H3K4me3 signal.            

Comparison of H3K4me3 cfChIP-seq signal at promoters shows a good agreement with RNA levels in               

cells known to contribute to the cfDNA pool ( ; Figure 4B). This correlation is similar to a        .40r2 = 0          

comparison between H3K4me3 ChIP-seq signal and RNA levels in matching tissues 4 ( ,            .35 .450 < r2 < 0  

Figure S5A for an example), but not with that of an irrelevant tissue (Figures S5B and S5C).  

Together, these results strongly suggest that H3K4me3 cfChIP-seq signal is informative of gene             

expression levels in tissues of origin.  

cfChIP-seq survey of diverse physiological and pathological conditions  

Can cfChIP-seq profiles capture signals that reflect the underlying physiology? To better understand the              
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variation of cfChIP-seq signal among subjects and in different physiological conditions, we performed             

H3K4me3 cfChIP-seq on 268 samples from a diverse cohort of subjects (clinical details summarized in               

Table S3). These include: 88 samples from 61 healthy donors (ages 23 - 66); 8 samples from four patients                   

admitted to the emergency room with acute myocardial infarction (AMI); 38 samples from 33 patients               

with a range of liver-related pathologies; and 135 samples from 56 patients with metastatic CRC. There is                 

expected variation in the cfDNA content among these patients due to changes in the contributing tissue of                 

origin. For example, we expect to detect cfDNA from cardiomyocytes following AMI 27, cfDNA from               

colon tumors in CRC patients 46,47, and an increase in hepatocyte cfDNA in various liver pathologies 30. 

To get a bird's eye view of the differences in cfChIP-seq signal among samples, we performed a                 

hierarchical clustering of 14,875 RefSeq genes promoters that have a noticeable signal in at least one                

sample across 268 samples (Methods). The clustering shows several trends (Figure 4C). A large group of                

10,177 genes shows relatively small differences among samples. As expected, these genes tend to be               

highly expressed, housekeeping genes with CpG-island at their promoters (Figure S5D and S5E). The              

remaining 4,698 genes display a rich tapestry of patterns (Figure 4D). Strikingly, the variability among               

patients is much higher compared to healthy donors. We explore this variability in detail below. 

Several clusters display high signal in healthy donors. Among these are clusters enriched for neutrophils               

(Cluster d) and for liver (Cluster b) that have observable signals in healthy donors, in agreement with                 

previous studies 16,31. In contrast we see large clusters (Clusters a and c) enriched for GI tract and other                   

solid tissues which show minimal signal in healthy donors. 

Platelet progenitor cfDNA in healthy donors 

Our analysis identified a cluster with a positive signal in healthy donors (Cluster e, Figure 4D) that is                  

enriched for megakaryocytes-specific genes such as GP6 and PF4 (25/144 genes in the cluster are in the                 

REACTOME “Platelet activation, signaling and aggregation”, p < 2x10-25). However, there are no             

previous reports of megakaryocytes as a source of cell-free DNA. Conversely, previous analysis of              

cfDNA CpG methylation identified erythroblasts as major (20%-40%) contributors of cfDNA 31,48. These             

erythroblast-specific promoters are largely absent in healthy samples (Figure 4E). Two lines of evidence              

suggest that this is not due to the inability of cfChIP-seq to detect signals in these genes. First, H3K4me3                   

in ChIP-seq of erythroblasts and megakaryocytes derived from cord blood in the BLUEPRINT project 49               

show the expected marking of the relevant genes in each cell type (Figure 4E). Second, there is a dramatic                   

increase in cfChIP-seq signal of erythropoiesis related genes in one of our samples (e.g., GYPA, GYPB                

and ASHP, Figure 4E). This patient suffered from severe hypoxia at the time the blood was drawn and                  
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displayed signs of increased production of red blood cells (high RDW and low RBC and HGB; Table S3).                  

Of note, this increase in erythropoiesis related genes is accompanied by a decrease in the signal for                 

megakaryocyte-specific genes (Figure 4E). 

Altogether our results suggest that platelet progenitors but not erythrocyte progenitors are major             

contributors to the cfDNA pool in healthy donors. The possible source of the discrepancy is lineage                

adjacency of erythrocytes and megakaryocytes who are both derived from a common hematopoietic             

progenitor 50, and thus may have similar CpG methylation patterns. Indeed, re-examining the DNA              

methylation analysis 48 using BLUEPRINT bisulfite sequencing data 49 we find that the region used is                

unmethylated also in megakaryocytes (Figure S5F), and thus it does not differentiate between these two               

cell types. This observation highlights the value of gene expression oriented information produced by              

cfChIP-seq in detecting events that are indistinguishable otherwise.  

cfChIP-seq detects cell of origin expression programs 

To detect the compositions of cells/tissues that contribute to the cfDNA pool we defined              

cell-type/tissue-specific signatures from published ChIP-seq data4,49 (Figure 5A). We defined genomic           

locations (e.g., promoters) that have high signal only in the cell type in question (Methods, Table S4).                 

Using this set of unique signatures we can test whether there is a contribution of the particular cell-type to                   

the cf-nucleosome pool, since the only possible source of a signal in these loci is from that specific cell                   

type. To detect the presence of a cell-type specific signature we compute the cumulative signal of the                 

signature and contrast it against the null hypothesis of non-specific signal (Methods). In healthy donors,               

we observed a strong signal of neutrophil-, monocyte-, and megakaryocyte-specific signatures, and a             

lower but clear and significant signal of liver-specific signature, in agreement with published cfDNA              

methylation analysis 31 (Figure 5B). In contrast, no significant signatures from additional tissues such as               

heart and brain were observed (Figure 5B). 

As controlled test cases for cell-type detection, we considered pathologies where an increase in the signal                

of specific types of cells is expected. One such case is AMI, which involves the ongoing death of                  

cardiomyocytes. A cardiomyocytes signal is not observed in healthy donors (Figure 5B), but clearly              

detected in samples from AMI patients undergoing percutaneous coronary intervention (PCI) (Figure 5C).             

Comparing our results to other measurements, we see good agreement between the strength of the               

cfChIP-seq heart signature, the levels of troponin measured in the blood, and the estimate of heart cfDNA                 

by CpG methylation 27 (Figure 5C). When examining the changes in heart signature from admittance to                

the emergency room to post-PCI checkup (Figure 5D), we see an increase in heart signature immediately                
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following the procedure, as previously reported by assaying cfDNA methylation 27. 

Another test case involves recovery from partial hepatectomy where we expect to observe increased liver               

cell death. Indeed, we observed dramatic changes in the cfChIP-seq signal of liver signature following the                

operation which persisted for a few days and decayed to basal levels (Figure 5E). These changes are                 

strikingly consistent with measurement of the liver marker ALT. A noticeable difference is the faster drop                

in the cfChIP-seq liver signal compared to ALT, likely reflecting the shorter half-life of cfDNA (<1 hour)                 

relative  to ALT (~47 hours) in the circulation 51. 

An important advantage of cfChIP-seq is that it is not limited to a set of preselected markers and hence it                    

can provide an unbiased view of the contributions of different cell types to the cfDNA pool. To                 

implement such an unbiased approach, we evaluated the panel of cell-type specific signatures across all of                

our cfChIP-seq samples (Figure 5F and Table S5). This analysis shows that in all samples we can detect                  

signatures of leukocytes (e.g., monocytes and neutrophils), and remote organs (e.g., liver and bone              

marrow megakaryocytes). Of note, the observed decrease in the relative level of leukocyte signatures in               

samples that show increased cfDNA load, is consistent with a smaller proportion of cfDNA from these                

cells. For example, AMI patient M004.1 had cfDNA concentration of 21ng/ml and 35% his cfDNA               

originated from heart based on CpG methylation analysis.  

This unbiased approach reveals a more complex picture in AMI patients. In addition to the heart signature                 

discussed above, in some AMI patients we observe a significant increase in cfChIP-seq liver signature               

both before and shortly after PCI (Figure 5D). This signature includes a clear signal at liver-specific                

genes, such as Albumin and complement genes (Figure S6B). This increase is presumably due to liver                

injury in AMI patients secondary to low organ perfusion and liver hypoxia 52. To confirm the unexpected                 

liver cfChIP-seq signal in AMI patients, we analysed the cfDNA methylation status for liver-specific              

DNA methylation regions indicative of liver cell death 30, and find excellent agreement between liver               

cfChIP-seq signature levels and liver cfDNA estimates (R2=0.96, Figure S6C).  

Together, these results demonstrate that cfChIP-seq signal reflects differences in the tissue of origin              

composition. In particular, where ongoing pathological processes take place, cfChIP-seq signal           

corresponds to the affected tissue, such as heart and liver. 

cfChIP-seq signal reflects patient-specific transcriptional programs activity  

Since cfChIP-seq signal correlates with the gene expression programs in the cells of origin, we proceeded                

to inquire whether cfChIP-seq can reveal specific transcriptional programs within the tissue of origin. To               
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test this hypothesis, we evaluated the H3K4me3 cfChIP-seq signal in gene sets representing different              

cellular processes, protein complexes, transcriptional responses based on gene expression studies, and            

targets of transcription factors based on ChIP studies 53–56 (Figure 5G, Methods). Many of these sets                

include genes that are not unique to a certain cell type and are specifically marked by H3K4me3 in cells                   

that contribute to the cf-nucleosomes pool in healthy donors. We thus devised a test for changes in the                  

signal of a gene set (sum over all the genes within the set) compared to the mean and variance of a                     

reference healthy cohort of 26 samples (Methods). This analysis uncovered multiple gene sets which              

signal differs from the expected signal --- that is, the amount of H3K4me3 cfChIP-seq signal for the gene                  

set in a subject is significantly different from the observed signal in the reference healthy cohort (Table                 

S6). 

cfChIP-seq identifies patient specific transcriptional programs. For example, in M002.1 we observe a             

strong increase in the signal of Heme Biosynthesis (q < 10-9) and a strong decrease in Granulocytes                 

Pathway (q < 10-9), consistent with the results discussed above (Figure 5D). Another example is the                

increased interferon signature in M004, who suffered a severe heart damage as reflected by the levels of                 

troponin and cfChIP-seq heart markers (Figure 4C). Induction of interferon response was recently shown              

to promote a fatal response to AMI 57. The induction of interferon-mediated immune response is               

accompanied by increased cfChIP-seq signal in targets of STAT2 and other immune-related transcription             

factors. In addition, consistent with the massive amount of cardiomyocyte cfDNA in M004, we observed               

a significant increase in targets of MYOD1 and MYOG1, two factors involved in cardiomyocyte              

development. 

Detection of pathology-specific liver signals  

The dynamic nature of active histone marks suggested the hypothesis that cfChIP-seq may inform on intra                

tissue pathology-related alterations in gene expression. To test this hypothesis, we decided to focus on               

hepatocytes since 1. Hepatocytes play a central role in multiple facets of physiology - metabolism,               

metabolite storage, protein synthesis and degradation, blood homeostasis, bile production, and drug            

clearance and 2. Many of the gene programs enriched in our samples are related to liver function (e.g.,                  

HNF4A and FOXA2 targets, triggering of complement, and cytochrome P450 complex; Figure 5G). We              

assumed that differences in disease etiology and presentation could reflect in different cfChIP-seq signals              

despite common tissue of origin. We first assembled a cohort of subjects with verified liver-related               

diagnosis and/or subjects showing increased liver contribution. This cohort included subjects at different             

stages of Nonalcoholic fatty liver disease/Nonalcoholic steatohepatitis (NAFLD/NASH) (n=15),         
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autoimmune hepatitis (AIH) (n=3), post liver transplant (n=5), infection associated with liver injury             

(n=1), AMI-associated liver injury (n=1) and partial hepatectomy patients (n=2) as discussed above             

(Table S3).  

We estimated the percentage of liver-derived chromatin in each sample using the Roadmap Epigenomics              

liver H3K4me3 ChIP-seq sample as an instance of pure liver tissue (Figure 6A, Methods). The resulting                

estimates range from ~2% in healthy samples to 44% in liver patients. These estimates are consistent with                 

the previously reported 2-4% liver contribution in most healthy donors 31 and with a CpG methylation                

based estimate of liver cfDNA quantity  (r 2 = 0.87, Figure S6D). 

For example, sample L001.1 is taken from a young child suffering from AIH. We estimated that 44% of                  

its cfDNA is liver-derived. Comparing the signal of L001.1 to healthy reference we find 959 genes with                 

significantly increased cfChIP-seq signal (Figure 6B). These genes are highly enriched for liver functions              

and hepatocyte genes (q  < 10-250). 

To understand whether this increase in liver genes signal is universal to all liver pathologies, we                

compared L001.1 with M001.1, a sample from an AMI patient that has similar estimated levels of liver                 

contribution (41% liver). As expected, many liver-specific genes are similarly increased in both samples              

(Figure 6C, dark gray circles). We did not, however, observe pronounced differences between the two               

samples (Figure 6C) with hundreds of genes significantly higher in only one of these samples. In L001.1                 

we observe enrichment for genes involved in interferon gamma signaling (q < 2x10-8), immune system (q                

< 1.2x10-7), MHC class II protein complex (q < 1.4x10-6), and allograft rejection (q < 1.3x10-5), consistent                 

with the autoinflammatory state of this patient. We also detect stronger signal in genes associated with                

AIH such as the transcription factor FOXP3, and the interferon gamma induced chemokines CXCL9,              

CXCLl1, and CCL20 58,59 (Figure 6C). Importantly, several of these genes (dark colors) are liver specific,                

demonstrating a potential of cfChIP-seq in detecting intraorgan transcriptional changes. The liver-specific            

genes that show specific increase in L001.1 are enriched for genes involved in complement and               

coagulation (q < 1.5x10-4), such as CFH and C4BPA, consistent with the immune phenotype in this                

patient. M001.1 shows relative increase in genes enriched for neutrophil-mediated immunity (q <             

5.8x10-8). This could also be due to a decrease in this signal in L001.1. Focusing on liver-specific genes                  

we see enrichment for metabolism-related pathways such as metabolism of xenobiotics by P450 (q <               

1.1x10-5), and bile secretion (q  < 1.5x10-4).  

To get a more systematic view of the differences between samples that are due to changes in liver-specific                  

expression programs rather than the amount of liver contribution, we focused on 1,320 genes whose               
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expression is significantly higher than expected in one of the liver cohort samples, compared to the                

healthy cohort, (Figure 6D, left panel). We calculated the expected signal per gene based on the estimated                 

liver contribution of the specific sample and the ChIP-seq signal of the gene in healthy liver tissue (Figure                  

6D, middle panel, Methods). We next used the expected and observed values to calculate a Z-score --- the                  

extent of deviation of the observed signal from the expected value, accounting for both sampling noise                

and the variability observed between healthy donors (Figure 6D right panel). We then used this score to                 

cluster the matrix (Methods, Figure 6D) .  

This analysis identified gene clusters for which the expected signal explains most of the variation between                

samples (e.g Clusters I, III, and IV), suggesting that most of the signal in these clusters is due to                   

contribution from liver cells. In other clusters, such as Cluster XV the signal is not explained by the                  

amount of liver contribution and indeed, many of the genes in the cluster are expressed specifically in                 

erythrocyte progenitors (e.g., ASHP and HBD; 37/78 genes, q < 10-12, Figure 6D). In some clusters, such                 

as Clusters II, V, and XI, the amount of liver contribution explains some of the observed differences, but                  

not all of them. These genes can be either differentially expressed in the liver in some of the subjects, or                    

originate from a mixture of several different tissues (e.g., liver and heart). To better understand the                

contribution of liver-specific transcriptional programs, we focused on clusters where at least 50% of the               

genes are annotated as hepatocyte genes 60 (Figure 6E, Clusters I-VI, XI, XII). Such analysis may identify                 

additional genes that are only expressed in abnormal hepatocytes, due to coexpression with healthy              

hepatocytes genes within the cluster..  

Next we performed enrichment analysis of the gene sets in each cluster (Figure 6F). As expected we see                  

strong enrichments for many liver related terms (Table S7). Interestingly, some clusters show strong              

enrichments only to specific terms. For example, the genes of Cluster I are enriched for genes involved in                  

the process of cholesterol homeostasis (9/111 genes, q < 4x10-8) and the genes in Clusters I and IV are                   

enriched with genes of the complement and coagulation cascade (14/111 genes, q < 3x10-15, and 11/77                

genes, q < 2x10-12, respectively). c 

To further characterize the clusters, we examined a recent single-cell RNA-seq atlas of human liver cells                
61. This atlas includes lists of marker genes for hepatocytes at different liver zones which represent                

division of labor among hepatocytes in the axis from the portal vein, (input to the liver from the                  

gastrointestinal tract) to the central vein (output from the liver) 62. Testing our gene clusters against these                 

marker genes we see that Clusters I and IV are enriched for marker genes of periportal hepatocyte zones,                  

Cluster I is also enriched for genes of middle hepatocyte zones, and Clusters II and V are enriched for                   
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marker genes of central hepatocyte zone (Figure 6F). These could indicate either increased cell death in                

the relevant zone, or global changes in liver metabolism toward the relevant metabolic regime. 

This analysis demonstrates that unbiased clustering of the data captures meaningful functional modules of              

hepatocyte biology. Examining the deviations in the signal of clusters between samples allows us to               

identify samples-specific changes in hepatocyte-specific transcriptional programs (Figure 6G). For          

example, we see high levels of Cluster I genes in patients with immune response (L001 - acute AIH; L004                   

- chronic AIH; L008 - liver transplant; L014 - localized inflammation; and some of the NASH patients                 

N004). In contrast, we see high levels of Cluster IV genes in a subset of these patients (N004 and L014).                    

Thus, although these clusters are both enriched for the periportal zone markers (Figure 6F) they capture                

transcriptional programs that are differential among subjects in the liver cohort. 

Together, these results demonstrate the ability of cfChIP-seq to detect cell states within a remote tissue                

(liver) and within a specific cell type (hepatocytes).  

Analysis of colorectal-cancer  by cfChIP-seq  

To test if cfChIP-seq can provide information on tumors, we analyzed a collection of samples from an                 

ongoing longitudinal study following metastatic CRC patients before and during treatment, including            

patients with undetectable or minimal disease at the time of sampling. Overall we analyzed 193 samples                

from 67 patients, of which ~70% (135/193 samples from 56 patients) passed our QC criteria. We see this                  

rate as encouraging since blood draws, samples collection and storage of these samples was not designed                

for cfChIP-seq analysis.  

As observed above (Figure 4C) samples from within the CRC cohort showed much higher cfChIP-seq               

signal variability than among healthy donors. Indeed, examining the pairwise correlations within each             

cohort of samples highlights the differences between healthy donors and cancer patients (Figure 7A):              

Closely collected samples show higher similarity than samples collected far apart suggesting that to a               

large extent the variability among cancer samples is due to differences in the underlying patient molecular                

state 63. To detect CRC-specific signals, we generated two signatures, a “digestive signature” based on the                

Roadmap digestive tissue ChIP-seq, and a “COAD signature” based on analysis of the TCGA gene               

expression data of colorectal adenocarcinoma (COAD) samples (see methods). Using these signatures,            

that are derived completely from external data, we correctly classified CRC samples with AUC of 0.83,                

and 0.84 for digestive and COAD, respectively (Figure S7A). Examining the value of these two               

signatures in all samples, we observed a large variation among the cancer samples (Figure 7B) and low                 
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values in healthy donors.  

These results suggest that there is a large variability in the amount of tumor-derived cf-nucleosomes               

among the samples. To estimate the tumor-related contributions we selected a subset of COAD-genes that               

are not observed at all in a reference cohort of healthy donors and used them as a “CRC” signature (189                    

genes). Assuming that the samples with the highest cancer signal have close to 100% tumor contribution,                

we calibrated these scores to the range of 0-1 representing a rough proxy of tumor load. Not surprisingly,                  

the CRC signature strength is highly correlated with the digestive and COAD signatures discussed above,               

yet it has better predictive value (AUC = 0.94, Figure 7C).  

We observed large differences in the CRC signature magnitude between patients and during treatment of               

the same patient, consistent with the course of therapy (Figure 7D) 63. In addition to changes in the CRC                   

signature magnitude, we detect differences that appear to result from disease progression (Figure S7B).              

Some of the differences are due to increased liver signal in C010.1943 vs. C010.3743 (ARCHS4 tissue q                 

< 3x10-16, which might reflect chemotherapy-induced liver damage 64. Other changes may reflect             

intratumor variation, or immune-related signaling such as the enrichment for interferon gamma genes in              

C010.3743 vs. C010.1943 (REACTOME q < 3.6x10-6, Figure S7B). 

 

cfChIP-seq detects molecular variability among colorectal-cancer patients 

A hallmark of cancer cells is genetic alterations that lead to dysregulated gene expression programs 65.                

Identification of such cancer-specific transcriptional programs can assist treatment choice 66. We asked             

whether cfChIP-seq can reveal transcriptional programs associated with the disease.  

A comparison of samples from different patients with similar CRC signature levels revealed striking              

differences in hundreds of genes (Figure 7E). These differences can be due to contribution of additional                

tissues (e.g enrichment for liver genes in C001.2752 vs. C040.3606, ARCHS4 tissue q < 10-9), while                

others may reflect intertumor transcriptional differences for example enrichments for Wnt/calcium/cyclic           

GMP pathway in C040.3606 vs. C001.2752 (BioPlanet q<0.00025) and for Cell adhesion molecules                

(CAMs) in C025.2815 vs. C001.2752 (BioPlanet q<10-4). Additional examples include, EGFR-AS1, and            

the CRC marker CCAT1 67 (Figures 7E and S7C). EGFR-AS1 regulates the splicing of EGFR and may                 

affect anti EGFR treatment 39. Interestingly, when examining all samples, we identify variation in genes               

associated with immune activity such as the checkpoint receptors CD160, TIGIT, and PDL1 (CD274)              

(Figure S7D), suggesting that we may detect tumor-related immune signals. 
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To identify major cfChIP-seq signature subtypes, we tested the gene set compendium (discussed above)              

against samples with relatively high cancer load (56 samples from 29 patients, where CRC Signature >                

0.15). We found 680 (out of 7,538) gene sets that had informative signals in these samples (Table S8,                  

Methods). We used these to initialize an iterative process to identify signatures that distinguish between               

samples subgroups (Methods) resulting with five gene signatures that capture the main behaviors in the               

original set of programs (Figures 7F). Signatures A-C capture cancer gene expression programs and              

signatures D-E capture duplications events. 

The scores of the largest signature (SigA) are highly correlated with the CRC scores, although there is                 

only a partial overlap between the two (Figure S7F). The genes in this signature are enriched with genes                  

associated with Colon (ARCHS4 tissue q < 10-64), targets of CDX2 a transcription factor active in CRC                 

(TRRUST, q < 10-9) (Figure 7H and Table S9). The second signature (SigB) differentiates a small subset                 

of the high CRC samples. Interestingly, this signature is enriched for genes in neuronal associated terms                

(Brain, ARCHS4 tissue q < 10-39). The genes in this cluster are also enriched for Polycomb Repressive                 

Complex (PRC) and REST targets (ENCODE and ChEA, SUZ12 q < 10-22, EZH2 q < 10-22, REST q < 3.7                    

x 10-8). REST represses neuronal genes in colon epithelium, and is often deleted in CRC tumors 68. This                  

could indicate derepression due to loss of polycomb/REST activity leading to misregulation of neuronal              

genes in the tumor. Alternatively, it may indicate involvement of neuronal phenotype in these tissues 69.                

The third signature (Sig C) selects a larger subset of samples, which includes most of the samples selected                  

by SigB although there is little overlap of genes between the two signatures (Figure S7F).  

To examine the clinical significance of the expression signatures A-C we compared them to the               

Consensus Molecular Subtypes (CMS) classification of CRC tumors 70. We examined the behavior of              

these signatures in 198 labeled CRC tumor gene expression profiles in the TCGA database 41 (Figure                

S7G). This analysis shows that SigA genes tend to have lower expression in CMS1 tumors, while SigB                 

genes tend to have higher expression in CMS4. CMS1 tumors are characterized by genome instability,               

increased immune infiltration and immune response activation. CMS4 tumors are characterized by            

upregulation of epithelial to mesenchymal transition (EMT) and cancer stem cell like phenotype and have               

been shown to have low EZH2 expression 71. This characterization of CMS4 is consistent with the REST                 

and PRC de-repression observed in SigB (Figure 7H). 

Ten out nineteen genes in Signature D and 13 of the 17 genes in signature E are clustered around regions                    

of known genomic duplications at chr20q13.12, and chr17q12-q21, respectively (Figure 7G) 72,73. The             

chr20q13.12 amplification has been previously reported in CRC and includes HNF4A, a transcription             
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factor with increased activity in CRC 72. The chr17q12-q21 includes the gene ERBB2, and known as the                 

HER2 amplicon that appears in multiple types of cancer and has prevalence of 4% in CRC 72.                 

Consistently, SigE is high in samples with identified HER2 amplifications (Figure 7F), suggesting that              

cfChIP-seq detects this massive genomic amplification event. Unlike genomic copy number, which can be              

detected using background reads (Supplemental Note), the H3K4me3 cfChIP-seq signal further increases            

the confidence that these copy number variations involve active transcription in the amplified regions.              

Detection of HER2 amplification in colon cancer has significant practical implications since it is a               

predictive marker for prolonged survival of patients treated with HER2 inhibitors74. This intriguing             

potential requires future validation on a larger cohort. 

Altogether these results show that a single cfChIP-seq blood test have the potential to detect the                

variability in CRC patients related to the load of the tumor (CRC score), the contribution of additional                 

tissues (e.g., liver damage, immune cells), and gene expression inter-tumor heterogeneity. The latter             

feature of CRC is uniquely revealed by cfChIP-seq. 

 

Discussion 

Here we introduce cfChIP-seq to infer the transcriptional programs of dying cells by genome-wide              

mapping of plasma cf-nucleosomes carrying specific histone marks. We demonstrate the feasibility to             

perform ChIP-seq on plasma cell-free nucleosomes with four histone marks associated with active             

transcription (H3K4me1, H3K4me2, H3K4me3, and H3K36me3) for probing active or paused enhancers            

and promoters, and gene body-associated transcriptional elongation. We further performed in depth            

promoter centric analysis on a large cohort of 61 healthy donors, and 89 patients, including 135 samples                 

from metastatic colorectal cancer patients. This analysis shows that cfChIP-seq can detect signals beyond              

the resolution of cells of origin. We show differences in hepatocytes-specific transcriptional programs             

between subjects with different etiology of increased liver cfDNA (Figure 6). Our analysis shows that               

even at this early stage, cfChIP-seq is highly sensitive in detecting signatures of interest, including               

cancer-specific signatures (Figures 3 and 7). Since the sensitivity of cfChIP-seq is increased with the               

signature size, we anticipate that the potential sensitivity can be significantly increased by using multiple               

antibodies that target different genomic landscapes. Importantly, the assay leaves most of the original              

sample intact, allowing reuse for multiple assays which is important in many clinical situations where               

blood volume is a limiting factor. A unique feature of cfChIP-seq is that the immunoprecipitation step                

generates a biologically relevant reduced representation of the genome. This allows us to perform genome               
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wide unbiased analysis without the need for preselecting markers and with low sequencing depth. This               

can be important for detection of changes in tumor makeup following treatment, and may allow simple                

patient-specific analysis for the detection of minimal residual disease, at low cost.  

Most current cfDNA-based methods rely on detecting genomic alterations in cfDNA to quantify the              

contribution of cfDNA from cells with altered genomic sequence, such as a fetus, a transplant, or mutated                 

genes in tumors 15–17,23. These methods are blind to events that involve turnover and death of somatic cells.                  

More recent approaches leverage epigenetic information in cell free DNA. Extremely deep sequencing of              

total cfDNA to identify nucleosomes and transcription factors positions 19,75 and occupancy 18 reflect              

tissue of origin and gene expression. However, they rely on detecting changes in coverage over target                

regions, with a signal of each tissue/cell type imposed on the background of all other tissues/cell types                 

(e.g., detection of an event causing nucleosome depletion in 1% of the cells requires distinguishing the                

difference between 99% occupancy and 100% occupancy). Even with extremely deep sequencing            

coverage (100s of million reads per sample), there is a prohibitive harsh detection limit for events in rare                  

subsets of cells 19. Recently, machine learning methods were used to detect several types of cancers by                 

analysis of fragment lengths with shallower cfDNA sequencing 32, achieved by focusing solely on the               

classification task without detection of specific cell-types contributing to cfDNA. An alternative modality             

is assaying cfDNA CpG methylation along the sequence 20–22,25,27–31. DNA methylation serves as a stable               

epigenetic memory and is largely unchanged upon dynamic cellular responses. As such, it is highly               

informative regarding cell lineage, but much less about transient changes in expression.  

Many cellular processes, including cancerous transformation involve large changes in transcriptional           

programs, which leave unique imprints on the histone modification landscape. Intensive research during             

the last two decades established an intimate connection between specific histone marks and transcription.              

Specifically, the levels of H3K4me3 correlate with gene expression (Figures 2C and 4A), which allow us                

to infer transcriptional activity in cells of origin. Therefore, assaying chromatin marks in cf-nucleosomes              

provides rich and complex information beyond current methodologies. Furthermore, the advent of            

single-cell technologies is constantly uncovering new cell types, cell states, and their specific molecular              

biomarkers 76. cfChIP-seq opens an opportunity to tap these insights  in non-invasive liquid biopsy. 

We exploit the wealth of knowledge about gene expression for interpreting cfChIP-seq results. For              

example, observation of cfChIP-seq signal from genes encoding platelet-specific proteins (e.g GP6, GP9),             

but not erythrocyte-specific proteins (e.g., HBB) in healthy donors led us to identify megakaryocytes but               

not erythroblasts as major cfDNA contributors in healthy donors. Another example is our analysis of liver                
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pathologies. By using existing annotations (all based on gene expression studies) we identified the genes               

that represent hepatocyte contribution to the signal. We then used marker genes identified in a recent liver                 

single cell RNA-seq atlas 61 to detect different contributions from different liver zonation expression              

programs in each of the subjects. Finally, in our analysis of the CRC cohort we used a large collection of                    

gene sets, mostly from gene expression studies 53 as the basis for identifying signatures that classify                

molecular phenotypes of the samples.  

These examples demonstrate the potential of using a single histone mark focused at gene promoters.               

There are potential advantages to combine multiple chromatin marks. Using H3K36me3 cfChIP-seq,            

which marks active elongation we can better distinguish between a poised state and actual transcription.               

Parallel analysis of enhancer chromatin marks such as H3K4me1/2 can provide more precise             

understanding of the regulatory program that activated the genes. It is often the case that the same gene is                   

regulated by multiple enhancers that are responsible for its activation in a specific cell type or specific                 

transcriptional response. Thus, observation of enhancer activity provides wider context to the activation of              

its target gene(s). The main challenge in harnessing this information is our partial knowledge of               

enhancer-gene interactions in multiple tissues. This is the subject of much research and progress is made                

at a rapid pace 77.  

More broadly, cfChIP-seq facilitates the systematic study of multiple chromatin marks in cf-nucleosomes.             

Beyond transcription, chromatin state is also intimately related to other chromatin-templated processes            

such as cell cycle progression and DNA damage and repair. The potential for observing such processes                

with a non-invasive assay can revolutionize our understanding of basic questions in human physiology              

and pathology. Our results establish the method and demonstrate its ability to probe the active and poised                 

genes in cells of origins. To fully harness the potential of this assay we need a deeper understanding of the                    

processes of cell death in health and specific pathologies. Improving our ability to bridge the gap between                 

epigenomics and transcriptional states will allow us to better exploit the massive transcriptional profiles              

collected in different cell types, developmental stages, and pathological states for interpretation of             

cfChIP-seq profiles. Finally, by their nature, cell-free assays examine the superimposed contributions of             

multiple cell populations. Thus, unmixing, or deconvolving signals is a central challenge for improved              

interpretation 78. 

Assaying modified cf-nucleosomes, either used alone or in combination with existing biomarkers, has             

multiple potential medical applications. We envision identifying not only the cells that are dying, but also                

the molecular basis for the pathological or physiological states. This may lead to a better understanding of                 
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complex diseases in which several cell types interact to elicit a pathology. An important example is the                 

contribution of specific subpopulations of cells (e.g exhausted T-cells) residing in the tumor to the               

oncogenic process and success of treatment. This sub-population is defined by their transcriptional state,              

not their DNA sequence nor their cell lineage identity, and thus cannot be identified by current cfDNA                 

methodology. Moreover most of these cells are restricted to the tumor, and thus cannot be easily detected                 

by observation of the circulating immune cells. However, they turnover within the tumor, and thus can be                 

detected in the cf-nucleosome pool (Figure S7D). Detection and monitoring of immune response within a               

remote organ has exciting implications. For example, more accurate monitoring of treatment response,             

leading to more precise administration of treatment in the short term, but also longer term insights at the                  

transcriptional level of drug action mechanisms and side effects.  

Altogether, cfChIP-seq is a highly informative and minimally invasive assay which opens up a wide range                

of opportunities for studying basic questions in human physiology that have been inaccessible until now.  
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Materials and Methods 

Patients 

All clinical studies were approved by the relevant local ethics committees. The study was approved by the                 

Ethics Committees of the Hebrew University - Hadassah Medical Center of Jerusalem. Informed consent              

was obtained from all subjects or their legal guardians before blood sampling. 

Sample collection 

Blood samples were collected in VACUETTE® K3 EDTA tubes, transferred immediately to ice and 1X               

protease inhibitor cocktail (Roche) and 10mM EDTA were added. The blood was centrifuged (10              

minutes, 1500 × g, 4ºC), the supernatant was transferred to fresh 14ml tubes, centrifuged again (10                

minutes, 3000 × g, 4ºC), and the supernatant was used as plasma for ChIP experiments. The plasma was                  

used fresh or  flash frozen and stored at -80ºC for long storage. 

cfChIP-seq 

Bead preparation 

50μg of antibody were conjugated to 5mg of epoxy M270 Dynabeads (Invitrogen) according to              

manufacturer instructions. The antibody-beads complexes were kept at 4ºC in PBS, 0.02% azide solution.  

 
AB  Company Catalog Number 
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IgG  Cell signalling 2729S 

H3K4Me1 Diagenode C15410194 

H3K4Me2 Diagenode C15410035 

H3K4Me3 Diagenode C15410003 

H3K36Me3 Diagenode C15410192 

 

Immunoprecipitation, NGS library preparation, and sequencing 

0.2mg of conjugated beads (~2μg of antibody) were used per cfChIP-seq sample. The antibody-beads              

complexes were added directly into the plasma (1-2 ml of plasma) and allowed to bind to cf-nucleosomes                 

by rotating overnight at 4ºC. The beads were magnetized and washed 8 times with blood wash buffer                 

(BWB: 50mM Tris-HCl , 150mM NaCl, 1% Triton X-100, 0.1% Sodium DeoxyCholate, 2mM EDTA,              

1X protease inhibitors cocktail), and three times with 10mM Tris pH 7.4. All washes were done with                 

150ul buffer on ice by shifting the beads from side to side on a magnet. Do not use vacuum to remove                     

supernatant during washes in buffers that do not contain detergents. 

On-beads chromatin barcoding and library amplification was done as previously described 33,34 except for              

the DNA elution and cleanup step where the beads were incubated for 1 hour at 55ºC in 50μl of chromatin                    

elution buffer (10mM Tris pH 8.0, 5mM EDTA, 300mM NaCl, 0.6% SDS) supplemented with 50 units of                 

proteinase K (Epicenter), and the DNA was purified by 0.9 X SPRI cleanup (Ampure xp, agencourt). The                 

purified DNA is eluted in 25 μl EB (10mM tris pH 8.0) and 23 μl of the eluted DNA were used for PCR                       

amplification with Kapa hotstart polymerase (16 cycles). The amplified DNA was purified by 0.8 X SPRI                

cleanup and eluted in 12 μl EB. The eluted DNA concentration was measured by Qubit and the fragments                  

size was analyzed by tapestation visualization. Note: If adapter dimers are substantially visible by              

tapestation post library amplification, we recommend pooling samples and performing additional X 0.8             

SPRI DNA cleanup, or separating the pooled samples on a 4% agarose gel (E-Gel® EX Agarose Gels,                 

4%, Invitrogen), and gel purification of fragments larger than adapter dimers (>150bp). DNA libraries              

were paired end sequenced by Illumina NextSeq 500. 

Sequence analysis  

Reads were aligned to the human genome (hg19) using bowtie2 (2.3.4.3) with ‘no-mixed’ and              

‘no-discordant’ flags. We discarded fragments with low alignment scores (-q 1) and duplicate fragments.              
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See Table S1 for read number, alignment statistics, and numbers of unique fragments for each sample.  

Roadmap Epigenome atlas 

We downloaded aligned read data from the Roadmap Epigenome Consortium database (Table S10). For              

our analysis we discarded pre-natal, ESC, and cell-line samples, resulting with 64 tissues and cell types                

(Table S11). The aligned read files were then processed with the same pipeline as cfChIP-seq samples.                

That is, all steps from numbers of reads mapped to each genomic window, background estimation,               

normalization, etc. 

Tumor-type Gene Signatures 

We downloaded RNA-seq data from the TCGA and GTEx projects as analyzed by the Xena project 79                 

(Table S10). We defined the set of genes that are over-expressed in a tumor type to satisfy three                  

requirements: 1) Significantly higher expression in tumor samples compared to the corresponding tissue             

samples (t-test, q < 0.001 after FDR correction); 2) Significantly higher expression compared to all               

healthy samples (t-test, q < 0.001 after FDR correction); and 3) Median expression in the tumor is higher                  

than the median expression in each of the healthy samples. 

Expected healthy expression level 

To best emulate expression profiles of healthy individuals in the analysis of Figure 2C, we performed in                 

silico mix of the four cells types that contribute the most to cfDNA 31:31: neutrophils, 32%; monocytes                 

32%; megakaryocytes 20%; and NK cells 5%. The gene expression for these cell types was downloaded                

from BLUEPRINT consortium website (Table S10). 

TSS location catalogue 

We downloaded the Roadmap Epigenome Consortium ChromHMM annotation of all consolidated tissues            

(Table S10). Using these annotations we constructed a catalogue of potential functional sites (enhancers,              

TSSs, and genes). We extended the catalogue to include 3kb regions centered on TSS of annotated                

transcripts in the UCSC gene database and ENSEMBL transcript database (Table S10). We used the               

combined catalogue to define regions along the genome. We used a different version of the catalogue for                 

analysis of each antibody, to match the mark. For H3K4me3 analysis we used only TSSs, for H3K36me3                 

analysis we used only gene bodies, and for H3K4me2 we had annotations of TSSs and enhancers. In each                  

version of the catalogue, the remaining mappable genome regions were assigned to background, and tiled               

at 5kb windows. See Supplemental Note for more detailed procedures.  
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We quantified the number of reads covering each region in the catalogue in each of our samples and atlas                   

samples. We estimated a locally adaptive model of non-specific reads along the genome for each of the                 

samples, and extracted counts that represent specific ChIP signal in the catalogue for each sample               

(Supplemental Note). These were then normalized (Supplemental Note) and scaled to 1M reads in the               

reference healthy samples. 

Estimating capture rates 

To estimate capture rates of cfChIP-seq we use two different approaches (see Supplemental Note for more                

details).  

In the global approach , we compare input to output of the cfChIP-seq assay (Figure S4B). At the input                  

end, we estimate the total number of nucleosomes that are present in the sample using the input cfDNA,                  

which provides an upper bound on the number of nucleosomes it can contain (with each nucleosome ~                 

200bp of DNA). We also estimate the percent of these that are modified, which for H3K4me3 tend to be                   

~1-2%. At the output end, we estimate how many of the unique fragments are background and how many                  

are signal (see above). We then divide #signal fragments in output by #modified nucleosomes in input to                 

get specific capture rate, and similarly #background fragment in output by total # nucleosomes to get                

non-specific capture rate. 

In the local approach , we compare expected input coverage to output coverage (Figure S4C). Using input                

cfDNA amounts we can estimate the number of alleles (genomes) that cover each position. We then                

examine two types of regions, one “high-signal” where we assume that ~100% of the nucleosomes are                

modified (e.g., promoters of constitutive genes) and the other one as “no-signal” where 0% of the                

nucleosomes are modified (e.g., background regions). The coverage we observe in the cfChIP-seq output              

is due only to non-specific capture in the no-signal region, and due to both specific and non-specific                 

capture in the high-signal region.  

Tissue Signatures  

To define tissue specific signatures of a specific modification, we examined binned representation of the               

atlas according to our catalogue. For each tissue we defined a signature of unique windows with signal in                  

one of the samples of the target tissue and without coverage in all others (Supplemental Note).  

Gene level analysis 

For each gene we defined the set of windows that match the gene (TSS in H3K4me3/2 and gene body in                    

H3K36me3). The signal for a gene is the aggregate signal-background over windows associated with it               
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(Supplemental Note). 

Comparison to RNA-seq 

The comparison of H3K4me3 ChIP to RNA-seq was performed as follows. RNA expression (normalized              

TPM) was downloaded from Roadmap Epigenomics Project (Table S10). Normalized cfChIP-seq           

coverage per gene in the matching sample was taken from the Roadmap Epigenomics Atlas (above). We                

examined RefSeq genes that appeared in both datasets. For each gene we computed pearson correlation               

between log(TPM+1) and log(ChIP-seq coverage+1) values across all 56 tissue/cell types that had match              

RNA-seq and H3K4me3 ChIP-seq data.  

Estimating mean and variance  

To define the healthy reference of signal per gene, we estimated the mean and variance of each gene in a                    

set of 26 reference samples. The observed variation among the samples is due to the combination of                 

biological variability and sampling noise. Thus, to estimate mean/variance we used a maximum likelihood              

approach that models the sampling noise of each sample and identifies the mean/variance that best               

matches this model (Supplemental Note). 

Statistical analysis  

We test whether a signature is present in the analysis of Figures 4 and 5. Formally, we examined whether                   

we can reject the null hypothesis that the number of reads in signature windows is Poisson distributed                 

according to background rate (Supplemental Note). We compute the p-value of the actual number of               

observed reads in signature windows as the probability of having this number or higher according to the                 

null hypothesis. Rejection of the null hypothesis for a specific signature is an indication that some of the                  

windows in the signature carry the modification in question in a subpopulation of cells contributing to the                 

cf-nucleosome pool.  

The second test is whether a gene presents a high signal with respect to its level in the baseline of healthy                     

donors (Figure 5G). We use the signal from 26 healthy samples (Table S1) to estimate the mean and                  

variance of reads in each region of interest (e.g., gene promoter). We then estimate two sample-specific                

parameters: 1) background rate (discussed above) and 2) a scaling factor that rescales average              

expectations to the sequencing depth of the specific sample (Supplemental Note). Together, these define              

the expected coverage of each gene-associated group of windows under the null-hypothesis that the              

subject is from the healthy population. We compute the p-value of the actual number of observed reads in                  

the gene windows as the probability of having this number or higher according to the null hypothesis.  
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Pathways, and Transcription Factor targets 

We downloaded a large collection of gene expression signatures representing different cellular processes,             

protein complexes, and transcriptional responses from the MSigDB collection 53. We downloaded            

transcription factor targets from Harmonizome database 80. These include targets from ENCODE 81,             

TRANSFAC 82, and CHEA 83. 

Estimation of liver percentage 

We used a linear regression model that matches the observed counts of a select representative genes to a                  

sum of contribution of healthy-wo-liver and healthy liver. Briefly, we use the Roadmap Epigenomics              

Atlas “liver” (E066) as 100% liver. We assume that the mean healthy profile contains about ~3% liver                 

contribution, and so define the healthy-wo-liver as the result of subtracting 3% of liver profile from the                 

healthy sample. We then identify the set of genes that are high in one of the profiles and close to 0 in the                       

other. These are used as input features for robust linear regression (R rlm() function) that estimate the                 

linear combination of liver and healthy-wo-liver profiles that is closest to the observed profile. The               

weights (linear regression coefficients) are normalized to sum to one, and the contribution of liver is taken                 

as % liver in the sample. 

Cancer signatures 

We tested a compendium of gene programs from multiple sources (Table S10) against high-scoring CRC               

samples. Gene programs that had significant enrichment above/below healthy reference in at least 3 CRC               

samples but less than ⅔ of all the CRC samples were selected for the next step. The pattern of                   

significantly above/below enrichments were clustered (Figure S7E). Each cluster of gene programs            

corresponds to a classification of the CRC samples (significant vs non-significant). For each such cluster               

we identified the genes that have significantly higher signal in the positive class of CRC samples                

compared to remaining CRC samples. The differential genes define a new gene-signature. These were              

clustered based on their classifications of samples, and combined into non-overlapping set of gene              

signatures (Supplemental Note). 

Data and Code availability 

Code for processing cfChIP data is at https://github.com/nirfriedman/cfChIP-seq.git. Raw sequencing          

data was deposited to the EGA (EMBL-EBI) repository. BED files and browser tracks can be accessed at                 
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https://doi.org/10.5281/zenodo.3967254.  
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Figure 1:  Immunoprecipitation of chromatin from plasma 

A. cfChIP-seq method outline. Chromatin fragments from different cells are released to the            

bloodstream. These fragments are immunoprecipitated, and sequenced. Interpretation of the          

resulting sequences informs of gene activity programs in the tissue of origin. As an example,               

death of liver cells releases to the blood nucleosomes from the ALB promoter marked with               

H3K4me3. These are mixed with other circulating nucleosomes from other cells with the ALB              

promoter not marked by H3K4me3. After immunoprecipitation of H3K4me3 cf-nucleosomes and           

sequencing, we can detect fragments of DNA aligned to ALB promoters. These are indicative of               

death of hepatocytes since ALB promoter is marked by H3K4me3 only in hepatocytes. 

B. cfChIP-seq protocol. Antibodies are covalently bound to paramagnetic beads. Target fragments           

are immunoprecipitated directly from plasma. After washing, on-bead-ligation is performed to           

add indexed sequencing adapters to the fragments. The indexed fragments are released and             

amplified by PCR to generate sequencing-ready libraries. 

C. Genome browser view of cfChIP-seq signal on a segment of chromosome 12. Top tracks are               

cfChIP-seq signals from two healthy donors. The lower tracks are published ChIP-seq results             

from human white blood cells (leukocytes) 4. In each group we show four tracks corresponding to                

four histone marks -- H3K4me3 (red), H3K4me2 (green), H3K4me1 (blue), and H3K36me3            

(purple). 

D. Meta analysis of cfChIP-seq signal over active promoters and enhancers. The orange line denotes              

the average of corresponding negative control regions (inactive genes and enhancers), providing            

an estimate of the background. Scale of all graphs is in coverage of fragments per million. 

E. Comparison of normalized H3K4me3 coverage of cfChIP-seq from a healthy donor against            

ChIP-seq from leukocytes 4. Each dot corresponds to a single gene. x-axis: healthy cfChIP-seq              

sample, y-axis leukocytes ChIP-seq. 

F. Analysis of promoters of RefSeq genes with a significant cfChIP-seq signal (methods) in healthy              

donors. cfChIP-seq captures most housekeeping promoters (ones that are marked in most samples             

in the reference compendium). The remaining 2000 non-housekeeping genes in cfChIP-seq show            

large overlaps with non-housekeeping promoters marked in neutrophils and monocytes, the two            

cell types that contribute most to cfDNA in healthy donors. 

G. Size distribution of sequenced cfChIP-seq fragments shows a clear pattern of mono- and             
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di-nucleosome fragment sizes: x-axis: fragment length in base pairs (bp), y-axis: number of             

fragments per million in 1-bp bins.  
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Figure 2: cfChIP-seq of multiple marks is informative on gene expression 

A. Detection of genes with significant high coverage in a sample from a colorectal cancer (CRC)               

patient (Table S3). For each gene we compare mean normalized coverage in a reference healthy               

cohort (x-axis) against the normalized coverage in the cancer sample (y-axis). For H3K36me3,             

the signal is normalized by gene length. Significance test whether the observed number of reads is                

significantly higher than expected based on the distribution of values in healthy samples             

(Methods). Example of the levels of two genes in these comparisons are shown on the bar chart                 
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(right panel). 

B. Browser views of genes that demonstrate different H3K4me3 and H3K36me3 classes. Class I:             

genes marked by both marks in healthy and cancer patient samples. Class II: genes marked by                

H3K4me3 in healthy and cancer samples, but with H3K36me3 only in the cancer patient sample               

(gain of H3K36me3). Class III: genes marked by both marks only in the cancer patient sample                

(gain of both marks). 

C. Venn diagram (zoom in view) showing the relations of genes from the three classes in B with the                  

set of genes that show increased H3K4me3 and the set of genes previously identified to be highly                 

expressed in colorectal adenocarcinoma (COAD, Methods). 
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Figure 3: cfChIP-seq sensitivity 

A. Schematics of the parameters involved in determining cfChIP-seq sensitivity. 1. Number of            

informative nucleosomes is the total number of signature-specific nucleosomes in the plasma            

that carry a mark of interest; 2. The percent of fragments contributed by the signature-positive               

cells among the fragments in circulation; 3. Total number of genomes in circulation; 4. The               

specific capture probability of marked nucleosomes by the cfChIP-seq assay; and 5. The             

non-specific capture probability of nucleosomes (background). The signal to noise ratio (SNR)            

is the ratio of the specific to non-specific capture probabilities. 

B. Simulation analysis of event detection power as a function of percent positive (x-axis) and              

number of informative locations (y-axis). Detection is defined as 95% probability of assay results              

(capture & sequencing) that reject the null hypothesis of background signal with p < 0.05               

39 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2020. ; https://doi.org/10.1101/638643doi: bioRxiv preprint 

https://doi.org/10.1101/638643
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(Methods). Simulation assumes #number of genomes = 10,000 (10 ml plasma of healthy donor),              

capture probability of 1%, and SNR of 500. The size of several example signatures are shown                

(see text). 

C. Signal level is linear with input. Plasma of a healthy donor was spiked in with different amounts                 

of yeast nucleosomes (x-axis). The number of counts observed (y-axis) for signatures of different              

sizes. Error bars show 20-80% range over 100 different sampled signatures of the given size. 

D. Test of sensitivity using male spike-in. Plasma of healthy female and male donors were titrated at                

different ratios. Detection of male-specific promoters as a function of percent of chrY genomes in               

the sample (x-axis). Shown are the number of counts (y-axis) and significance (circle radius). 
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Figure 4: H3K4me3 cfChIP-seq signal is correlated with expression levels 

A. Gene level analysis of the correlation in expression level and H3K4me3 methylation levels across              

56 Roadmap Epigenomic samples 4 where we have matching profiles of both expression and              

H3K4me3. For each gene we computed the Pearson correlation of its normalized expression             

levels and normalized H3K4me3 levels (as computed by our pipeline) across the samples. Shown              

is a histogram of the correlations on all RefSeq genes. In gray we show the histogram resulting                 

from random permutation of the relation between expression profiles and H3K4me3 profiles.            

Below: examples of genes with different correlation values. High correlation genes such as             

CYPIP, NFAT3, and EBF1 show coordinated change in both values. Low correlation genes             

either have little dynamic range in one of the measures (e.g., RAD23A is highly expressed in all                 

tissues and has roughly constant H3K4me3 levels) or are not related (e.g., HSF4). The latter can                

be due to annotation errors of promoter or transcripts. 

B. Comparison of H3K4me3 cfChIP-seq signal from a healthy donor (H012.1) with expected gene             

expression levels (Methods). Each dot is a gene. x-axis: normalized number of H3K4me3 reads in               

gene promoter. y-axis: expected expression in number of transcripts/million (TPM). 

C. Heatmap showing patterns of the relative H3K4me3 cfChIP-seq coverage on promoters of 14,875             

RefSeq genes. The normalized coverage on the gene promoter (Methods) was log-transformed            

(log2(1+coverage)) and then adjusted to zero mean for each gene across the samples. The samples               

include cfChIP-seq samples from a compendium that includes healthy donors, acute myocardial            

infarction (AMI) patients, liver disease patients and CRC patients.  

D. Zoom in on the bottom cluster of (C). The right panel shows the H3K4me3 ChIP-seq from tissues                 

and cell type from Roadmap epigenomics 4 and BLUEPRINT 49. Specific clusters of genes are               

marked by arrows. 

E. Genome browser view for megakaryocyte- and erythroblast specific genes. Shown is cfChIP-seq            

from two healthy samples (H012.1 and H013.1) and an AMI subject who exhibited enhanced              

erythropoiesis (M002.1). Also shown are two ChIP-seq profiles from the Roadmap Epigenetic            

reference atlas, and two samples from the BLUEPRINT project of cord-blood derived            

megakaryocytes and erythroblasts.  
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Figure 5: cfChIP-seq identifies cell-type specific and program specific expression patterns 

A. Schematic outline of how we define and test cell-type specific signature. Using the existing              

compendium of ChIP-seq profiles, we define for each cell type a set of locations that are high                 

only in the target cell type and low in all others. Given a cfChIP-seq profile, we sum the signal at                    

all signature locations and test against the null hypothesis that this signal is due to non-specific                

background (Methods). 

B. Evaluation of average signal for signatures of different cell types in 88 healthy samples from 61                

donors. Top: values (normalized reads/Kb) for each signature on all samples. Each dot is a               

sample, and boxplots summarize distribution of values in each group. Dots marked in red indicate               

values significantly different from background levels (Methods). Bottom: percent of samples with            

significant signal for each signature. We observe evidence for H3K4me3 signals in promoters             

specific to neutrophils, monocytes, megakaryocytes, NK cells, liver cells, and T-cells. We            

observe mild signals, but not significantly above background, from B-cells, and no signal from              

heart or brain. These proportions are consistent with independent estimates based on DNA CpG              

methylation marks 31.  

C. H3K4me3 cfChIP-seq signal in heart-specific locations in representative samples of healthy           

donors and acute myocardial infarction (AMI) patients (see Table S3 for details). Inset: measured              

troponin levels and percent cfDNA from cardiomyocytes as estimated using DNA CpG            

methylation markers 27 from the same blood draws. 

D. Changes in signature strength in an AMI (M001) patient before/after PCI. Signatures strength are              

normalized to the mean in healthy donors. Note the increase in heart and decrease in liver                

signatures post PCI.  

E. Changes in cfChIP-seq liver signature (brown line) and ALT levels (liver damage biomarker,             

black line) from blood samples of a patient that underwent partial hepatectomy (PH01). 

F. Heatmap showing significance of selected cell-type signatures in selected healthy donors and            

patients. See Table S5 for all samples and all signatures. Circle radius represents statistical              

significance (FDR corrected q-value) and the color represents read- density (normalized reads per             

kb) (Methods). 

G. Heatmap showing significance of selected gene sets from curated databases of transcriptional            

programs 53 and transcription factor targets 81–83 (Methods). See Table S6 for all samples and all                

signatures. The signal in each gene set is tested against the null hypothesis of levels similar to                 

healthy donor baseline (Methods). Circle radius represents statistical significance (FDR corrected           
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q-value) and the color represents the- average read number (normalized reads per genes)             

compared to healthy baseline (Methods). 
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Figure 6: cfChIP-seq detects  changes in liver-specific transcriptional programs 

 

A. Estimate of %liver contribution to healthy reference cohort and a cohort of subjects with various               

liver-pathologies (Table S3). 

B. Evaluation of differentially marked genes in a sample of an acute autoimmune induced hepatitis              

subject (L001). For each gene we compare the mean normalized coverage of a healthy reference               

cohort (x-axis) against the normalized coverage in the sample (y-axis). Color indicates whether             

the observed number of reads is significantly higher than we would expect based on the               

distribution of values in healthy samples (Methods).  

C. Differentially marked genes between two samples with similarly high liver contribution L001.1            

(acute AIH) and M001.1 (AMI induced liver damage). For each gene we compare coverage in the                

two samples (L001.1, x-axis; M001.1 y-axis). Significance test whether the two values are             

sampled from the same distribution (Methods). Dark circles - genes that are significantly different              

in liver ChIP-Seq (Roadmap Epigenomics) compared to healthy reference. 

D. Clustering of 1,320 genes that are significantly higher in one of the samples in the liver cohort                 

compared to healthy samples baseline. Left panel: values compared to healthy baseline. Middle             

panel: expected level assuming healthy liver signal and %liver contribution. Right panel: Z-score             

of observed value from expected (mean and variance) value. For each cluster we show 3-4               

representative genes (right). Sample order in each heatmap is identical and matches the order in               

(G). 

E. Percent of genes in each cluster of (D) that are annotated as hepatocyte genes 60. Clusters above                 

the 50% threshold (red dashed line) are considered as hepatocyte origins. 

F. Enrichment analysis of hepatocyte clusters (Clusters I-VI, XI, and XII). Hypergeometric test for             

significant overlap with gene programs from curated databases 84 and marker genes of hepatocyte              

zones 61. Circle radius: q-values of hypergeometric enrichment test, circle color - fraction of              

overlap. 

G. Top: Percent of liver contribution in each sample in the order shown in (D). Bottom: Deviations                

from expected values for each sample in each of the hepatocyte clusters (average Z-score for each                

sample on cluster genes). 

47 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2020. ; https://doi.org/10.1101/638643doi: bioRxiv preprint 

https://paperpile.com/c/x1cw6H/tg6Yr
https://paperpile.com/c/x1cw6H/hvqX
https://paperpile.com/c/x1cw6H/ddCB
https://doi.org/10.1101/638643
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

48 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2020. ; https://doi.org/10.1101/638643doi: bioRxiv preprint 

https://doi.org/10.1101/638643
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 7: cfChIP-seq identifies molecular heterogeneity in colorectal carcinoma patients  

 

A. CRC samples are much more variable than samples of healthy donors. Box plots show correlation               

(pearson correlation, y-axis) of pairwise comparisons: between healthy donor samples; between           

CRC samples from different patients; between CRC samples of the same patient taken more than               

a week apart; between CRC samples of the same patient less than a week apart. 

B. Distribution of signature strength of healthy and CRC samples. Top: signature of digestive tissue              

(as in Figure 5F). Bottom: COAD gene signature. Box plots show distribution of signal              

(Reads/KB, y-axis) in each group. Each sample is a dot, red = significantly above background               

(Digestive) or healthy baseline (COAD). 

C. Classification accuracy of CRC patients vs healthy donors. Shown are fraction false positive             

(x-axis) vs fraction true positives (y-axis) for different thresholds of CRC signature. Diagonal             

line: expected curve for random classifications. 

D. Progression of cancer signature during treatment of a single patient. Top: treatment history of the               

patient as a function of time (x-axis) Bottom: CRC signature strength (y-axis) for different              

samples.  

E. Differences between CRC samples with high CRC signature strength. For each gene we compare              

coverage in the two samples (x-axis and y-axis). Significance test whether the two values are               

sampled from the same distribution (Methods). 

F. Evaluation of cancer signatures on samples with high tumor percent. Shown is the CRC signature               

(based on TCGA genes) and five signatures found by our analysis. For each signature we show                

the level of the signature and of four representative genes. Circle color represents the increase in                

counts/gene above healthy reference samples, and circle radius represents significance of this            

increase. Rightmost panel displays major clinical parameters of the sample: RAS, BRAF            

mutations, HER2 amplification, MMR deficiency, and survival above 6 month and 1 year after              

the sample was taken. 

G. Functional enrichment of signatures. Shown are representative enrichment from an unbiased           

evaluation of signature genes against large annotations database (EnrichR 84. See Table S9 for the               

complete set of enrichments. 
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H. Genome clusters containing SigD and SigE signatures. Marked in red are genes from each              

signature in the specific genomic loci. (Names of noncoding transcripts were omitted). 
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