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Abstract1

Genome-wide association studies (GWAS) have now been conducted for2

hundreds of phenotypes of relevance to human health. Many such GWAS3

involve multiple closely-related phenotypes collected on the same samples.4

However, the vast majority of these GWAS have been analyzed using simple5

univariate analyses, which consider one phenotype at a time. This is de-6

spite the fact that, at least in simulation experiments, multivariate analyses7

have been shown to be more powerful at detecting associations. Here, we8

conduct multivariate association analyses on 13 different publicly-available9

GWAS datasets that involve multiple closely-related phenotypes. These data10

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 7, 2019. ; https://doi.org/10.1101/638882doi: bioRxiv preprint 

https://doi.org/10.1101/638882
http://creativecommons.org/licenses/by/4.0/


include large studies of anthropometric traits (GIANT), plasma lipid traits11

(GlobalLipids), and red blood cell traits (HaemgenRBC). Our analyses iden-12

tify many new associations (433 in total across the 13 studies), many of which13

replicate when follow-up samples are available. Overall, our results demon-14

strate that multivariate analyses can help make more effective use of data15

from both existing and future GWAS.16

1 Author Summary17

Genome-wide association studies (GWAS) have become a common and powerful18

tool for identifying significant correlations between markers of genetic variation19

and physical traits of interest. Often these studies are conducted by comparing20

genetic variation against single traits one at a time (‘univariate’); however, it has21

previously been shown that it is possible to increase your power to detect significant22

associations by comparing genetic variation against multiple traits simultaneously23

(‘multivariate’). Despite this apparent increase in power though, researchers still24

rarely conduct multivariate GWAS, even when studies have multiple traits readily25

available. Here, we reanalyze 13 previously published GWAS using a multivariate26

method and find >400 additional associations. Our method makes use of univariate27

GWAS summary statistics and is available as a software package, thus making it28

accessible to other researchers interested in conducting the same analyses. We also29
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show, using studies that have multiple releases, that our new associations have high30

rates of replication. Overall, we argue multivariate approaches in GWAS should31

no longer be overlooked and how, often, there is low-hanging fruit in the form of32

new associations by running these methods on data already collected.33

2 Introduction34

Genome wide association studies (GWAS) have been widely used to identify genetic35

factors – particularly single nucleotide polymorphisms (SNPs) and copy number36

variations (CNVs) – associated with human disease risk and other phenotypes37

of interest (Price et al., 2015; Visscher et al., 2017). Indeed, at time of writing38

over 24,000 such associations have been identified as ‘genome-wide significant’39

(MacArthur et al., 2017).40

The vast majority of these many genetic association analyses consider only41

one phenotype at a time (“univariate association analysis”). This is despite the42

fact that measurements on multiple phenotypes are often available, and joint as-43

sociation analysis of multiple phenotypes (“multivariate association analysis”) can44

substantially increase power (Jiang and Zeng, 1995; Zhu and Zhang, 2009; Shriner,45

2012; Yang and Wang, 2012; Galesloot et al., 2014). There are likely multiple rea-46

sons for the preponderance of univariate analyses. One possible reason is that47

initial association analyses are usually performed under tight time constraints,48
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and at a time when many other analysis issues (e.g. quality control, population49

stratification) are competing for attention. In these conditions it makes sense to50

focus on the simplest possible approach that will quickly yield new associations,51

without overly worrying about loss of efficiency. In addition analysts may be legit-52

imately concerned that deviation from the most widely adopted analysis pipeline53

may invite unwanted additional reviewer attention.54

Nonetheless, we believe that multivariate association analysis has an important55

role to play in making the most of costly and time-consuming GWAS studies. One56

way forward is to conduct multivariate analyses of previously-published GWAS,57

checking for additional associations that may have been missed by the initial uni-58

variate association analyses. This is greatly facilitated by the fact that many59

GWAS now make summary data from single-SNP tests freely available (Willer60

et al., 2013; Wood et al., 2014; Locke et al., 2015; Shungin et al., 2015; Astle et al.,61

2016), and that simple multivariate analysis can be conducted using such summary62

data (Stephens, 2013; Pickrell et al., 2016; Hormozdiari et al., 2016).63

Here we demonstrate the potential benefits of reanalyzing published GWAS64

using multivariate methods. Specifically we apply multivariate methods from65

Stephens 2013 to reanalyze 13 different GWAS whose initial publications reported66

only univariate results. In most cases our multivariate analyses find many new67

associations. For example, in GIANT 2014/5 we find over 150 new associations.68

4

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 7, 2019. ; https://doi.org/10.1101/638882doi: bioRxiv preprint 

https://doi.org/10.1101/638882
http://creativecommons.org/licenses/by/4.0/


In studies with multiple data releases, we find that new multivariate associations69

found in initial releases typically replicate in subsequent releases, supporting that70

many of the new associations are likely real. We also demonstrate that the multi-71

variate approach is not equivalent to simply relaxing the univariate GWAS signif-72

icance threshold. Finally, we point out some limitations of the specific framework73

we used here, and suggest some alternative strategies that may help address those74

limitations in future multivariate GWAS analyses.75

3 Results76

Multivariate association analyses77

To facilitate multivariate association analyses using the methods from Stephens78

2013, we implemented them in an R package bmass (Bayesian multivariate anal-79

ysis of summary statistics). The software requires as input univariate GWAS80

summary statistics, for the same set of SNPs, on d related phenotypes. Then, for81

each SNP, it attempts to categorize each phenotype as belonging to one of three82

categories: Unassociated, Directly Associated, or Indirectly Associated with the83

SNP. The difference between D and I is that an indirect association disappears84

after controlling for associations with other phenotypes (see Online Methods and85

Supplementary Figure 1).86
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For d phenotypes, there are 3d possible assignments of phenotypes to these 387

categories, and each assignment corresponds to a different “model” γ. For example,88

one model corresponds to the “null” that all phenotypes are Unassociated; another89

model corresponds to the model that all phenotypes are Directly associated; an-90

other model corresponds to just the first phenotype being Directly associated, etc.91

The goal of the association analysis is to determine which of these models is con-92

sistent with the data and, in particular, to assess overall evidence against the null93

model.94

The support in the data for model γ, relative to the null model, is summarized95

by a Bayes Factor (BFγ). Large values of BFγ indicate strong evidence for model96

γ compared against the null. One advantage of Bayes Factors over p-values is that97

the Bayes Factors from different models can be easily compared and combined. For98

example, the overall evidence against the null is given by the (weighted) average99

of these BFs:100

BFav :=
∑
γ

wγBFγ (1)

where the weights wγ are chosen to reflect the relative plausibility of each model101

γ. In bmass we implemented the Empirical Bayes approach from Stephens 2013102

that learns appropriate weights from the data (see Online Methods).103
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Comparisons with published univariate analyses104

To provide a benchmark against which to compare our multivariate analysis re-105

sults, we compiled a list of “previous univariate associations”: SNPs that were106

both reported as significant in the original publication and exceeded the original107

publication’s definition for genome-wide significance in at least one phenotype in108

the publicly-available (univariate) summary data analyzed here. This does not109

include all SNPs reported in every original publication because in some studies110

SNPs became genome-wide significant only after adding additional samples not111

included in the publicly available summary data.112

We used these previous univariate associations to determine a significance113

threshold for our multivariate associations. Specifically, we declared a multivariate114

association as significant if its BFav exceeds that of any previous univariate associa-115

tion’s BFav in the same study (Stephens, 2013). The rationale is that the evidence116

for these multivariate associations exceeds the evidence for previously-reported117

genome-wide significant associations, which are generally regarded as likely to be118

(mostly) real associations.119

Finally, we defined a list of “new multivariate associations”, which are SNPs120

that are significant in our multivariate analysis but are not a “previous univariate121

association”. To avoid double-counting of signals due to linkage disequilibrium122

(LD), we pruned the list of new multivariate associations so that they are all at123
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least 0.5Mb apart. For additional details, see Online Methods.124

Many new loci identified in reanalyzing 13 publicly available125

GWAS studies126

We applied bmass to 13 publicly available GWAS studies, representing 10 dif-127

ferent collections of phenotypes (Table 1). Phenotypic collections include blood128

lipid traits (GlobalLipids: (Teslovich et al., 2010; Willer et al., 2013)), body mor-129

phological traits (GIANT: (Lango Allen et al., 2010; Speliotes et al., 2010; Heid130

et al., 2010; Wood et al., 2014; Locke et al., 2015; Shungin et al., 2015)), red blood131

cell traits (HaemgenRBC: (van der Harst et al., 2012; Astle et al., 2016)), blood132

pressure traits (International Consortium for Blood Pressure Genome-Wide Asso-133

ciation et al., 2011; Wain et al., 2011), bone density traits (Zheng et al., 2015), and134

kidney function traits (Kottgen et al., 2010; Boger et al., 2011). For three of these135

phenotypic collections (GlobalLipids, GIANT, and HaemgenRBC), two different136

releases were available from the source consortiums. We conducted basic QC as137

described in Online Methods.138

Our multivariate analyses identify, in total, hundreds of new associations. The139

numbers of previous univariate associations and new multivariate associations are140

summarized in Figure 1 (see also Supplementary Table 2). For example, we iden-141

tify 162 new multivariate associations in GIANT2014/5, 65 in GlobalLipids2013,142
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Dataset Release N Phenotypes
GlobalLipids 2010 95454 LDL, HDL, TC, TGa

2013 188577 LDL, HDL, TC, TG
GIANT 2010 77167 Height, BMI, WHRadjBMIb

2014/5 224459 Height, BMI, WHRadjBMI
HaemgenRBC 2012 135367 RBC, PCV, MCV, MCH, MCHC, Hbc

2016 173480 RBC, PCV, MCV, MCH, MCHC, Hb
ICBP 2011 69395 SBP, DBP, PP, MAPd

MAGIC 2010 46186 FstIns, FstGlu, HOMA_B, HOMA_IRe

GEFOS 2015 32965 FA, FN, LSf

GIS 2014 48972 Iron, Sat, TrnsFrn, Log10Frtng

SSGAC 2016 343072 NEB_Pooled, AFB_Pooledh

CKDGen 2010/1 67093 Crea, Cys, CKD, UACR, MAi

ENIGMA2 2015 30717 ICV, Accumbens, Amygdala, Caudate,
Hippocampus, Pallidum, Putamen, Thalamusj

Table 1: Dataset Summary. N is the maximum number of samples contributing
to each study.
a - Low-Density Lipoproteins (LDL), High-Density Lipoproteins (HDL), Total
Cholesterol (TC), Total Triglycerides (TG)
b - Body Mass Index (BMI), Waist-Hip Ratio adjusted for BMI (WHRadjBMI)
c - Red Blood Cell Count (RBC), Packed Cell Volume (PCV), Mean Cell Volume
(MCV), Mean Cell Haemoglobin (MCH), Mean Cell Haemoglobin Concentration
(MCHC), Haemoglobin (Hb)
d - Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Pulse Pres-
sure (PP), Mean Arterial Pressure (MAP)
e - Fasting Insulin (FstIns), Fasting Glucose (FstGlu), Homeostatic Model As-
sessment of Beta Cell Function (HOMA_B), Homeostatic Model Assessment of
Insulin Resistance Function (HOMA_IR)
f - Forearm Bone Mineral Density (FA), Femoral Neck Bone Mineral Density (FN),
Lumbar Spine Bone Mineral Density (LS)
g - Serum Iron (Iron), Serum Transferrin Saturation (Sat), Serum Transferrin
(TrnsFrn), Log-Transformed Ferritin (Log10Frtn)
h - Number of Children Ever Born, Male & Female (NEB_Pooled), Age at First
Birth, Male & Female (AFB_Pooled)
i - Serum Creatine (Crea), Serum Cystatin (Cys), Chronic Kidney Disease (CKD),
Urinary Albumin-to-Creatine Ratio (UACR), Microalbuminuria (MA)
j - Intracranial Volume (ICV), specified subcortical brain structures refer to MRI-
derived volume measurements for each one
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and 60 in HaemgenRBC2016. These represent power increases from 10% to 45%143

compared with previous univariate analyses.144

Figure 1: Number of Independent Significant SNPs, By Study. The barplot
shows the number of independent SNPs that were significant in previous univariate
analyses (blue) and the number of additional significant associations in our new
multivariate analyses (red). For univariate analysis, significance levels were set by
the original study. For multivariate analyses, we declared a SNP to be significant
if its weighted average Bayes Factor (BFav) exceeded that of the smallest BFav

among the previous univariate significant SNPs. We considered SNPs more than
.5Mb apart to be independent. See Table 1 and Online Methods for phenotype
details, Online Methods for further analysis details, and Supplementary Tables 2-4
for lists of significant SNPs from each dataset.
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—SNP Associations—
Dataset Release Previous New BFav Overlap With

Univariate Multivariate Thresh Next Release
GlobalLipids 2010 102 19 4.35 13/19

2013 145 65 4.29 -
GIANT 2010 144 60 4.11 49/60

2014/5 724 162 4.49 -
HaemgenRBC 2012 63 16 5.21 9/16

2016 610 60 4.68 -
ICBP 2011 22 22 5.24 -

MAGIC 2010 12 1 6.90 -
GEFOS 2015 34 13 5.06 -
GIS 2014 8 5 7.04 -

SSGAC 2016 9 1 5.43 -
CKDGen 2010/1 28 6 4.10 -
ENIGMA2 2015 5 3 7.48 -

Table 2: Summary of New Multivariate Associations Identified. Previous
Univariate: the number of previous genome-wide significant univariate associations
based on the publicly available summary data. New Multivariate: the number of
new genome-wide significant multivariate associations. BFav Thresh: the Bayes
Factor threshold used in declaring new multivariate associations to be significant.
Overlap With Next Release: for GlobalLipids2010, GIANT2010, and Haemgen-
RBC2012, the last column shows the number of new multivariate associations
that overlap with the univariate GWAS associations in the next release from the
same consortium; overlap is defined as being within 50kb of the univariate GWAS
variant.

11

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 7, 2019. ; https://doi.org/10.1101/638882doi: bioRxiv preprint 

https://doi.org/10.1101/638882
http://creativecommons.org/licenses/by/4.0/


Replication of multivariate associations across releases145

To demonstrate that many of these new multivariate associations are likely to146

be real we take advantage of three datasets that each have two releases sepa-147

rated by several years (GlobalLipids, GIANT, and HaemgenRBC). In each case148

we performed multivariate association analysis of the earlier release and checked149

how the new multivariate associations fared in univariate analyses of the later150

release (Figure 2). Since later releases include the samples from earlier releases,151

to assess “replication" we focus on whether the association in the new release is152

more significant than the original release – that is, whether the signal in the new153

(non-overlapping) samples provides additional evidence over and above the original154

signal. By this measure the results show high replication rates for the new mul-155

tivariate associations: in total, 84 of 94 new associations have smaller minimum156

univariate p-values in the later release (at exactly the same SNP), and indeed the157

majority of these reach univariate GWAS significance in the later release.158

Multivariate analysis is different from multiple univariate159

analyses160

Because multivariate analysis takes account of joint patterns across phenotypes, its161

ranking of significance of SNPs can change compared with that from the univariate162

p-values alone. That is, multivariate analysis is not simply equivalent to multiple163
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Figure 2: Replication of New Multivariate Associations. The figure shows
results based on earlier and later releases from studies with multiple releases (Glob-
alLipids, GIANT, and HaemgenRBC). Each point represents a new multivariate
association identified in our multivariate analysis of the earlier release. The x- and
y-axes show the minimum (across phenotypes) of the -log10 univariate p-values
from the earlier release (x-axis) vs. the later release (y-axis). Dashed red lines
represent the univariate significance GWAS thresholds used for each study’s re-
leases. Across all three studies, 84 out of 94 new multivariate associations from the
earlier releases have smaller minimum univariate p-values in the later release, and
68 out of 84 new multivariate associations that did not reach GWAS significance
in the earlier release do so in the later release (see Supplementary Table 5 for a
per-dataset breakdown).

univariate analyses. To illustrate this we examined, in three well-powered stud-164

ies, the associations that would be declared significant if the univariate significance165

threshold were relaxed, and assessed which of them would also be significant in our166

multivariate analysis (i.e. we assess whether, if we go deeper into the univariate re-167

sults, we find the same SNPs as appear in our multivariate results). The results are168

shown in Figure 3. Although there is, understandably, substantial overlap between169

the significant SNPs, any non-trivial relaxation of the univariate threshold includes170

many SNPs that are not multivariate significant in our analysis; for example, at171
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Figure 3: Comparison of New Multivariate Hits vs. Relaxing Univariate
p-Value Threshold. For each data set the graph shows how many associations
become significant as the univariate p-value threshold is relaxed (moving from right
to left on the x-axis), and how many of these are declared as new multivariate hits
in our analysis. In both cases results are pruned to avoid counting associations of
SNPs in strong LD; see Online Methods for details. The appearance of appreciable
blue areas indicates that the multivariate analysis is reordering the significance of
SNPs compared with performing multiple univariate analyses.

a univariate threshold of 5× 10−7 only 66% of the univariate significant SNPs are172

also multivariate significant across these three studies. This demonstrates that,173

indeed, our multivariate approach reorders significance of SNPs compared with174

multiple univariate analyses.175

Reanalysis also identifies new univariate associations176

During our multivariate reanalyses we noticed many SNPs that appeared to be177

genome-wide univariate significant but were – somewhat mysteriously – not re-178

ported as such by the original studies (i.e. SNPs whose univariate p-values crossed179

the significance threshold, as defined by the given study, in at least one trait).180
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Supplementary Table 1 reports 79 such associations.181

There may be many reasons why such variants went unreported, but one rea-182

son may be physical proximity to a variant with a stronger signal. Indeed, more183

than half of the variants described above are within 1Mb of a previously-reported184

univariate GWAS association. Refraining from reporting multiple near-by associa-185

tions seems a reasonable – if conservative – strategy to avoid reporting redundant186

associations due to LD. Further, even when redundant associations due to LD can187

be ruled out (e.g. by directly examining LD rather than by simply using physi-188

cal distance), it might be assumed that multiple nearby associated variants may189

all act through the same biological mechanism and therefore provide redundant190

biological insights. However, we found that multi-phenotype patterns of associa-191

tion can differ between nearby SNPs, suggesting that they act through different192

mechanisms.193

To highlight just one example, consider rs7515577 – which is an original uni-194

variate association in GlobalLipids2010 – and rs12038699 – which is a new multi-195

variate association in GlobalLipids2013. We note that rs12038699 actually reached196

univariate genome-wide significance in the GlobalLipids2013 dataset, but was not197

reported (Supplementary Table 6). This is possibly because the latter SNP is rel-198

atively close, in genomic terms, to the former SNP (549kb). However, these SNPs199

are not in strong LD (r2 = .08), and so these associations almost certainly repre-200
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sent non-redundant associations. This is further supported by the effect sizes in201

each phenotype, which clearly reveal very different multivariate patterns of effect202

sizes among phenotypes (Supplementary Figure 2 & Supplementary Table 6). In-203

deed the very different multivariate patterns of effect size suggest that not only are204

these associations non-redundant but likely involve different biological mechanisms205

as well.206

These results suggest that, moving forward, it may pay to be more careful207

in designing filters designed to avoid reporting redundant associations, and that208

multi-phenotype analyses may have a helpful role to play here.209

Limitations210

One goal of the multivariate approach introduced in Stephens 2013 was to increase211

interpretability of multivariate analyses; in particular, the goal was to not only212

test for associations but also to help explain the associations by partitioning the213

phenotypes into “Unassociated”, “Directly Associated”, and “Indirectly Associated”214

categories. In principle one might hope to use these classifications to gain insights215

into the relationships among phenotypes and also perhaps to identify different216

“types” of multivariate association - effectively clustering associations into different217

groups. However, in practice we find that these discrete classifications are often not218

as helpful as one might hope. One reason is the difficulty of reliably distinguishing219
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between direct and indirect effects (Stephens, 2013). Another reason is widespread220

associations with multiple phenotypes. Indeed, we find that, consistently across221

data sets, the most common multivariate models involve associations – either direct222

or indirect – with many phenotypes (Supplementary Table 7) and many SNPs223

are classified as being associated with many phenotypes (Figure 4A). Further,224

SNPs are very rarely confidently classified as “Unassociated” with any phenotype225

(Figure 4B). This last observation can be explained by the fact that it is essentially226

impossible to distinguish ‘unassociated’ from ‘weakly associated’. Nonetheless227

when all SNPs show similar classifications it is difficult to get insights into different228

patterns of multivariate association.229

Moving forward, rather than relying on the discrete classifications of “Unas-230

sociated”, “Directly Associated”, and “Indirectly Associated” to identify different231

patterns of multivariate association, we believe it will be more fruitful to use232

multivariate methods that take a more quantitative approach, such as identifying233

different patterns of effect size (including direction of effect) among phenotypes234

(Urbut et al., 2017). Focusing on effect sizes has the potential to be much more235

informative than discrete classification, which can hide effect size differences. For236

example, when multiple SNPs are classified as associated with all phenotypes,237

they can still show very different patterns of estimated effect sizes/direction (see238

Supplementary Figure 3).239
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Figure 4: Distribution, Across Significant SNPs, of Number of Pheno-
types That Are Confidently Associated (A) or Confidently Unassoci-
ated (B). Results are shown for three well-powered datasets: GlobalLipids2013,
GIANT2014/5, and HaemgenRBC2016. Here “confident” means with probability
> 0.95, so a SNP is considered “confidently associated” with a phenotype if the
sum of its probabilities in the “Directly Associated” and “Indirectly Associated”
categories exceeds 0.95 (A), and is considered confidently unassociated with the
phenotype if this probability is less than 0.05 (B). The set of significant SNPs
includes both previous univariate associations and new multivariate associations.
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Another limitation of our multivariate methods is that they can lead to (what240

appear to be) false positive associations when applied to test SNPs with very low241

minor allele frequencies. Specifically we saw examples where very low-frequency242

SNPs (e.g. MAF < .001) showed strong signals of multivariate association despite243

showing very little signal in any univariate test. Although such results are not244

impossible, we believe that most of these cases were likely false positives, and we245

applied a MAF cut-off (of 0.01 or 0.005) to avoid these issues. Consequently we246

recommend caution in interpreting results of multivariate analyses at very low-247

frequency SNPs, and more generally we recommend that multivariate results be248

compared against univariate results to check they make sense – highly significant249

multivariate associations that do not also show at least a moderate level of uni-250

variate association should be treated with caution.251

4 Discussion252

We reanalyzed 13 publicly available GWAS datasets using a Bayesian multivari-253

ate approach and identified many new genetic associations. Turning genetic as-254

sociations into biological discoveries remains, of course, a challenging problem.255

Nonetheless, our results suggest that the increased power of multivariate associa-256

tion analysis that has been reported in many simulation studies (Stephens, 2013;257

Galesloot et al., 2014; Porter and O’Reilly, 2017) also translates to discovery of258
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many new associations in practice.259

Our results exploit the public availability of summary data from several large260

GWAS. Despite progress toward easier availability of individual-level data for large261

studies (Sudlow et al., 2015), in many cases summary data remain much easier262

to obtain and work with; there are big practical advantages as well to modular263

pipelines that first compute summary data and then use these as inputs to sub-264

sequent (more sophisticated) analyses. For example, the multivariate analyses we265

present here are simplified by assuming that the summary data were computed266

while adequately adjusting for population stratification. And our results illustrate267

the potential for reanalysis of summary data to yield novel inferences. In this268

regard we also emphasize the importance of consortia releasing carefully-chosen269

summaries. For example, Z-scores are much more helpful than p-values because270

they preserve information on the direction of the effect. Even better would be271

both the effect size and standard error that created the Z-score. More generally,272

although not necessarily essential for our analyses here, it is always helpful to in-273

clude additional key meta-data (e.g. the reference allele, or effect allele, the minor274

allele frequency, and sample size).275

The specific multivariate methods used here were derived under the assumption276

that the summary data from each phenotype has been obtained from the same277

sampled individuals (which is true, at least approximately, for studies analyzed278
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here). However, multivariate analysis of summary data is also possible even when279

data were obtained from different samples for each phenotype. The main difference280

between these settings is that, for data from overlapping samples, the “noise" is281

correlated as well as the signal: i.e. the summary data are correlated under the null282

due to sample overlap, and correlated under the alternative due to both sample283

overlap and any shared genetic effects. In contrast, for data from non-overlapping284

samples the noise is uncorrelated (whereas the signal may remain correlated if285

genetic factors are shared). Our methods use data at (empirically) null SNPs286

to estimate the noise correlation, and so their overall assessment of associations287

should be relatively robust to whether samples for different phenotypes overlap288

(however, our definitions of D (direct) vs I (indirect) associations requires the289

same samples to be measured across phenotypes.)290

Moving forward, we expect multivariate association analyses to play an in-291

creasingly important role in detecting and understanding genetic associations and292

relationships among phenotypes. Large studies are now collecting, and making293

available, rich human genetic and phenotypic information on many complex phe-294

notypes, most notably the UKBioBank (Sudlow et al., 2015). In addition, there295

are increasingly large studies linking genetic variation and molecular phenotypes296

such as gene expression (e.g. the GTEx project (GTEx Consortium, 2013)), as297

well as epigenetic modifications and transcript degradation (Gaffney, 2013; Pai298
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et al., 2015; Birney et al., 2016; Stricker et al., 2017). Analysis of multiple molec-299

ular traits can help yield insights into causal connections among traits (Li et al.,300

2016), and joint analysis of molecular traits with complex phenotypes may also301

shed light on functional mechanisms (as in “co-localization” analyses (Hormozdiari302

et al., 2016; Li and Kellis, 2016; Zhu et al., 2016; Wen et al., 2017)). Even simply303

moving from single phenotype to pairwise analysis can shed considerable light on304

sharing of genetic effects and possible causal connections (Pickrell et al., 2016; Shi305

et al., 2017).306

These increasingly-complex new data also bring new analytic and computa-307

tional challenges. Here we have restricted our analyses to relatively small sets308

of closely-related traits, and indeed the specific multivariate framework we used309

here – which performs an exhaustive search over all possible multivariate models310

– is fully tractable for only moderate numbers of traits (up to about 10). Scal-311

ing methods up to dealing with larger number of traits may well be helpful for312

some settings, and recent multivariate analysis methods can deal with dozens of313

outcomes (Dahl et al., 2016; Urbut et al., 2017). In addition, developing multivari-314

ate methods to perform fine-mapping of genetic associations simultaneously across315

multiple phenotypes (Lewin et al., 2016) seems an important and challenging area316

for future work.317
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5 URLs318

bmass R package: https://github.com/mturchin20/bmass319
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8 Materials and Methods331

8.1 GWAS Datasets332

Below are specific details regarding retrieval and data-processing for each dataset333

analyzed. Where applicable, these details include the sample size (N), minor allele334

frequency (MAF), and p-value thresholds that were applied (based on the thresh-335

olds used in the original publications). For each dataset variants were dropped if336

they satisfied at least one of the following criteria: did not contain information for337

every phenotype; had missing MAF; were fixed (MAF of 0); had effect size exactly338

0 (i.e. direction of effect would be indeterminable); or did not contain the same339

reference and alternative alleles across each phenotype. For a handful of studies,340

external databases were used to retrieve chromosome, basepair information, and341

MAF based on rsID#; in these studies SNPs for which this information could not342

be retrieved were also dropped.343

GlobalLipids2010 (Teslovich et al., 2010): Original merged, processed,344

and GWAS-hit annotated summary data from Stephens 2013 (Stephens, 2013) for345

HDL, LDL, TG, and TC was downloaded from https://github.com/stephens999/346

multivariate (dtlesssignif.annot.txt and RSS0.txt).347

GlobalLipids2013 (Willer et al., 2013): Summary data for HDL, LDL,348

TG, and TC was downloaded from http://csg.sph.umich.edu/abecasis/public/349
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lipids2013/. We used a minimum N threshold of 50,000, a MAF threshold of350

1%, and a univariate significant GWAS p-value threshold of 5 × 10−8. All vari-351

ants were oriented to the HDL minor allele. The final merged and QC’d datafile352

contained 2,004,701 SNPs. rsID#’s of published GWAS SNPs were retrieved for353

all four phenotypes from https://www.nature.com/ng/journal/v45/n11/full/354

ng.2797.html via Supplementary Tables 2 and 3.355

GIANT2010 (Lango Allen et al., 2010; Speliotes et al., 2010; Heid356

et al., 2010): Summary data for Height, BMI, and WHRadjBMI were down-357

loaded from https://www.broadinstitute.org/collaboration/giant/index.358

php/GIANT_consortium_data_files. We used a minimum N threshold of 50,000,359

a MAF threshold of 1%, and a univariate significant GWAS p-value threshold of360

5 × 10−8. Chromosome and basepair position per variant were retrieved from361

dbSNP130 (Sherry et al., 2001). All variants were oriented to the Height minor362

allele. The final merged and QC’ed datafile contained 2,363,881 SNPs. rsID#’s363

of published GWAS SNPs were retrieved for Height from https://www.nature.364

com/nature/journal/v467/n7317/full/nature09410.html via Supplementary365

Table 1, for BMI from https://www.nature.com/ng/journal/v42/n11/full/366

ng.686.html via Table 1, and for WHRadjBMI from https://www.nature.com/367

ng/journal/v42/n11/full/ng.685.html via Table 1.368

GIANT2014/5 (Wood et al., 2014; Locke et al., 2015; Shungin et al.,369
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2015): Summary data for Height, BMI, and WHRadjBMI were downloaded from370

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_371

data_files. We used a minimum N threshold of 50,000, a MAF threshold of 1%,372

and a univariate significant GWAS p-value threshold of 5 × 10−8. Chromosome373

and basepair position per variant were retrieved from dbSNP130 (Sherry et al.,374

2001). All variants were oriented to the Height minor allele. The final merged and375

QC’ed datafile contained 2,340,715 SNPs. rsID#’s of published GWAS SNPs were376

retrieved for Height from https://www.nature.com/ng/journal/v46/n11/full/377

ng.3097.html via Supplementary Table 1, for BMI from https://www.nature.378

com/nature/journal/v518/n7538/full/nature14177.html via Supplementary379

Tables 1 and 2, and for WHRadjBMI from https://www.nature.com/nature/380

journal/v518/n7538/full/nature14132.html via Supplementary Table 4.381

HaemgenRBC2012 (van der Harst et al., 2012): Summary data for RBC,382

PCV, MCV, MCH, MCHC, and Hb were downloaded from the European Genome-383

Phenome Archive via accession number EGAS00000000132 (https://www.ebi.384

ac.uk/ega/studies/EGAS00000000132). We used a minimum N threshold of385

10,000, a MAF threshold of 1%, and a univariate significant GWAS p-value thresh-386

old of 1 × 10−8. Chromosome, basepair position, and MAF per variant were387

retrieved from HapMap release 22 (International HapMap, 2003). All variants388

were oriented to the RBC minor allele. The final merged and QC’ed datafile389
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contained 2,327,567 SNPs. rsID#’s of published GWAS SNPs were retrieved390

for all six phenotypes from https://www.nature.com/nature/journal/v492/391

n7429/full/nature11677.html via Table 1.392

HaemgenRBC2016 (Astle et al., 2016): Summary data for RBC, PCV,393

MCV, MCH, MCHC, and Hb were shared via personal communication with the394

authors. We used a MAF threshold of 1% and a univariate significant GWAS p-395

value threshold of 8.319×10−9. Since sample size was not provided per variant, the396

following overall study sample sizes were used as proxies per phenotype: 172,952 for397

RBC, 172,433 for PCV, 173,039 for MCV, 172,332 for MCH, for 172,925 MCHC,398

and 172,851 for Hb. All variants were oriented to the RBC minor allele. Only SNPs399

were analyzed. The final merged and QC’ed datafile contained 8,649,095 SNPs.400

We then used these summary data to create a list of (non-redundant) “Previous401

univariate associations". This was done separately for each phenotype by collecting402

all SNPs that exceeded the univariate significant GWAS p-value threshold and403

greedily pruning the SNPs: i.e. we went down the list, removing SNPs that were404

less significant than another SNP within 500kb. The pruned lists of previous405

univariate associations for each phenotype were then combined to produce the406

final SNP list of “published GWAS results”. Published CNVs that tagged regions407

that were not identified by this ‘final published SNP list’ were also included to408

avoid erroneously claiming downstream a region as a ‘new unpublished result’;409
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these CNVs however were only used to mask additional loci as being ‘nearby a410

published univariate GWAS result’ and for nothing else in the bmass analysis411

pipeline.412

ICBP2011 (International Consortium for Blood Pressure Genome-413

Wide Association et al., 2011; Wain et al., 2011): Summary data for414

SBP, DBP, PP, and MAP were downloaded from dbGaP via accession number415

phs000585.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.416

cgi?study_id=phs000585.v1.p1). We used a minimum N threshold of 10,000, a417

MAF threshold of 1%, and a univariate significant GWAS p-value threshold of 5×418

10−8. Chromosome and basepair position per variant were retrieved from HapMap419

release 21 (International HapMap, 2003). All variants were oriented to the SBP mi-420

nor allele. The final merged and QC’ed datafile contained 2,387,851 SNPs. rsID#’s421

of published GWAS SNPs were retrieved for SBP and DBP from https://www.422

nature.com/nature/journal/v478/n7367/full/nature10405.html via Supple-423

mentary Table 5, and for PP and MAP from https://www.nature.com/ng/journal/424

v43/n10/full/ng.922.html via Table 1 and Supplementary Table 2F. Addition-425

ally, we gratefully acknowledge the International Consortium for Blood Pressure426

Genome-Wide Association Studies (Nature. 2011 Sep 11;478(7367):103-9, Nat427

Genet. 2011 Sep 11;43(10):1005-11) for generating and sharing these data.428

MAGIC2010 (Dupuis et al., 2010): Summary data for FstIns, FstGlu,429
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HOMA_B, and HOMA_IR were downloaded from https://www.magicinvestigators.430

org/downloads/. We used a MAF threshold of 1% and a univariate significant431

GWAS p-value threshold of 5 × 10−8. Since sample size was not provided per432

variant, the overall study sample size of 46,186 was used as a proxy. Chromo-433

some and basepair position per variant were retrieved from HapMap release 22434

(International HapMap, 2003). All variants were oriented to the FstIns minor435

allele. The final merged and QC’ed datafile contained 2,333,328 SNPs. rsID#’s436

of published GWAS SNPs were retrieved for all four phenotypes from https:437

//www.nature.com/ng/journal/v42/n2/full/ng.520.html via Table 1.438

GEFOS2015 (Zheng et al., 2015): Summary data for FA, FN, and LS were439

downloaded from http://www.gefos.org/?q=content/data-release-2015. We440

used a MAF threshold of .5% and a univariate significant GWAS p-value threshold441

of 1.2×10−8. Since sample size was not provided per variant, the overall study sam-442

ple size of 32,965 was used as a proxy. All variants were oriented to the FA minor443

allele. The final merged and QC’ed datafile contained 8,938,035 SNPs. rsID#’s of444

published GWAS SNPs were retrieved for all four phenotypes from https://www.445

nature.com/nature/journal/v526/n7571/full/nature14878.html via Supple-446

mentary Table 13.447

GIS2014 (Benyamin et al., 2014): Summary data for Iron, Sat, TrnsFrn,448

and Log10Frtn were shared via personal communication with the authors. We449
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used a MAF threshold of 1% and a univariate significant GWAS p-value threshold450

of 5 × 10−8. Since sample size was not provided per variant, the overall study451

sample size of 48,972 was used as a proxy. All variants were oriented to the Iron452

minor allele. The final merged and QC’ed datafile contained 1,985,313 SNPs.453

rsID#’s of published GWAS SNPs were retrieved for all four phenotypes from454

https://www.nature.com/articles/ncomms5926/ via Table 1.455

SSGAC2016 (Barban et al., 2016): Summary data for NEB_Pooled and456

AFB_Pooled were downloaded from https://www.thessgac.org/data. We used457

a MAF threshold of 1% and a univariate significant GWAS p-value threshold of458

5 × 10−8. Since sample size was not provided per variant, the following overall459

study sample sizes were used as proxies per phenotype: 251,151 for NEB_Pooled460

and 343,072 for AFB_Pooled. All variants were oriented to the NEB_Pooled461

minor allele. The final merged and QC’ed datafile contained 2,395,561 SNPs.462

rsID#’s of published GWAS SNPs were retrieved for all four phenotypes from463

https://www.nature.com/ng/journal/v48/n12/full/ng.3698.html via Table464

1.465

CKDGen2010/1 (Kottgen et al., 2010; Boger et al., 2011): Summary466

data for Crea, Cys, CKD, UACR, and MA were downloaded from https://www.467

nhlbi.nih.gov/research/intramural/researchers/pi/fox-caroline/datasets.468

We used a MAF threshold of 1% and a univariate significant GWAS p-value thresh-469
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old of 5 × 10−8. Since sample size was not provided per variant, the following470

overall study sample sizes were used as proxies per phenotype: 67,093 for Crea,471

20,957 for Cys, 62,237 for CKD, 31,580 for UACR, and 30,482 for MA. All vari-472

ants were oriented to the Crea minor allele. The final merged and QC’ed datafile473

contained 2,333,498 SNPs. rsID#’s of published GWAS SNPs were retrieved for474

Crea, Cys, and CKD from https://www.nature.com/ng/journal/v42/n5/full/475

ng.568.html via Table 2.476

ENIGMA22015 (Hibar et al., 2015): Summary data for ICV, Accum-477

bens, Amygdala, Caudate, Hippocampus, Pallidum, Putamen, and Thalamus were478

downloaded from http://enigma.ini.usc.edu/research/download-enigma-gwas-results/.479

We used a minimum N threshold of 10,000, a MAF threshold of 1% and a uni-480

variate significant GWAS p-value threshold of 5× 10−8. All variants were oriented481

to the ICV minor allele. The final merged and QC’ed datafile contained 6,271,117482

SNPs. rsID#’s of published GWAS SNPs were retrieved for all 8 phenotypes from483

https://www.nature.com/nature/journal/v520/n7546/full/nature14101.html484

via Table 1.485

8.2 bmass486

bmass implements in an R package the statistical methods described in Stephens487

2013, which should be consulted for full details. In particular, the sections “Com-488
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putation” and “Detailed Methods (Global Lipids Analysis)” in Stephens 2013 de-489

scribe how multivariate analyses are applied to GWAS summary data, and bmass490

implements the data analysis pipeline described in the “Detailed Methods (Global491

Lipids Analysis)” section. The bmass R package also includes two vignettes to help492

users begin processing GWAS summary data and implementing these methods.493

8.3 Additional Details for Figure 3494

For each dataset we made a list of “marginally-significant" SNPs, with p-values495

smaller than 1 × 10−6 but not genome-wide significant at the relevant datasets’496

GWAS threshold. We then greedily pruned these lists of marginally-significant497

SNPs: that is we repeatedly went through the lists removing SNPs that were less498

significant than another SNP within 500kb. We then removed any SNPs that were499

within 500kb of a new multivariate association, and merged the resulting list with500

the list of new multivariate associations, and sorted this merged list of SNPs by501

their minimum univariate p-value.502

This results in a non-redundant list of marginally-significant SNPs – some of503

which are new multivariate associations and some of which are not – sorted by504

their smallest univariate p-value. The plot shows how the number of SNPs of each505

type varies as the p-value threshold is relaxed from the GWAS threshold to 10−6
506

(the HaemgenRBC2016 results show only the top 500 SNPs due to the abundance507
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of SNPs between 8.31× 10−9 and 1× 10−6).508
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9 Figure Legends960

Figure 1: Number of Independent Significant SNPs, By Study. The barplot961

shows the number of independent SNPs that were significant in previous univariate962

analyses (blue) and the number of additional significant associations in our new963

multivariate analyses (red). For univariate analysis, significance levels were set by964

the original study. For multivariate analyses, we declared a SNP to be significant965

if its weighted average Bayes Factor (BFav) exceeded that of the smallest BFav966

among the previous univariate significant SNPs. We considered SNPs more than967

.5Mb apart to be independent. See Table 1 and Online Methods for phenotype968

details, Online Methods for further analysis details, and Supplementary Tables 2-4969

for lists of significant SNPs from each dataset.970

Figure 2: Replication of New Multivariate Associations. The figure971

shows results based on earlier and later releases from studies with multiple re-972

leases (GlobalLipids, GIANT, and HaemgenRBC). Each point represents a new973

multivariate association identified in our multivariate analysis of the earlier release.974

The x- and y-axes show the minimum (across phenotypes) of the -log10 univariate975

p-values from the earlier release (x-axis) vs. the later release (y-axis). Dashed red976

lines represent the univariate significance GWAS thresholds used for each study’s977

releases. Across all three studies, 84 out of 94 new multivariate associations from978

the earlier releases have smaller minimum univariate p-values in the later release,979
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and 68 out of 84 new multivariate associations that did not reach GWAS signifi-980

cance in the earlier release do so in the later release (see Supplementary Table 5981

for a per-dataset breakdown).982

Figure 3: Comparison of New Multivariate Hits vs. Relaxing Univari-983

ate p-Value Threshold. For each data set the graph shows how many associ-984

ations become significant as the univariate p-value threshold is relaxed (moving985

from right to left on the x-axis), and how many of these are declared as new mul-986

tivariate hits in our analysis. In both cases results are pruned to avoid counting987

associations of SNPs in strong LD; see Online Methods for details. The appearance988

of appreciable blue areas indicates that the multivariate analysis is reordering the989

significance of SNPs compared with performing multiple univariate analyses.990

Figure 4: Distribution, Across Significant SNPs, of Number of Phe-991

notypes That Are Confidently Associated (A) or Confidently Unassoci-992

ated (B). Results are shown for three well-powered datasets: GlobalLipids2013,993

GIANT2014/5, and HaemgenRBC2016. Here “confident” means with probability994

> 0.95, so a SNP is considered “confidently associated” with a phenotype if the995

sum of its probabilities in the “Directly Associated” and “Indirectly Associated”996

categories exceeds 0.95 (A), and is considered confidently unassociated with the997

phenotype if this probability is less than 0.05 (B). The set of significant SNPs998
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includes both previous univariate associations and new multivariate associations.999

10 Supporting Information Legends1000

Supplementary Figure 1: Graphical Model of Multivariate Categories. Shown1001

here is a Directed Acyclic Graphical (DAG) model of our multivariate categories1002

in the context of our vector of phenotypes Y (e.g. Y = {YU, YD, YI}) and their1003

connections with the variant of interest g. The relationships described in-text1004

can be seen here. YU, our unassociated phenotypes, have no connection with g.1005

YD, our directly associated phenotypes, have a direct connection with g. And1006

YI, our indirectly associated phenotypes, have a connection with g only by going1007

through YD first. Note that if YD were not observed, YI would appear as a direct1008

connection.1009

Supplementary Figure 2: Refining Association Signals – GlobalLipids20131010

rs7515577 & rs12038699. Shown are the -log10 univariate p-values from the1011

GlobalLipids2013 analysis for both the previous univariate association rs75155771012

(“Previous Univariate SNP”) and the new multivariate association rs120386991013

(“New Multivariate SNP”) across all four phenotypes analyzed. rs7515577 is repre-1014

sented as a triangle and rs12038699 is represented as a square. Also shown are the1015

-log10 univariate p-values of SNPs within 1Mb of the midpoint between rs75155771016
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and rs12038699. Color-coding of the SNPs represent the degree of linkage disequi-1017

librium between variants and the new association rs12038699 based on the GBR1018

cohort of 1000Genomes (Genomes Project et al., 2015); for color coding details,1019

see legend.1020

Supplementary Figure 3: Effect Size Heterogeneity Among SNPs With1021

Identical Multivariate Model Assignments. Shown are the phenotype effect1022

sizes (points), and ±2 standard errors (bars), for four significantly associated SNPs1023

from HaemgenRBC2016. All four SNPs were classified as being “associated” with1024

all six phenotypes (i.e. marginal posterior probability of association >= 95% for1025

each phenotype). However, they clearly show different patterns of effect sizes.1026

Therefore focusing simply on binary calls of “associated” vs “unassociated” can1027

hide different patterns of multivariate association.1028

Supplementary Table 1: Summary of Associations in Each Dataset.1029

a Number of new multivariate associations discovered by our analysis. Note that1030

we required a multivariate association to be at least 500kb from a previous re-1031

ported association to be considered “new”.1032

b Univariate GWAS significance p-value threshold used by the original study pub-1033

lication.1034

c These are new multivariate SNPs that were not reported by the original study1035
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despite having a univariate association (in the public summary data) that was1036

genome-wide significant by the original study’s univariate significance threshold.1037

d A “previous association” means an association reported by the original GWAS;1038

“near” means within 1Mb (but these are all more than 500kb away from a previous1039

association since our classification of new multivariate SNPs requires this).1040

Supplementary Tables 2a-m: Lists of New bmass Multivariate Associa-1041

tions, per Dataset. Attached Excel sheets list new bmass associations for each1042

dataset analyzed.1043

Supplementary Tables 3a-m: Lists of Retrieved Univariate Associations1044

From Original Publications, per Dataset. Attached Excel sheets list the1045

rsID#’s of the univariate significant SNPs that were retrieved from the original1046

publication(s) associated with each dataset (see Online Methods for details).1047

Supplementary Tables 4a-m: Results for Previous Univariate Associa-1048

tions, per Dataset. Attached Excel sheets give bmass results for previous uni-1049

variate associations, per dataset. Note that these results may not include all SNPs1050

from Tables 3a-m, because some SNPs were dropped during QC and other SNPs1051

were dropped because they did not reach univariate significance in the publicly1052

available summary data (see Online Methods for details).1053
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Supplementary Table 5: Replication of New Multivariate Associations.1054

Shown are example metrics of how well our new multivariate associations replicate1055

in datasets that allow such an evaluation. Specifically, for three of the studies1056

used (GlobalLipids, GIANT, and HaemgenRBC), there are multiple dataset re-1057

leases. To examine how well our new multivariate bmass associations replicate,1058

we compared the results from the first releases (“1st”) with the univariate GWAS1059

associations of the second releases (“2nd”). In essence, each of these approaches aim1060

to increase power – one by using a multivariate approach (bmass) and the other by1061

increasing sample size (the 2nd releases) – thus allowing us to compare the results1062

against one another. Univariate p-Value Threshold: univariate GWAS significance1063

p-value thresholds used by the original publication(s) for both the earlier (1st) and1064

later (2nd) releases. New Multivariate SNPs in 1st: number of new multivariate1065

associations from the earlier release. Lower Univariate p-Value in 2nd: number of1066

new multivariate associations from the earlier release that also have lower univari-1067

ate p-values in the later release. Below 2nd Univariate Threshold: number of new1068

multivariate associations from the earlier release that also cross the later release’s1069

univariate GWAS significance threshold.1070

Supplementary Table 6: p-Values for rs7515577 & rs12038699 in 20101071

and 2013 GlobalLipds Releases – In the 2010 release rs7515577 has a univari-1072

ate p-value that crosses the 5×10−8 threshold (TC), whereas rs12038699 does not.1073
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Since rs12038699 is near to rs7515577 it may get masked for future analyses; how-1074

ever in the 2013 data rs12038699 not only has a lower minimum univariate p-value,1075

but also has a different multivariate p-value pattern as compared to rs7515577.1076

Both these signals suggest that rs12038699 should be viewed as a separate GWAS1077

hit for GlobalLipids2013.1078

Supplementary Table 7: Top Multivariate Model Examples per SNP.1079

List of multivariate models that most frequently have the highest posterior prob-1080

abilities per SNP. Top 5 models are shown from across both the previous uni-1081

variate associations analyzed and the new multivariate associations discovered in1082

the GlobalLipids2013, GIANT2014/5, and HaemgenRBC2016 datasets. Pheno-1083

type ordering is shown in the header, where 0, 1, and 2 refer to the multivariate1084

categories of Unassociated, Directly Associated, and Indirectly Associated. n is1085

the number of SNPs that show the specified model as having the largest posterior1086

probability, with Mean Posterior displaying the average posterior probability of1087

the given model across the n SNPs, and Original Prior showing the prior estab-1088

lished for the given model from training on all the previous univariate associations1089

from that dataset.1090
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11 Tables1091

Table 1: Dataset Summary. N is the maximum number of samples contributing1092

to each study.1093

a - Low-Density Lipoproteins (LDL), High-Density Lipoproteins (HDL), Total1094

Cholesterol (TC), Total Triglycerides (TG)1095

b - Body Mass Index (BMI), Waist-Hip Ratio adjusted for BMI (WHRadjBMI)1096

c - Red Blood Cell Count (RBC), Packed Cell Volume (PCV), Mean Cell Volume1097

(MCV), Mean Cell Haemoglobin (MCH), Mean Cell Haemoglobin Concentration1098

(MCHC), Haemoglobin (Hb)1099

d - Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Pulse Pres-1100

sure (PP), Mean Arterial Pressure (MAP)1101

e - Fasting Insulin (FstIns), Fasting Glucose (FstGlu), Homeostatic Model As-1102

sessment of Beta Cell Function (HOMA_B), Homeostatic Model Assessment of1103

Insulin Resistance Function (HOMA_IR)1104

f - Forearm Bone Mineral Density (FA), Femoral Neck Bone Mineral Density (FN),1105

Lumbar Spine Bone Mineral Density (LS)1106

g - Serum Iron (Iron), Serum Transferrin Saturation (Sat), Serum Transferrin1107

(TrnsFrn), Log-Transformed Ferritin (Log10Frtn)1108

h - Number of Children Ever Born, Male & Female (NEB_Pooled), Age at First1109

Birth, Male & Female (AFB_Pooled)1110
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i - Serum Creatine (Crea), Serum Cystatin (Cys), Chronic Kidney Disease (CKD),1111

Urinary Albumin-to-Creatine Ratio (UACR), Microalbuminuria (MA)1112

j - Intracranial Volume (ICV), specified subcortical brain structures refer to MRI-1113

derived volume measurements for each one1114

Table 2: Summary of New Multivariate Associations Identified. Pre-1115

vious Univariate: the number of previous genome-wide significant univariate as-1116

sociations based on the publicly available summary data. New Multivariate: the1117

number of new genome-wide significant multivariate associations. BFav Thresh:1118

the Bayes Factor threshold used in declaring new multivariate associations to be1119

significant. Overlap With Next Release: for GlobalLipids2010, GIANT2010, and1120

HaemgenRBC2012, the last column shows the number of new multivariate asso-1121

ciations that overlap with the univariate GWAS associations in the next release1122

from the same consortium; overlap is defined as being within 50kb of the univariate1123

GWAS variant.1124
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