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Abstract

In bioinformatics, machine learning methods have been used to predict
features embedded in the sequences. In contrast to what is generally as-
sumed, machine learning approaches can also provide new insights into the
underlying biology. Here, we demonstrate this by presenting TargetP 2.0, a
novel state of art method to identify N-terminal sorting signals, which direct
proteins to the secretory pathway, mitochondria and chloroplasts or other
plastids.

By examining the strongest signals from the attention layer in the net-
work, we find that the second residue in the protein, i.e. the one following
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the initial methionine, has a strong influence on the classification. When
subsequently examining all targeting peptides, we observe that two-thirds of
chloroplast and thylakoid transit peptides have an alanine in position two,
but only 20% of other plant proteins. Further highlighting the importance
of the second residue, we also note that in fungi and single-celled eukaryotes,
less than 30% of the targeting peptides have an amino acid that allows the
removal of the N-terminal methionine compared with 60% for the proteins
without targeting peptide.

TargetP 2.0 is available at http://www.cbs.dtu.dk/services/TargetP-2.0/index.php
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Abbreviations

• SP - Signal Peptide

• mTP - mitochondrial Transit Peptide

• cTP - chloroplast Transit Peptide

• lTP - thylakoid lumenal Transit Peptide

• noTP - proteins without Targeting Peptide

• RNN - Recurrent Neural Network

• LSTM - Long Short-Term Memory
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1. Introduction

The localisation of proteins in the cell is a fundamental determinant of
protein function. Specific sorting signals drive the subcellular localisation of
proteins. These signals vary in structure, length and position between the
different subcellular compartments. One of the most common types of sorting
signals are the N-terminal targeting peptides. These signals are responsible
for sorting proteins to the secretory pathway, mitochondria, chloroplasts (or
other plastids) and compartments inside the chloroplast such as thylakoids.

Signal peptides (SP) are responsible for transporting proteins to the en-
doplasmic reticulum to enter the secretory pathway. SPs are composed of
three regions: a positively charged domain or n-region, a hydrophobic core
or h-region and a segment prior to the cleavage site or c-region [1].

Mitochondrial transit peptides (mTP) are responsible for targeting pro-
teins to the mitochondrial matrix. mTPs are usually enriched in arginine,
leucine and serine. Moreover, they tend to form an amphiphilic helical
structure to interact with the import receptor on the mitochondrial mem-
brane [2]. Proteins targeted to the inner mitochondrial membrane or the
inter-membrane space often have a bipartite mTP, where the second part is
similar to an SP [3].

Chloroplast transit peptides (cTP) are involved in the transport of pro-
teins to the chloroplast stroma. Most of the cTPs consist of three regions: an
uncharged N-terminal region, a central region lacking acidic amino acids but
enriched in serine and threonine and a C-terminal region enriched in arginine
that forms an amphiphilic β strand [4]. Additionally, chloroplastic proteins
targeted to the thylakoid lumen have a bipartite pre-sequence structure [5].
Once the cTP is cleaved and the protein enters the stroma, a luminal tran-
sit peptide (lTP) is recognised, and the protein is further transported to
the thylakoid, where the lTP is cleaved. The lTP is similar to a bacterial
SP, and the thylakoidal processing peptidase belongs to the family of signal
peptidases [6].

As these signals direct the transport of proteins within the cell, it is crucial
to be able to predict their presence in protein sequences accurately. For this
reason, in the last two decades, many tools have been developed. Those adopt
various machine learning algorithms including Grammatical Restrained Hid-
den Conditional Random Fields, N-to-1 Extreme Learning Machines, Sup-
port Vector Machines, Markov chains, profile hidden Markov models, and
neural networks [7, 8, 9, 10, 11].
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One of the most used methods is TargetP 1.1 [11]. TargetP uses feed-
forward networks and position-weight matrices to process windows of amino
acids to predict the presence of SPs, mTPs and cTPs and the positions of
their cleavage sites. However, with the rise of deep learning, new types of
networks such as recurrent neural networks (RNNs) have gained popularity.
The main reason is their extraordinary ability to work with sequence data
and model long-range relationships between inputs in the sequence.

RNNs sequentially process sequences of any length, being able to retain
information from previous positions in the sequence. Several methods have
taken advantage of this type of network to try to better predict signal and
transit peptides [12, 13]. These methods make use of bidirectional RNNs
(BiRNN), which are two RNNs, one processing the sequence forwards and an-
other processing the sequence backwards. With this construction the context
around each amino acid is modelled, as the forward RNN processes all the
amino acids from the N-terminus up to one position and the backward RNN
processes all the amino acids from the C-terminus up to the same position.

However, regular RNNs, so-called Elman networks, are challenging to
train (the so-called exploding/vanishing gradient problem) and often fail to
capture dependencies far apart in the sequence [14] Therefore, the ability
of the network to hold information from multiple steps back is reduced. A
variant of the RNN cell, the Long Short-Term Memory (LSTM), solves this
problem by a construction akin to a computer memory cell that holds infor-
mation for multiple steps. This type of RNN cell together with BiRNN have
been successfully applied to the prediction of SPs and mTPs [15, 16]. To-
day, new methods such as DeepLoc [17] uses bidirectional LSTM to predict
the localisation of proteins to a broader range of compartments. DeepLoc
accurately predicts the localisation of proteins but not the presence of the
N-terminal sorting signals and the position of the cleavage sites. Starting
from this architecture, we decided to develop TargetP 2.0 using bidirectional
LSTM and a multi-attention mechanism. Using the multi-attention mecha-
nism the network can predict both the type of peptide and the position of
the cleavage site by focusing on particular regions of the sequence.

Moreover, we assemble a new protein dataset that we use to train TargetP
2.0. TargetP 2.0 can jointly predict the presence of signal peptides, mito-
chondrial, chloroplast and thylakoid transit peptides, and the corresponding
cleavage site positions.

When analysing the attention layer from the final version of the network,
it became apparent that most information was retrieved from two distinct
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positions in most sequences. One of these was, as expected, localised close
to the cleavage site. However, an equally important signal from position
two in the sequences was also found. Next, we examined the amino acid
frequencies in the second position, after the first methionine, of all proteins.
To our surprise, very distinct patterns emerged. In chloroplasts and plastids,
the second residue was frequently an alanine, while in all targeting peptides
in fungi and unicellular eukaryotes amino acids that allow cleavage of the
methionine are rare, see Figure 1.

2. Material and methods

2.1. Dataset

The protein data used to train TargetP 2.0 were extracted from the
UniProt database, release 2018 04 [18]. The negative dataset consists of pro-
teins without either signal or transit peptides from the nucleus, cytoplasm
and plasma membrane (without signal peptides) and with experimental an-
notation (ECO:0000269) of their subcellular localisation. The positive set
contained secreted, mitochondrial, chloroplastic and luminal proteins with
experimental annotation of their signal or transit peptide. The final set con-
sists of 9537 (noTP) proteins without targeting peptides, 2697 with SPs;
499 mTPs, 227 cTPs and 45 lTPs, see Table 1. Note that although a thy-
lakoid targeting signal, as described in the introduction, consists of a cTP
followed by an SP-like lTP, the first cleavage site (for the stromal processing
peptidase) is almost never annotated in UniProt. We are therefore not able
to predict this cleavage site for thylakoid proteins, only the second cleavage
by thylakoidal processing peptidase will be predicted. Hereafter, “lTP” will
refer to the entire thylakoid targeting signal. The dataset was further di-
vided into four groups representing the eukaryotic kingdoms Viridiplantae,
Metazoa, and Fungi and a group of other eukaryotes.

PSI-CD-HIT [19] was used to cluster the first 200 residues of each protein
with 20% of identity or 10−6 E-value using BLAST and alignment coverage
of at least 80% of the shorter sequence. We performed a stringent homology
partitioning to get a realistic assessment of generalisation performance. Each
cluster of homologous proteins was assigned to one of five cross validation
groups to ensure that similar proteins were not mixed between the different
datasets.
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2.2. The TargetP 2.0 algorithm

The TargetP 2.0 model is described in Figure 2. The model consists of two
key components, a bidirectional recurrent neural network with LSTM cells
and a multi-attention mechanism [20] to predict both the type of peptide
and the position of the cleavage site.

The input to this model is the first 200 amino acids of a protein. This
threshold was chosen based on the maximum length of known transit pep-
tides, which is 162 amino acids [21]. The amino acids in the protein are
encoded using BLOSUM62 substitution matrices.

We first describe the model at a high level and give more details on each
of the layers below: The first layer of the model is a fully connected layer to
perform a feature transformation of each amino acid input feature with 32
hidden units. The following layer is the bidirectional LSTM (BiLSTM) with
256 hidden units in both forward and backward direction. The first hidden
state to the BiLSTM is a vector containing the group information, which
denotes whether the protein is plant or non-plant. The 512-dimensional
concatenated output from the BiLSTM is then used to calculate the multi-
attention matrix similarly to those applied in machine translation [22, 23].
The attention size is 144 units and the number of outputs from the attention
matrix of size 13. Out of these 13 attention vectors, 4 were used to predict
the different cleavage site positions for SP, mTP, cTP and lTP. The attention
matrix is further utilised to encode the whole sequence into a context matrix.
This context matrix of size 512x13 is processed by a fully connected layer
with 256 units, to summarise it into a vector. Finally, this is fed to the
output layer with 5 hidden units and softmax activation.

We train a model that learns to predict the type of peptide and the posi-
tion of the corresponding cleavage site (y, y′) = fθ(X) where y is the predicted
type of peptide, y′ the predicted cleavage site position, f the model, θ the
learnable parameters and X the protein sequence. Here, y is a vector of size
equal to the number of classes C, five in this case, and y′ is a vector of size
equal to the length of the sequence L, which can be up to 200. The θ param-
eters are optimised using an extension of stochastic gradient descent, ADAM
with cross-entropy loss for both types of peptide and cleavage site prediction.
Both losses were then averaged. The only regularisation technique used was
dropout between the different layers.

The network has three main types of layers: fully connected, RNN with
LSTM cell and multi-attention layer. The first fully connected layer c applies
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a feature transformation:

ct = fc(Wxt + b) , (1)

where xt is an amino acid at position t in the sequence and W and b the
learnable weights and biases. The first layer is followed by a bidirectional
RNN that utilises an LSTM cell to capture the context around each amino
acid in the sequence. The RNN applies the same set of weights to each
position t −→

ht =
−−−−→
LSTM(ct,

−→
h t−1) (2)

←−
ht =

←−−−−
LSTM(ct,

←−
h t+1) , (3)

where
−→
ht and

←−
ht are the hidden states of the RNN at position t for the forward

and backward direction respectively. The hidden states are concatenated into

ht = [
−→
ht ;
←−
ht ] .

The last part of the network is a multi-attention mechanism. Here we
calculate multiple attention vectors A from the LSTM hidden states, instead
of just one single attention vector a. The attention matrix is then used
to create multiple fixed sized representations of the input sequence, with a
different focus on the relevant parts of the sequences. The attention matrix
is calculated as follows:

a = softmax(tanh(Waht + ba)Va) , (4)

where Wa and Va are weight matrices and ba is the bias of the attention
function. The advantage of having multiple attention vectors is that some
of them can be used to predict the position of the cleavage site, as they are
vectors of size equal to the sequence length L summing to one. Therefore,
4 out of the 13 attention vectors that the model uses are employed in the
prediction of the SP, mTP, cTP and lTP cleavage site (cs):

y′ = fcs(a
1:4) . (5)

To encode the sequence of hidden states H = [h1, ..., hL] into a fixed sized
matrix, the hidden states are multiplied by the attention matrix and summed
up:

e =
L∑
t=1

atht , (6)
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where e matrix is the encoded representation of the protein sequence. e holds
a total of 13 different representations of the protein sequences; therefore, it
is needed to summarise this matrix into a vector. This is done by a final
feed-forward layer, which converts E into a representation vector e. This is
then used to calculate the output layer of the network, to predict the type
of peptide (p) y

y = fp(e) . (7)

Both outputs from the network y and y′ are trained together. The exception
is for proteins belonging to the negative set, i.e. proteins without targeting
peptides that lack a cleavage site and therefore there is no error to back-
propagate.

The model was trained and optimised using five-fold nested cross-validation.
The four inner subsets were used to train the model, where three are used for
training and one for validation to identify the best set of hyper-parameters.
After optimisation, the fifth set, that was kept out of the optimisation, was
used to assess the test set performance. This procedure was repeated using
all five subsets as the test set. The advantage of this approach is that we
obtain an unbiased test set performance on the whole dataset at the expense
of having to train 5x4=20 models.

Different hyper-parameters were tested to find the best model such as
the number of hidden units for the LSTM, attention and fully connected
layers, number of attention vectors, the learning rate and dropout rate. We
also experimented with a convolutional neural network (CNN) as the initial
layer, but the best results were achieved using a filter size of 1, which is
equivalent to a fully connected layer along the feature dimension.

2.3. Related tools

The tools included in the analysis adopt different machine learning algo-
rithms intending to classify from one to many N-terminal sorting signals and
the cleavage site position. Most of the tools contain modules both for plant
and non-plant proteins.

TargetP 1.1 [11, 24] classifies proteins into 4 different groups (signal pep-
tide, mitochondrial transit peptide, chloroplastic transit peptide and other)
using two layers of feed-forward neural networks and detects the cleavage
sites using a variety of methods including postion-weight matrices for the
mTPs.
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TPPred3 [7] is a combination of a Grammatical Restrained Hidden Con-
ditional Random Field, N-to-1 Extreme Learning Machines and Support Vec-
tor Machines. It detects transit peptides, classifying them as mitochondrial
or chloroplastic and localising their cleavage sites.

Mitofates [8] combines amino acid composition and physico-chemical
properties with positively charged amphiphilicity, pre-sequence motifs, and
position weight matrices as input to a standard support vector machine clas-
sifier for modelling the mitochondrial pre-sequence and its cleavage site.

PredSL [9] uses neural networks, Markov chains, profile hidden Markov
models, and scoring matrices to classify proteins from the N-terminal amino
acid sequence into five groups: chloroplast, thylakoid, mitochondrion, secre-
tory pathway, and other.

For comparison, we also choose to include two methods that do identify
the subcellular localisation of proteins but do not predict the cleavage site of
the targeting peptides.

Predotar [10] is a three-layer feed-forward neural network-based ap-
proachable to classify proteins in 4 different classes: signal peptide, mito-
chondrial transit peptide, chloroplast transit peptide and other.

DeepLoc [17] uses a deep learning architecture very similar to what we
have used in this study to predict the subcellular localisation of proteins.

MLP-XX is a simple multi-layer perceptron that we tested for compari-
son. MLP-XX consists of a one layer feed forward neural network where using
one hot encoding of the first XX amino acids as input (up to 20). It used the
same cross-validation as TargetP 2.0. We examined the inclusion of differ-
ent numbers of N-terminal residues, and the average F1-score increased from
0.77 when using five residues to 0.93 when using twenty, see supplementary
table S1. For comparison we include MLP-20 in the results.

2.3.1. Evaluation of the performance

We use several performance measures to obtain a uniform evaluation of
the prediction. For the performance of sorting signals, we use the F1 score
that may count as a harmonic average of the precision and recall. We also
computed the Matthews Correlation Coefficient (MCC) for each class, to
have a much more balanced evaluation of the prediction [25]. On the other
hand, we use precision and recall for the combined performance of sorting
signals and cleavage site. All these measurements were expressed in terms of
“tp” = true positive, “tn” = true negative ,“fp” = false positive,“fn” = false
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negative.

precision =
tp

tp+ fp
(8)

recall =
tp

tp+ fn
(9)

F1 = 2

(
precision× recall

precision + recall

)
(10)

MCC =
tp× tn− fp× fn√

(tp + fn)(tp + fp)(tn + fp)(tn + fn)
. (11)

2.4. Additional analysis

In several figures standard or variations of sequence LOGOs are shown.
These were generated using the Seq2Logo program [26]. In addition to stan-
dard sequence LOGOs calculated from multiple sequence alignments LOGOs
representing the frequency of amino acids in position two (and not the en-
tropy) and LOGOs representing the strength of the attention layer output
were generated.

Secondary structure preferences for the different targeting peptides were
calculated from the scale from [27]. The Log2 of the average preference was
plotted for each residue in the different targeting peptides.

3. Results and Discussion

Here, we have developed a deep learning model to predict targeting pep-
tides described in Figure 2.

First, we compare TargetP 2.0 with state-of-the-art predictors on a set of
proteins with experimentally verified targeting peptides.

3.1. TargetP 2.0 improved identification of targeting peptides.

In Table 1 it can be seen that TargetP 2.0 is better than all the competi-
tors at the identification of targeting peptides in accuracy and correlation
coefficients. From the ROC curves in Figure 3, it is clear that TargetP 2.0
performs better than the alternative methods for identification of all four
targeting peptides. It can also be noted that the identification of signal pep-
tides is more reliable than the identification of transit peptides. TargetP 2.0
predicts approximately 97% of the SPs correctly compared to less than 90%
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for other targeting peptides, see Table 1. For non-plant proteins the most
common confusion is between mTPs and nonTPs, see Table S2.

The poor discrimination between mTP and cTP of TargetP 1.1 and other
older methods has been significantly improved in TargetP 2.0. The number
of correctly predicted peptides increased from about 50% to 90%. The only
other method that shows a similar performance is DeepLoc, which is based
on a similar methodology and training set but cannot predict cleavage sites.
TargetP 2.0 also performs significantly better at the identification of cTPs
and lTPs than PredSL [9]; the only other method that can identify lTPs.
However, still 11 out of 45 lTPs are classified as cTPs, see Table S3.

It can be seen that a very simple method that only considers the 20 N-
terminal amino acids, MLP-20, performs on par with previous methods when
it comes to mTPs and SPs, but slightly worse than Predotar for cTPs. Even
when only using ten residues, MLP-10 performs better than PredSL for all
categories except lTPs, see Table S1.

A more detailed analysis at the kingdom level for TargetP 2.0 can be
found in Table S4. Here, we can see that the prediction accuracy is slightly
lower in Fungi than in the other kingdoms. One possible explanation could
be that the GC content in the Fungi genomes is lower than for the other
genomes. The low GC content affects the amino acid frequencies, making
alanine less frequent [28].

Since the chloroplast is not the only type of plastid, we finally tested the
ability of TargetP 2.0 to predict proteins of amyloplasts and chromoplasts,
which differ from chloroplasts primarily through their pigments. UniProt
provides transit peptide annotation for 10 amyloplast and 32 chromoplast
proteins. TargetP 2.0 predicts 9 out of 10 amyloplast and 26 out of 32
chromoplast proteins to have a cTP, achieving a similar performance for
these plastid proteins.

3.2. TargetP 2.0 improves the prediction of cleavage sites in cTPs and lTPs.

We tested the cleavage site prediction ability on the test set and only
for the correctly predicted proteins. The cleavage site prediction is best for
SPs, with a recall (accuracy) of 83% on the test set both for TargetP 1.1 and
TargetP 2.0, see Figure 4 and Table S5.

In mTP and cTP cleavage site prediction is more difficult with a recall
of 46% and 49% by TargetP 2.0, respectively. However, this is a clear im-
provement over TargetP 1.1 and all other methods for cTPs, and a slight
improvement for mTPs.
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TargetP 2.0 cleavage site predictions of the lTP is a new feature. Given
the small number of peptides in the database, the recall of 60% (27 correctly
identified lTP cleavage sites) is better than expected and a significant im-
provement over the only other method that can predict lTPs, PredSL [9],
which only identifies 5 (11%) cleavage sites correctly.

If we allow for up to 5 residues shifts of the prediction of cleavage sites
about two-thirds of the cleavage sites in cTPs, mTPs and lTPs can be iden-
tified correctly, see Table S5.

3.3. Comparison with UniProt annotations

TargetP 2.0 provides a possibility for fast and accurate annotation of
entire or incomplete proteomes in a few hours, as it takes on average only
0.20 seconds to run a single protein on a dedicated 8-core machine. We
annotated several eukaryotic proteomes for a total of 288964 proteins from
six Metazoa (Caenorhabditis elegans, Drosophila melanogaster, Danio rerio,
Homo sapiens, Mus musculus and Xenopus tropicalis), five Viridiplantae
(Arabidopsis thaliana, Brachypodium distachyon, Oryza sativa, Solanum ly-
copersicum and Vitis vinifera ) and two Fungi (Saccharpmyces cerevisiae
and Schizosaccharomyces pombe) proteomes. All predictions are available
from the accompanying website. We examined the possibility to modify the
number of annotated proteins using the confusion matrix of TargetP 2.0 as
proposed before [29]. The number of peptides in each class changed with less
than 3% for all categories except the lTPs that were underpredicted by 25%,
see Table S6. This indicates that our estimates of the number of targeting
peptides of each type should be rather accurate except for lTPs.

In Table S7 a comparison of the annotations from TargetP 2.0 and UniProt
is presented. For the best-annotated proteomes, H. sapiens, M. musculus, S.
cerevisiae and A. thaliana, the agreement between UniProt and TargetP 2.0
predictions is about 80% for the organelles and over 90% for signal peptides.
The high agreement for SPs is quite likely due to UniProt applying SignalP
[30] for its annotation of SPs, and it was trained on a similar dataset as
used here. For the other proteomes, the agreement is substantially worse,
except for SPs, indicating that the transit peptide annotation in UniProt
is far less complete than the SP annotation and that applying TargetP 2.0
would significantly improve the annotation.

A few interesting differences can be observed, that might have biological
relevance. TargetP 2.0 predicts about twice as many mitochondrial proteins
in plant proteomes compared to metazoan proteomes. Even in A. thaliana
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only half of these proteins are annotated in UniProt as mitochondrial. In
agreement with the UniProt annotations fungi seem to have fewer mitochon-
drial proteins than other eukaryotes. The number of predicted chloroplast
proteins varies significantly between the proteomes, from 1125 in the grape
proteome to 2049 in the rice proteome. However, the rice proteome is also
almost 50% larger than the grape proteome, possibly explaining the differ-
ence.

3.4. Identification of the strongest contributing sequence factors.

Above we show that by using a deep learning architecture it is possible
to improve the prediction of targeting peptides. Next, we wanted to examine
if it is possible to extract which biological features contribute to improved
performance.

To analyse which features the deep learning model learned we focused on
the maximum outputs from the attention layer, see Figure S1. It is clear
that for most proteins with targeting peptides there are two positions with
strong signals, one very close to the N-terminus (at position 2) and one later
corresponding to a position close to the cleavage site. These positions were
analysed in more detail, by aligning all the proteins either starting from the
predicted cleavage site, Figure 5, or from the N-terminus, Figure 6.

3.5. The R-3 rule appears important for mTPs.

In Figure 5 it can be seen that the attention layer focuses on the posi-
tion just before the cleavage site (the -1 position). In SPs, cTPs and lTPs
position -1 is dominated by alanine, while in mTPs this position is domi-
nated by tyrosine and phenylalanine. In contrast, the actual cleavage signal
is dominated by a couple of positions (such as -1 and -3 in SPs and lTPs),
see Figure 7 and S2. This difference can be explained by the attention layer
collapsing information from nearby positions into one position. In addition
to the site close to the cleavage site, most of the information obtained from
the attention layers is directly N-terminal of the cleavage site. In agreement
with what is known about the differences between the targeting peptides, the
attention for the SPs is focused on a stretch of approximately 10 hydropho-
bic residues, while the other peptides have a longer stretch of informative
residues. As is well known, the mTPs are enriched in arginine.
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3.6. TargetP 2.0 overpredicts mTP cleavage sites with arginine in -3

For the SPs, cTPs and lTPs, the sequence logos are almost identical be-
tween predicted and experimentally annotated proteins, both in the cleavage
site and the signal composition. However, we can observe that for mTPs the
amino acid composition near the cleavage site differs between predicted, Fig-
ure 7b, and experimentally verified mTPs, Figure S2b. In both cases, there
is an abundance of arginines in position -2, -3 and -10 from the cleavage site
as described before [31, 32]. However, the signal for arginine at -3 is stronger
among the predicted than among the experimentally verified cleavage sites.
In order to investigate this difference further, we plotted the distribution
of the distance from the experimental and predicted cleavage sites to the
nearest upstream arginine, see Figure S3. It shows that while there is good
agreement at most positions, there is a clear over-prediction at -3 and an
under-prediction at -10.

The sites with arginine at -2 are thought to represent the original cleavage
by Mitochondrial Processing Peptidase (MPP), while the sites with arginine
at -3 and -10 are thought to arise by subsequent cleavage events by the Icp55
peptidase and Mitochondrial Intermediate Peptidase (MIP), respectively [33,
32, 34, 35, 8]. The cleavage by Icp55 could explain the fact that some patterns
in the mTP cleavage site, Figures 7b and S2b, seem to be repeated with a
shift of one position, e.g. the preference for serine that occurs in positions
one and two in the mature protein.

The findings represented in Figure S3 show that the model can easily
recognise the arginines at position -2 (original MPP sites) and -3 (Icp55
sites) but has troubles in identifying arginines at position -10 (MIP sites).
This over-representation of arginine at position -3 and under-representation
at position -10 is probably contributing to the relatively low performance on
the cleavage site prediction in mTPs. It might be relevant to explore further
the distance of arginines from the cleavage site and the patterns recognised
by the three peptidases to improve the prediction of the mTP cleavage site
in future versions.

3.7. cTPs have an alanine in position two.

There is also a strong attention peak at position two for all targeting
peptides, see Figure 6. From the sequence logo it is clear that position
two amino acid preferences differ between targeting peptides, see Figures 8
and S4. In cTPs and lTPs there is a powerful signal for alanine in position
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two. In contrast, signal peptides have some preference for lysine and mTPs
for alanine or leucine in position two. see Table S8.

The importance of position two is likely to be related to the cleavage of
the N-terminal methionine. When there is a short side-chained amino acid
(Ala, Cys, Gly, Pro, or Ser) in position two, the methionine can be cleaved by
a methionine aminopeptidase (MAP) [36]. There exist two classes of MAPs,
MAP1 and MAP2. All these proteins are homologous to the machinery in
bacteria, indicating that they work co-translationally. A. thaliana has four
MAP1s (MAP1A, MAP1B, MAP1C and MAP1D) and two MAP2s (MAP2A
and MAP2B). It has been shown that MAP1B, MAP1C and MAP1D are
targeted for proteins belonging to the organelles [37].

In Figure 1 it can be seen that about 60% of the proteins without targeting
peptides have an amino acid in position two that allows the N-methionine
to be cleaved. These proteins have mostly alanine or serine in position two.
The N-terminal methionine can only be cleaved if the second residue has a
short side-chain. For proteins with signal peptides, in all species except the
plants, less than 40% of the residues in position two have a short side-chain.
The same can be seen for mTPs in the fungi single-celled eukaryotic groups.

Most striking is the observation that about two thirds of the cTPs and
lTPs have an alanine in position two, see Figure 1. This preference has
been noted before [38, 39]. When mutating the second position in dual-
targeting proteins that are imported to both chloroplasts and mitochondria
the targeting was disrupted [40]. Surprisingly, when the authors mutated
one of the few chloroplast proteins that did not have an alanine in position
two, PheRS, from threonine to alanine the import to chloroplasts decreased.

It has been reported that amino acid frequencies in position two differ
between species [41]. The frequency of alanine in position two varies from 7%
in Escherichia coli to close to 30% in A. thaliana. In table S9 it can be seen
that alanine is frequent in all types of proteins in A. thaliana but also that
the frequency is higher in proteins targeted for plastids. One possible reason
for alanine to be preferred in position two is that alanine has a strong helical
propensity. The amino-terminal sections of cTPs and lTPs are less prone
to form secondary structures than mTPs and SPs at the amino-terminal,
see Figure S5. Here, it can also be seen that signal peptides have a much
stronger tendence to form structure close to the N-terminal than the other
peptides. The importance of the N-termini can also be seen by the fact that
the simple MLP-20 method performs quite well at identification of noTPs,
SPs and mTPs. However, to fully understand the importance of the second
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position additional experimental studies are needed.

4. Conclusions

Here, we introduce the new version of TargetP 2.0 that includes the pre-
diction of thylakoid transit peptides and uses deep neural networks. TargetP
2.0 can be helpful to accurately annotate N-terminal sorting signals and
cleavage sites in particular as it scales to complete proteomes. TargetP 2.0
outperforms all other methods in all N-terminal sorting signals. Regard-
ing classification the only alternative method that comes close to TargetP
2.0 in performance is DeepLoc for signal peptides and mitochondrial tar-
geting peptides. However, for chloroplast peptides, TargetP 2.0 is superior,
and DeepLoc does not predict thylakoid localisation. On the other hand,
DeepLoc also predicts many other subcellular localisations not governed by
targeting peptides.

When analysing how TargetP 2.0 arrives at its predictions, we note that
two distinct regions contribute. As expected, the region around the cleavage
site is essential for classification of the type of transit peptide. However,
surprisingly, an equally important contribution comes from the N-terminal
region. Upon closer inspections, it is clear that (i) in plants, two-thirds of
the chloroplast and thylakoid targeting peptides have an alanine in position
two (after the N-terminal methionine), and (ii) in fungi only 20-30% of the
N-termini of mTPs and SPs can be cleaved, compared to 60% for proteins
without targeting peptides. In summary, this indicates that it is not unlikely
that specificity of methionine aminopeptidases aids in the co-translational
targeting of peptides into organelles.
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6. Figures

Figure 1: This figure depicts the frequencies of the second residue in proteins with different
targeting peptides. The proteins are divided into their respective type of targeting pep-
tide (Signal Peptides (SP), mitochondrial targeting peptides (mTP), chloroplast targeting
peptides (cTP), thylakoid targeting peptides (lTP) and proteins without a targeting pep-
tide (noTP). Further, the proteins were divided into their kingdom: Viridiplantae (P),
Metazoa (M), Fungi (F) and other Eukaryotic organisms (O) sequences. Inspired by se-
quence LOGOs the height of each letter corresponds to the frequency of that amino acid.
Only the frequencies for the short side-chained amino acids that allow the cleavage of the
N-terminal methionine are shown.
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Figure 2: The TargetP 2.0 architecture.
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Figure 3: ROC curves for identification of signal peptides, mitochondrial-, chloroplast-
and thylakoid targeting peptides.
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targeting peptides.
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Figure 5: Attention layer LOGOs showing the impact strength of the attention layer and
the frequency of amino acids. All sequences are aligned at the predicted cleavage site.
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Figure 6: Attention layer LOGOs showing the impact strength of the attention layer and
the frequency of amino acids. All sequences are aligned at the N-terminus.
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Figure 7: Sequence LOGOs showing the amino acid frequencies in the pre-sequences. All
sequences are aligned according to the predicted cleavage site.
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(b) Mitochondrial Transit Peptide

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
it
s

N 0

W

H
C
F
Y
P
R
N
D
Q
M
K
I
T
V
G
E
L
S
A
W

Y

H
D
E
R
Q
F
K
C
N
P
M
G
I
V
L
T
A
S

W

Y

D
H

Q
E
F
C
G
N
R
P
K
M
V
I
T
S
A
L

W

Y

H

D

E
R
P
K
M
Q
G
C
N
I
F
V
A
T
L
S

W

Y

H
D
C
E
Q
M
K
N
R
I
F
P
V
G
T
L
A
S

5

W

H

Y

D

Q
E
M
R
C
K
G
F
I
V
N
P
T
L
A
S

W

C

H

Y

D
E
N
M
K
R
F
Q
G
I
V
P
T
L
A
S

W

Y

C

D

H
E
R
K
Q
N
M
F
G
I
P
V
L
T
A
S

W

M

D

E

Y

H
R
Q
K
C
I
F
V
N
G
P
T
L
A
S

W

Y

E

D

Q
M
H
K
N
C
G
R
I
F
T
V
L
P
A
S

10

W

M

Y

E
D
H
N
Q
R
F
C
I
K
G
V
T
P
L
A
S

W

D

Y

E

M

C

Q
N
H
I
K
R
F
G
T
V
L
P
A
S

W

Y

E

C

D

H

Q
M
N
I
R
G
K
V
F
P
T
A
L
S

W

M

Q

E

Y
D
C
H
R
N
I
F
K
V
P
G
T
L
A
S

W

M

C

Y

E
D
H
R
Q
I
N
V
K
G
F
A
P
T
L
S

15

W

M

Y

D

H
E
C

Q
F
I
N
G
K
V
R
T
L
A
P
S

W

M

Y

C

D
E
H

Q
G
I
F
V
T
N
A
L
R
P
K
S

W

M

Y

C

E

D

Q

H
N
F
K
G
V
I
T
R
P
A
S
L

W

M

C

E

Y

D

H
F
Q
V
T
I
N
K
R
G
P
L
A
S

W

M

C

Y

H

E
V
D
Q
I
N
F
K
R
T
P
G
L
A
S

20

Y

M

D
C

E
H

Q
F
V
I
N
K
T
R
G
A
P
L
S

W

M

Y

C

E
H

D

Q
F
N
I
G
V
K
P
L
R
T
A
S

W

Y

C

M

H

E
D
I
G
Q
F
N
V
K
R
P
T
A
L
S

W

Y

C

M

H
D
Q
I
E
F
N
V
K
G
T
R
P
L
A
S

W

C

Y

D

M

H

E

Q
N
G
I
F
T
V
A
R
K
P
L
S

25

W

M

Y

C

E

D

H

Q
N
G
I
K
F
R
V
A
T
L
P
S

W

C

H

M

Y

D

E

Q
N
F
G
I
K
V
A
T
P
L
R
S

W

C

Y

M

D

H

E

Q

I

N
F
K
V
G
T
R
L
A
P
S

W

Y

M

C

H

E

D

Q
I
F
N
G
R
K
T
V
A
P
L
S

W

Y

H

M

E

C

F
D
Q
K
N
P
G
I
V
T
R
A
L
S

30

C

H

M

Y

D

E
Q
N
K
F
T
G
I
V
R
A
P
S
L

W

M

Y

H
E
D
C
Q
T
F
I
K
N
P
G
V
R
L
A
S

M

H

Q

D

Y

C

E

I
T
G
K
N
F
V
R
P
A
L
S

W

M

H

Y

D
E
Q
I
F
T
G
V
A
K
N
L
R
P
S

W

C

M

Y

Q

H

E
D

I
V
F
P
N
G
T
K
L
A
S
R

35

W

Y

M

C

H

D

I

E

Q
A
G
V
K
F
N
T
P
R
L
S

W

Y

C

M

H

E
D
F

Q
I
G
P
V
R
N
T
K
L
A
S

W

C

H

D

Y

M

E

Q
I

N
G
F
K
V
T
R
A
P
L
S

W

M

H

Y

C

E

T
D
I

Q
F
N
G
R
K
V
A
P
L
S

W

H

M

Y

C

E
Q
D
I
F
N
K
G
T
V
A
P
L
R
S

40

W

Y

M

E

C

H
F
D
Q
N
T
I
K
V
P
R
L
G
A
S

W

Y

M

H

E

C

Q
I

P
F
D
T
K
N
G
V
R
L
A
S

W

H

Y

M

Q

E

D
C
N
I

G
P
F
T
V
R
A
S
K
L

W

Y

M

Q

E

D
H
C
F
N
P
K
G
V
T
I
R
A
L
S

C

Y

W

M

H

D

F

E

Q
N
I
P
V
T
G
K
R
A
L
S

45

W

H

Y

M

Q

D

F

C
I
N
V
P
T
E
K
G
R
A
L
S

Y

H

M

F

C

Q

N
D
E
P
K
T
G
V
I
R
L
A
S

C

W

M

H

D

E

Y

Q

F
N
P
G
R
I
V
K
T
A
S
L

W

Y

M

H

Q

C

D
F
I

G
L
N
E
P
V
R
T
K
A
S

C

(c) Chloroplast Transit Peptide
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(d) Thylakoid Transit Peptide

Figure 8: Sequence LOGOs showing the amino-terminal pre-sequences. All sequences are
aligned at the N-terminus.
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7. Tables
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Tool Loc Proteins Prec Rec F1-Score MCC
TargetP 2.0 SP 2697 0.97 0.98 0.98 0.97
TargetP 1.1 SP 2697 0.86 0.97 0.91 0.89
DeepLoc SP 2697 0.90 0.84 0.87 0.84
PredSL SP 2697 0.69 0.90 0.78 0.73
Predotar SP 2697 0.92 0.92 0.92 0.90
MLP-20 SP 2697 0.93 0.93 0.93 0.91
TargetP 2.0 mTP 499 0.87 0.85 0.86 0.86
TargetP 1.1 mTP 499 0.32 0.90 0.48 0.51
DeepLoc mTP 499 0.73 0.97 0.83 0.83
PredSL mTP 499 0.18 0.93 0.31 0.37
Predotar mTP 499 0.71 0.74 0.73 0.72
TPPred3 mTP 499 0.69 0.68 0.68 0.67
Mitofates mTP 499 0.70 0.92 0.80 0.80
MLP-20 mTP 499 0.69 0.58 0.63 0.62
TargetP 2.0 cTP 227 0.90 0.86 0.88 0.88
TargetP 1.1 cTP 227 0.39 0.88 0.54 0.58
DeepLoc cTP 227 0.70 0.94 0.80 0.80
PredSL cTP 227 0.16 0.78 0.27 0.34
Predotar cTP 227 0.51 0.76 0.61 0.61
TPPred3 cTP 227 0.76 0.64 0.69 0.69
MLP-20 cTP 227 0.51 0.37 0.43 0.40
TargetP 2.0 lTP 45 0.75 0.75 0.75 0.75
PredSL lTP 45 0.46 0.71 0.56 0.57
MLP-20 lTP 45 0.10 0.02 0.04 0.05
TargetP 2.0 noTP 9537 0.98 0.98 0.98 0.95
TargetP 1.1 noTP 9537 0.99 0.84 0.91 0.75
DeepLoc noTP 9537 0.95 0.95 0.95 0.83
PredSL noTP 9537 0.99 0.60 0.75 0.52
Predotar noTP 9537 0.96 0.95 0.95 0.84
TPPred3 noTP 9537 0.76 0.98 0.86 0.29
Mitofates noTP 9537 0.75 0.98 0.85 0.25
MLP-20 noTP 9537 0.95 0.97 0.96 0.85

Table 1: Performance of the predictors considering only the identification of the targeting
peptides. The table shows the performance in the test set yield by each predictor for
Mitochondria (mTP), Chloroplast (cTP) , Thylakoid (lTP), Signal Peptide (SP), and
Other (noTP), in terms of F1 score, Matthews correlation coefficient (MCC), Precision
(Prec) and Recall (Rec).
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8. Supplementary Figures
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OTHER
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Figure S1: Representation of the attention weights for a few proteins. The height of the
letter represents the attention weight in that position and the letter the type of amino
acid. The shaded area corresponds to the predicted targeting peptide (SP,mTP,cTP or
lTP).
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Figure S2: Sequence LOGOs showing the experimental amino-terminal pre-sequences.
Sequences are aligned according to the annotated cleavage site.
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Figure S3: Distribution of the distance from true and predicted cleavage sites to the nearest
arginine in mitochondrial transit peptides.
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Figure S4: Sequence LOGOs showing the experimental amino-terminal pre-sequences.
Sequences are aligned at the N-terminus.

36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/639203doi: bioRxiv preprint 

https://doi.org/10.1101/639203
http://creativecommons.org/licenses/by/4.0/


0 10 20 30 40 50

−0.10

−0.05

0.00

0.05

0.10

0.15 Alpha
Beta
Coil

(a) SP

0 10 20 30 40 50

−0.10

−0.05

0.00

0.05

0.10

0.15 Alpha
Beta
Coil

(b) mTP

0 10 20 30 40 50

−0.10

−0.05

0.00

0.05

0.10

0.15 Alpha
Beta
Coil

(c) cTP

0 10 20 30 40 50

−0.10

−0.05

0.00

0.05

0.10

0.15 Alpha
Beta
Coil

(d) lTP

-25 -20 -15 -10 -5 1 5
−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075 Alpha
Beta
Coil

(e) SP

-25 -20 -15 -10 -5 1 5

−0.04

−0.02

0.00

0.02

0.04
Alpha
Beta
Coil

(f) mTP

-25 -20 -15 -10 -5 1 5
−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100 Alpha
Beta
Coil

(g) cTP

-25 -20 -15 -10 -5 1 5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15 Alpha
Beta
Coil

(h) lTP

Figure S5: Log-odds ratio of secondary structure preferences for the different targeting
peptides. Upper row shows the peptides aligned at N-terminal and the lower row show
the peptides aligned at the cleavage site.
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9. Supplementary Tables

Tool SP mTP cTP lTP noTP Average
MLP-5 0.57 0.22 0.03 0.00 0.88 0.77
MLP-10 0.80 0.55 0.33 0.04 0.93 0.87
MLP-15 0.90 0.57 0.42 0.00 0.95 0.91
MLP-20 0.93 0.63 0.43 0.04 0.96 0.93

Table S1: F1 score for the MLP predictor, using different number of N-terminal residues.

Class SP mTP noTP
SP 2390 5 47
mTP 2 311 44
noTP 23 58 7644

Table S2: Confusion matrix for non-plant organisms representing the number of proteins
for each targeting peptides predicted by TargetP 2.0 (rows) versus observed in the test set
(columns).

Class SP mTP cTP lTP noTP
SP 272 0 2 0 3
mTP 0 117 2 0 11
cTP 0 2 197 9 9
lTP 0 0 11 34 0
noTP 10 6 15 2 1779

Table S3: Confusion matrix for Viridiplantae representing the number of proteins for
each targeting peptides predicted by TargetP 2.0 (rows) versus observed in the test set
(columns).
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Kingdom Loc Proteins Prec Rec F1-Score MCC
Viridiplantae SP 282 0.98 0.96 0.97 0.97
Metazoa SP 2251 0.98 0.99 0.99 0.98
Fungi SP 133 0.91 0.99 0.95 0.95
Other SP 31 1.0 0.97 0.98 0.98
Viridiplantae mTP 125 0.9 0.94 0.92 0.91
Metazoa mTP 263 0.89 0.86 0.87 0.87
Fungi mTP 103 0.83 0.77 0.80 0.79
Other mTP 8 0.88 0.88 0.88 0.87
Viridiplantae cTP 227 0.91 0.87 0.89 0.88
Viridiplantae lTP 45 0.76 0.76 0.76 0.75
Viridiplantae noTP 1802 0.98 0.99 0.98 0.94
Metazoa noTP 5354 0.99 0.99 0.99 0.97
Fungi noTP 2263 0.99 0.99 0.99 0.88
Other noTP 118 0.98 0.99 0.99 0.95

Table S4: Performance of TargetP 2.0 considering only the peptide prediction in one
kingdom at a time. The table shows the performance in the test set yield by each predic-
tor for Mitochondria (mTP), Chloroplast (cTP) , Thylakoid (lTP), Signal Peptide (SP),
and the other proteins without targeting peptide (noTP), in terms of F1 score, Matthew
correlation coefficient (Mcc), Precision (Prec) and Recall (Rec)
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Tool Loc Recall No. Correct No. Cor-
rect -5/+5

Recall
-5/+5

Total No.

TargetP 2.0 SP 0.83 2248 2584 0.96 2697
TargetP 1.1 SP 0.83 2250 2551 0.95 2697
PredSL SP 0.70 1889 2312 0.86 2697
TargetP 2.0 mTP 0.46 230 326 0.65 499
TargetP 1.1 mTP 0.42 211 276 0.55 499
PredSL mTP 0.16 81 196 0.39 499
TPPred3 mTP 0.39 195 259 0.52 499
Mitofates mTP 0.18 88 251 0.50 499
TargetP 2.0 cTP 0.49 111 164 0.72 227
TargetP 1.1 cTP 0.07 17 104 0.46 227
PredSL cTP 0.11 25 67 0.30 227
TPPred3 cTP 0.30 67 105 0.46 227
TargetP 2.0 lTP 0.60 27 31 0.69 45
PredSL lTP 0.10 5 32 0.71 45

Table S5: Performance of the predictors considering the peptide and cleavage site. The
table shows the performance in the test set yield by each predictor for Mitochondria
(mTP), Chloroplast (cTP) , Thylakoid (lTP) and Signal Peptide(SP) in terms of Precision
(Prec) and Recall (Rec) both for the cleavage site (CS) and targeting peptide (PEP).

Class Original Corrected Shift
SP 4115 4109.3 -0.1%
mTP 1095 1106.5 +1.1%
cTP 1448 1410.6 -2.6%
lTP 127 158.6 +24.9%

Table S6: Corrected number of proteins annotated with different targeting peptides for
the A. thaliana genome using the confusion matrix from Table S3.
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Kingdom Organism Reference Peptide TargetP 2.0 Uniprot Agree
Metazoa HUMAN 20585 SP 3698 3521 3382
Metazoa DROME 13785 SP 3323 3076 2994
Metazoa MOUSE 22286 SP 4278 4042 3883
Metazoa CAEEL 19986 SP 4591 4078 3967
Metazoa XENTR 24138 SP 2366 1933 1841
Metazoa DANRE 25747 SP 4399 3808 3651
Fungi YEAST 6049 SP 386 298 272
Fungi SCHPO 5142 SP 252 214 195
Viridiplantae ARATH 27623 SP 4115 3543 3374
Viridiplantae BRADI 34230 SP 3987 3567 3216
Viridiplantae ORYSJ 43588 SP 4687 4169 3644
Viridiplantae SOLLC 33952 SP 3904 2848 2675
Viridiplantae VITVI 29882 SP 2980 2199 2019
Metazoa HUMAN 20585 mTP 627 540 442
Metazoa DROME 13785 mTP 522 136 102
Metazoa MOUSE 22286 mTP 631 519 429
Metazoa CAEEL 19986 mTP 447 116 88
Metazoa XENTR 24138 mTP 453 51 37
Metazoa DANRE 25747 mTP 626 98 70
Fungi YEAST 6049 mTP 368 365 284
Fungi SCHPO 5142 mTP 250 266 159
Viridiplantae ARATH 27623 mTP 1095 526 432
Viridiplantae BRADI 34230 mTP 970 0 0
Viridiplantae ORYSJ 43588 mTP 1100 86 67
Viridiplantae SOLLC 33952 mTP 931 4 4
Viridiplantae VITVI 29882 mTP 725 0 0
Viridiplantae ARATH 27623 cTP 1448 1222 884
Viridiplantae BRADI 34230 cTP 1781 0 0
Viridiplantae ORYSJ 43588 cTP 2049 340 279
Viridiplantae SOLLC 33952 cTP 1274 78 57
Viridiplantae VITVI 29882 cTP 1125 3 2
Viridiplantae ARATH 27623 lTP 127 72 58
Viridiplantae BRADI 34230 lTP 85 0 0
Viridiplantae ORYSJ 43588 lTP 84 9 5
Viridiplantae SOLLC 33952 lTP 117 1 1
Viridiplantae VITVI 29882 lTP 91 0 0

Table S7: The table shows the the agreement with Uniprot annotations.
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AA noTP SP mTP cTP lTP
A 16.4% 25.7% 27.4% 48.3% 32.1%
C 1.0% 0.7% 0.4% 0.7% 3.6%
D 8.1% 3.8% 0.0% 1.0% 3.6%
E 13.0% 8.5% 0.8% 5.0% 10.7%
F 2.1% 2.6% 6.6% 0.7% 3.6%
G 11.0% 7.6% 1.9% 2.0% 0.0 %
H 0.9% 0.7% 0.8% % 3.6%
I 2.6% 2.7% 3.1% 2.7% 3.6%
K 5.2% 11.1% 3.5% 1.3% 3.6%
L 3.5% 2.9% 11.6% 6.0% 3.6%
M 2.4% 2.5% 3.5% 2.0% 3.6%
N 3.5% 3.4% 3.5% 1.3% 3.6%
P 2.6% 1.0% 0.4% 1.3% 3.6%
Q 1.8% 1.1% 3.1% 1.7% 3.6%
R 2.9% 2.9% 7.7% 0.3% 0.0 %
S 10.1% 9.3% 15.4% 14.8% 3.6%
T 4.4% 5.8% 2.7% 4.0% 3.6%
V 6.2% 6.2% 2.3% 4.4% 7.1%
W 0.8% 0.5% 1.9% 1.0% 0.0 %
Y 1.4% 0.8% 3.5% 1.3% 3.6%

Table S9: Predicted frequencies in position two in A. thaliana by TargetP 2.0. All fre-
quencies higher than 10% are marked in bold.
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