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Abstract

Good hygiene, in both health care and the community, is central to containing the
rise of antibiotic resistance, as well as to infection control more generally. But de-
spite the well-known importance, the ecological mechanisms by which hygiene affects
resistance evolution remain obscure. Using metacommunity ecology theory, we here
propose that hygiene attenuates the effect of antibiotic selection pressure. Specifi-
cally, we predict that hygiene limits the scope for antibiotics to induce competitive
release of resistant bacteria within treated hosts, and that this is due to a modu-
lating effect of hygiene on the distribution of resistant and sensitive strains in the
host population. We show this in a mathematical model of bacterial metacommu-
nity dynamics, and test the results against data on antibiotic resistance, antibiotic
treatment, and the use of alcohol-based hand rub in long-term care facilities. Our
results underscore the importance of hygiene, and point to a concrete way to weaken
the link between antibiotic use and increasing resistance.

Introduction

Antibiotics have revolutionised modern medicine, but they also drive the evolu-
tion of resistance, and thereby contribute to their own demise (1, 2). To meet this
challenge, there is intense work in both evolutionary theory and clinical practice to
limit or optimise antibiotic use (3–5). A key task is to manage collateral antibiotic
exposure of the commensal microbiota, of which medically important bacteria are of-
ten a part. Indeed, a recent analysis found that such ’bystander selection’ dominates
antibiotic exposure for common human pathogens (6).

In addition to the role of antibiotic use, there is within the medical profession
a firm appreciation of the importance of hygiene in the management of antibiotic
resistance. Measures of hygiene, such as hand disinfection, are fundamental to good
medical practice after the discoveries of Semmelweis Ignác Fülöp in the mid 1800s (7),
and form an integral part of current efforts to contain antibiotic resistant bacteria
(8). Moreover, general hygiene and sanitation in the community are considered
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2 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

important in slowing the evolution of resistance, with the rationale that they limit
antibiotic consumption by decreasing the incidence of infection (9).

It is thus recognised that antibiotic use and hygiene are key factors in the evolu-
tion of resistance, and that this evolution often takes place in a complex microbial
community – but these insights have yet to be put together. This is the task of the
present investigation: to study the joint effects of hygiene and antibiotic use on the
rate of increase of resistant bacteria in microbial communities. It requires that we in-
tegrate the within-host ecological effects of antibiotics with the between-host process
of bacterial dispersal, where the latter is affected by hygiene, and possibly other fac-
tors, such as population density or cultural habits. This sits most naturally within
the theoretical framework of metacommunity ecology (10, 11), and we will frame
both informal discussion and mathematical analysis using this approach. However,
since metacommunity theory is new to antibiotic resistance studies, we also repro-
duce the key result within the epidemiological compartmental modelling framework
that is currently standard in the field (12). (See Supplement A for details.)

The paper has three parts. First, we informally explain how metacommunity
theory predicts that hygiene should limit the within-host ecological response to an-
tibiotic treatment. Second, we develop a mathematical model of resistance dynamics
in a metacommunity context, and show that this prediction obtains in the model.
Third, we test the prediction against antibiotic resistance data from the European
Centre for Disease Prevention and Control (ECDC), and find that it is consistent
with the data.

Metacommunity ecology implies that hygiene should attenuate
competitive release

Bacteria form local communities (microbiotae; microbiomes) within individual
hosts, and they transmit between host individuals. In ecological terms, bacteria
thus form metacommunities, that is, networks of local communities interconnected
by dispersal (13). Within each local community different bacterial strains compete
with each other, such that the growth and abundance of a focal strain is limited
by other strains. If the local community contains a mixture of antibiotic resistant
and sensitive strains, antibiotic administration is expected to kill sensitive bacteria,
and relieve resistant ones of competition, allowing them to proliferate. This is an
ecological phenomenon known as competitive release (14–16). Previous work has
indicated that it promotes the evolution of resistance, and that its strength depends
on the dosage of the drug (17, 18).

However, the drug dose is only part of the picture. Competitive release of resistant
bacteria requires that both sensitive and resistant strains are simultaneously present
in the bacterial community within the treated host individual. And if they are, the
magnitude of the release depends on the extent to which resistant strains are limited
by competition from sensitive strains (see (16)). If resistant strains are absent within
a host, they cannot increase (save for the possibility of de novo mutation). And,
conversely, if they dominate the community already in the absence of antibiotics,
they will gain little from the killing of the few sensitive cells that are present. In
contrast, if resistant bacteria constitute but a small proportion of the competing
community, the killing of the sensitive majority can decrease competition to a larger
extent and result in a larger amplification of resistance (Figure 1 A).
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Figure 1. Schematic of metacommunity dynamics. Metacom-
munities with three host individuals are depicted. Before antibiotic
treatment, resistant (red) and sensitive (grey) bacteria have similar
total abundances in both poor and good hygiene settings, but they
are differently distributed across host individuals. After antibiotic
treatment and competitive release, resistant bacteria are more abun-
dant in the poor hygiene setting. Red bars represent resistant strains,
and grey bars sensitive strains, the area of each bar representing the
abundance of the corresponding strain. Double arrows denote trans-
mission of bacteria between hosts, thicker arrows indicating a higher
rate of transmission.

As a consequence, the scope for competitive release is maximized when resistant
strains are present in a large proportion of host individuals, and have a low abun-
dance in the local communities in which they are present. Hence, for a given total
abundance of resistant bacteria in the metacommunity, the competitive release will
be larger when the resistant bacteria are more uniformly distributed across the host
population.

The distribution of organisms in metacommunities is a focus of research in meta-
community ecology, and a picture has emerged that, perhaps unsurprisingly, disper-
sal of organisms among habitat patches tends to spread them across these patches,
making them more uniformly distributed (13). Conversely, this means that inter-
ventions that prevent dispersal should make the distribution of organisms in the
metacommunity less uniform than would otherwise have been the case, and tend to
isolate different types of organism in different habitat patches.

In the context of humans carrying resistant and sensitive bacteria, measures of
hygiene are precisely such interventions. They should therefore make the distribution
of resistant strains less uniform, leaving them abundant in some individuals and
absent from others, and thus decrease the scope for competitive release.

This leads to our prediction: Increasing the level of hygiene should decrease the
effect of antibiotic pressure on the competitive release of resistant bacteria. That
is to say that, whilst the magnitude of competitive release increases with antibiotic
pressure, this increase is less steep when the level of hygiene is higher. We focus
on hygiene, because it is readily actionable and its importance is well-established,
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4 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

but the prediction applies to any factor that limits bacterial dispersal among host
individuals.

Mathematical modelling of bacterial metacommunity dynamics
supports the prediction

In the previous section, we informally explained why metacommunity ecology the-
ory predicts that hygiene should attenuate competitive release. To test the validity
of the argument, we now subject it to formal modelling. In the main text, we use a
metacommunity model, and in Supplement A, we complement the analysis with an
epidemiological compartmental model.

Our model of bacterial metacommunity dynamics is an extension of Hubbell’s
neutral model of biogeography and relative species abundance (19, 20). The bacte-
rial metacommunity is modelled as a set of interconnected bacterial communities in
different host individuals. In these communities there are two types of bacteria –
antibiotic resistant and antibiotic sensitive – and the total number of bacteria (re-
sistant and sensitive) in each host individual is constant, as is the number of host
individuals. These constants are denoted by J for the number of bacteria in each
host and N for the number of host individuals. The constant community size means
that the resistant and sensitive types compete with each other, and a decrease in
one entails an equal increase in the other, representing competitive release.

The model tracks the proportion of bacterial cells that are resistant in the meta-
community, as time, step by step, unfolds. In each time step bacterial cells die. In
the absence of antibiotics, one cell dies in each host individual, and the resistance
status of a cell does not affect its probability of dying. With increasing antibiotic
pressure, however, more cells can die in each time step, and the death process be-
comes increasingly biased towards sensitive cells (see Supplement A for details). We
expand on this below.

Once those cells have died, they are replaced by new cells by division. These
cells may originate from within the same host or from different host individuals.
The probability that a new cell comes from a different host depends on the level
of hygiene – the better the hygiene, the lower the probability that a bacterium
transmits from another host. If the new cell originates from a different host, the
probability that it is resistant is equal to the proportion of cells that are resistant in
the metacommunity as a whole, and if it originates from within the focal host, the
probability of resistance equals the proportion of cells that are resistant in that host.

Let us compute the probabilities more precisely. Let Rj(t) be the number of
resistant bacteria at a given time t in host j. Since we are only looking at the
transition between two adjacent time steps, we will drop the index t and only write
Rj . Each time step has two phases. In the first phase one or several bacteria are
lost, and in the second phase these bacteria are replaced. In the first phase, given
Rj number of resistant bacteria in an individual, the probability that a resistant
bacterium dies is

Pr =
Rj
aJ
,

where a ≥ 1 is the antibiotic pressure, represented as the differential survival of
resistant and sensitive cells. Hence, a = 1 means that no antibiotics are present,
and the probability that it is a resistant (or a sensitive) cell that dies is simply
proportional to their number, whereas a > 1 means that antibiotic treatment makes
the death process biased towards sensitive cells.
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The probability that sensitive bacteria are lost is

Ps = 1− Pr.
The number of sensitive bacteria lost is an integer function ρ(R, a) that depends on
the antibiotic pressure a and the abundance R = Rj of resistant bacteria in host
j (or equivalently, the abundance of sensitive bacteria J − R). However, in the
computations (see Supplement A), we consider ρ to be a continuous function that is
differentiable in the a-direction. Moreover, we require that it is a decreasing function
of R, meaning that more sensitive bacteria die if there are many such bacteria. We
then take the integer part of this function to go back to the integer valued ρ. Let us
denote by µ(R, a) the number of bacteria lost in this first phase (i.e., µ(R, a) = 1 or
µ(R, a) = ρ(R, a)).

In the second phase, given R number of resistant bacteria, the probability that
one resistant or one sensitive bacterium reappears is, respectively,

Qr = m
R̄

J − µ(R, a)
+ (1−m)

R

J − µ(R, a)
, Qs = 1−Qr,

where

R̄ =
1

N

N∑
j=1

Rj

is the average number of resistant bacteria in the whole population at that time,
and m ∈ [0, 1] (called the migration rate in the literature) is the probability that
a bacterium is chosen from the metacommunity as a whole, rather than the focal
individual. The hygiene parameter h = 1 − m, so that good hygiene means high
h-values and low m-values (and vice versa). This procedure is performed precisely
µ(R, a) times to replace all bacteria lost in the first phase.

However, the time steps can be made very small in the mathematical model, and
therefore we assume that the portion µ(R, a)/J is very small, although the number
µ(R, a) can be large (in particular much larger than 1). This means that we may

replace R̄
J−µ(R,a) by R̄

J (with a very small error). The new probabilities Qr and Qs
then become

Qr = m
R̄

J
+ (1−m)

R

J
, Qs = 1−Qr,

We compute the expected change of the number of resistant bacteria in one time
step. This expectation is denoted by Z = Z(a, h), which is a function of a and h.
We prove that

∂2Z

∂h∂a
(a, h) ≤ 0,

if a ≥ 1, with strict inequality if a > 1. Hence, the effect of antibiotic pressure on
the rate of increase of resistance (∂Z/∂a) decreases with improving hygiene.

We also show that this is due to the effect of hygiene on the β-diversity of the
metacommunity. (See Supplement A for details.) The β-diversity is the standard
deviation of the number of resistant bacteria Rj across host individuals.

Resistance data are consistent with the prediction

In the preceding sections, we saw, first, that informal theory predicts that hygiene
attenuates the effect of antibiotics on the competitive release – and thus the rate
of increase – of resistant bacteria, and, second, that formal modelling supports the
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6 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

validity of that argument. Now, we test this prediction empirically. To do so, we
restate it in statistical form.

The prediction is as follows: If a measure of the increase of resistant bacteria in a
given setting is regressed upon a measure of antibiotic pressure (a) and a measure of
hygiene (h) in that setting, there should be an interaction (a ·h), and this should be
negative. The reason is that the interaction term represents the effect that the value
of one variable (e.g., h) has on the effect of the other variable (e.g., a), a negative
term meaning attenuation.

We tested this prediction against data on resistance to third generation cephalo-
sporins in Enterobacteriaceae, the use of β-lactam antibiotics, and the use of alcohol-
based hand rub in long-term care facilities in different European countries, reported
by the European Centre for Disease Prevention and Control (ECDC). We chose these
data because, as far as we are aware, this is the only data set that is large enough,
and contains information on antibiotic resistance, antibiotic use, and a reliable mea-
sure of hygiene, all of which are necessary to test the prediction. The principal
shortcoming of the data is that they are cross sectional, and thus only provide the
level of resistance at a given time, not the rate of increase. We therefore modelled
the increase in resistance as the enrichment of resistant strains in the long-term care
facilities in each country as compared to resistance in E. coli in the general society
in that country. (See Supplement B for details on the data and analysis.)

The data were analysed by logistic regression (using R ver. 3.5.0, see (21)). In
accordance with the prediction, there was a significant negative interaction between
hygiene and antibiotic pressure (p = 0.005), and this amounted to a pronounced
effect of hygiene on the slope of resistance on antibiotic pressure. The data and
the regression model are shown in Figure 2 A, and the change in the relationship
between antibiotic pressure and antibiotic resistance associated with an increase from
medium-low to medium-high consumption of hand rub is illustrated in Figure 2 B.

Discussion

Here we have employed metacommunity ecology theory to study what are arguably
the two most important levers available to limit the rise of resistance – the amount
of antibiotics used and the level of hygiene. We found that informal theory, formal
modelling, and data from the ECDC all yield the same conclusion: Improvements
in hygiene weaken the link between antibiotic use and increasing resistance. The
mechanism is that hygiene limits bacterial dispersal, and thereby alters the diversity
that is the substrate for antibiotic induced competitive release. Since a quantitative
assessment of this effect in the mathematical model requires biological information
that is currently unavailable, we assessed the effect size directly with the ECDC
resistance data, and found that it was quite striking (Figure 2 B).

Naturally, there are caveats to the conclusion. The data set is relatively small
and pertains to a particular setting – long-term care facilities. In addition, the
frequency of resistance in these facilities as compared to the baseline frequency in
each country, though a measure of enrichment of resistant bacteria, is not strictly a
rate of increase. Furthermore, the results may be confounded by factors not included
in the analysis. For example, since each data point represents a different country,
there may be differences in health care systems or cultural habits that affect the
outcome.
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Figure 2. A. Resistance data and statistical model. The
ECDC resistance data are overlain a contour plot of the logistic re-
gression model that was fitted to them. The probability that an En-
terobacteriaceae isolate is resistant to third generation cephalosporins
is plotted against the consumption of alcohol-based hand rub (verti-
cal) and the point prevalence of β-lactam treatment (horizontal). The
colour and contours represent the probability of resistance. Bubbles
represent data reported for individual countries, the area being scaled
to the number of bacterial isolates tested. (See Supplement B for de-
tails.) B. The effect of a moderate improvement in hygiene.
Based on the data and analysis given in (B), the probability that
an isolate is resistant (vertical) is plotted against the prevalence of
β-lactam treatment (horizontal). The upper and lower panels show
this relationship for a hand rub consumption of 3 and 7 litres, respec-
tively, per 1000 resident days. Red dotted lines represent 95 percent
confidence bands. (See Supplement B for details.)
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8 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

On the other hand, the validity of the argument is supported by the fact that
a simple compartmental model – which is mathematically very different from the
metacommunity model – whilst unable to capture the nuances of bacterial diversity,
does indicate the same qualitative conclusion. (See Supplement A for details.) In
addition, there are previous empirical results that are suggestive of a role for bacte-
rial dispersal in modulating the effect of antibiotic pressure. Bruinsma et al. (22)
investigated the resistance to several antibiotics in E. coli and Enterococci in the
faeces of healthy volunteers living in cities with different population densities, and
found that it correlated poorly with the antibiotic pressure per individual, but well
with the antibiotic pressure per land area. Assuming that bacterial dispersal among
individuals is facilitated by a high population density, this fits well with a modulat-
ing effect of dispersal, since the antibiotic pressure per land area is the product of
the pressure per individual and the population density, and thus corresponds to the
interaction term, a · h, in the statistical model above.

Whilst decreasing the population density may not be a viable route to limiting
antibiotic resistance, improving health care hygiene is. Proper hand hygiene in
clinical work is a cornerstone of patient safety (23), but more than 150 years after
Semmelweis compliance is still poor (24). This is unfortunate, because hand hygiene
stands out among possible anti-resistance interventions in that it is simple, safe, and
cheap, and should therefore be possible to implement rapidly, and without major
issues. Furthermore, as suggested by the findings of Bruinsma et al. (22) above, the
effect of dispersal limitation on competitive release should not be confined to the
health care setting, but apply to the general community as well.

In conclusion, we have here introduced metacommunity ecology theory to the
study of antibiotic resistance, and found that interventions to limit microbial dis-
persal provide a means to attenuate the effect of antibiotic selection pressure on the
rise of resistance.
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HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA 11

Supplement A:
The mathematical models

Analysis of the metacommunity model

1. Introduction

The mathematical model of the interaction between antibiotic pressure and hy-
giene is based on an idea by S. Hubbell (20). Let us here explain the basic mechanics
in our model. Let N be the number of individuals in the host population, J the to-
tal number of resistant and sensitive bacteria in each individual host, m a hygiene
parameter, and a a measure of the antibiotic pressure. In each time step, there are
two phases. In the first phase, each host individual either loses a resistant bacterium
or a number ρ ≥ 1 of sensitive bacteria. In the second phase the individual gains the
same number of bacteria of possibly different types (sensitive or resistant). Hence,
after each time step, the total number of bacteria is unchanged. Let R be the num-
ber of resistant bacteria at some given time for a given host individual, and R̄ the
average portion of resistant bacteria over the whole metacommunity; i.e.,

R̄ =
1

N

N∑
j=1

Rj
J

=
1

N

N∑
j=1

rj ,

where Rj is the number of resistant bacteria for host j and rj = Rj/J . We then have
the possibilities that the change of the number of resistant bacteria for an individual
can attain the values {−1, 0, . . . , ρ} after these two phases have taken place.

The probability that a resistant bacterium is lost, given R = Rj number of resis-
tant bacteria in host j, is

Pr = Pr(R) =
R

aJ
,

where a is the antibiotic pressure (a = 1 means that there are no antibiotics).
The probability that ρ sensitive bacteria are lost is

Ps = Ps(R) = 1− Pr = 1− R

aJ
.

Let us briefly describe the properties of ρ = ρ(x, a), which is a function of the
antibiotic pressure a and the abundance x of resistant bacteria (or equivalently, the
abundance of sensitive bacteria J − x). We may also consider ρ as a function of
the relative abundance of x or J − x since the total number of bacteria in each
host is constant after each time step. We require that ρ is decreasing in x, meaning
that more sensitive bacteria die if there are many such bacteria. We will also need a
technical condition on ρ including its a-derivative (written in the Proposition below).
This condition is discussed after the Proposition, and there are many “natural”
functions ρ that satisfy it (for instance ρ must increase with higher a-values). Let
us denote by µ(x, a) the number of bacteria lost in this first phase (i.e. µ(x, a) = 1
or µ(x, a) = ρ(x, a)).

Let us now turn to the second phase. Using Hubbell’s model with some modifica-
tions (Hubbell does not include the a-variable), the probabilities that a resistant or
a sensitive bacterium reappears are, respectively,

Qr = Qr(R) = m
R̄

J − µ(R, a)
+ (1−m)

R

J − µ(R, a)
, Qs = 1−Qr,
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12 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

where

R̄ =
1

N

N∑
j=1

Rj

is the average number of resistant bacteria in the metacommunity, R = Rj for some j,
and m ∈ [0, 1] is the probability that a bacterium is chosen from the metacommunity
as a whole, rather than from the focal individual.

However, since each time step (the two phases) can be arbitrarily small, at least in
the mathematical model, we will in this model make the assumption that µ(R, a)/J
is very small (although the number µ(R, a) can still be large), so that R̄/(J−µ(R, a))
is very close to R̄/J . With this approximation, the probability that one resistant
or one sensitive bacterium reappears is, again given R number of resistant bacteria,
respectively,

Qr = m
R̄

J
+ (1−m)

R

J
, Qs = 1−Qr.

We call h = 1−m the hygiene parameter, so that good hygiene means high h-values
and low m-values (and vice versa). This procedure is performed precisely µ(R, a)
times to replace all bacteria lost in the first phase.

If we look at the transition probabilities for all hosts, this creates a huge Markov
chain, since the number N of people and the total number J of bacteria are usually
very large numbers. We will instead consider the expected change Z of resistant
bacteria in the whole population, given an antibiotic pressure a, the level of hygiene
h, and the number of resistant bacteria Rj in each host j, 1 ≤ j ≤ N . So Z is a
function of a, h, and the numbers Rj , 1 ≤ j ≤ N .

In the proposition below, we note first that the function ρ(x, a) is in reality integer
valued. However, in the proposition it is assumed to satisfy a Lipschitz continuity
condition (with differentiability in a). We then take the integer part to go back to
its real meaning. When one takes the integer part of ρ, the partial derivatives in the
proposition have to be replaced by corresponding “discrete” derivatives.

On the other hand, one can view the death and rebirth processes of bacteria as bi-
nomially distributed; the death process X ∼ Bin(ρ/J, J) and the rebirth process Y ,
where Y |X ∼ Bin(Qr, X) and hence E(Y |X) = QrX is the conditional expectation.
Then, since E(X) = ρ, we have

E(Y ) = E(E(Y |X)) = E(QrX) = Qrρ.

As J → ∞, we note that the death binomial process will converge to a Poisson
process.

In the proposition below, ρ(x, a) is considered as a function of the relative abun-

dance x of bacteria, i.e., x ∈ [0, 1]. Write ∂ρ
∂a = ∂aρ.

Proposition 1.1. Given Z = Z(a, h) as above. Suppose that the function ρ(x, a) ≥ 1
is decreasing in x, ρ(x, a) and ∂aρ(x, a) ≥ 0 are Lipschitz continuous, ρ(x, 1) = 1
and that

(1) k(x, a) = x(ρ(x, a)− 1) + ∂aρ(x, a)a(a− x)

is decreasing in x. Then,

(2)
∂2Z

∂h∂a
≤ 0,

with strict inequality if a > 1.
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HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA 13

In the computations we will use the parameter m = 1 − h and hence prove the
equivalent statement

(3)
∂2Z

∂m∂a
≥ 0.

We call this the first prediction.
We now discuss the condition (1). If for example ρ(x, a) = φ(a)h(x) + 1, where

h(x) is decreasing in x then (1) is equivalent to the statement that

h(x)(x(φ(a)− aφ′(a)) + a2φ′(a))

is decreasing in x. Since k(x, a) ≥ 0, this is true in particular if φ(a) − aφ′(a) ≤ 0
which is equivalent to

∂

∂a

(
φ(a)

a

)
≥ 0.

There are many functions that satisfy this condition (1). A simple example is

ρ(x, a) = 1 + (a− 1)(1− x). We will also write ρ′a(x, a) = ∂ρ
∂a(x, a).

As a by–product we have:

The greater the β–diversity of the metacommunity, the smaller the competitive
release of resistant bacteria in response to antibiotic pressure.

We call this the second prediction.

2. Proof of Proposition 1.1

The aim in this section is to study the expected change in the number of resistant
bacteria in the whole population, given certain values on a (antibiotic pressure) and
m (hygiene). Also, we will see that there is an interplay between the β–diversity of
the metacommunity and its sensitivity to antibiotic pressure.

In the first phase, a number of bacteria are lost; one resistant with probability Pr
or ρ sensitive with probability Ps = 1− Pr. In order to have a zero sum process, all
bacteria lost in the first phase must be replaced by new ones in the second phase.
So if ρ sensitive bacteria were lost in the first phase (in some host), then obviously ρ
new bacteria must be reborn, and if a resistant bacterium was lost in the first phase,
we only need to add one extra bacterium in the second phase.

We proceed as in Hubbell’s model, but perform the bacterial replacement pro-
cedure ρ times if sensitive bacteria were lost in the first phase, and only once if a
resistant bacterium was lost in the first phase. Recall Qr = Qr(Rj) and Qs = Qs(Rj)
for the probabilities for host j that one resistant or sensitive bacterium reappears,
respectively.

We let X be the total number of resistant bacteria lost in the first phase and Y be
the total number of resistant bacteria that reappear in the second phase. Moreover,
let Xj be the number of resistant bacteria lost for host individual j in the first
phase, and Yj the number of reappearing resistant bacteria for host individual j in
the second phase. So we have

X =
∑
j

Xj , Xj ∈ {0, 1}

Y =
∑
j

Yj , Yj ∈ {0, . . . , ρ},
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14 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

where ρ = ρ(Rj , a). We then put

Z = E(Y −X) and Zj = E(Yj −Xj).

Then Z is the expected total change of resistant bacteria after one full time step
(both phase one and phase two) and

(4) Z = E(Y −X) = E(Y )− E(X) =
∑
j

E(Xj)−
∑
j

E(Yj).

To compute E(Xj) is easy:

E(Xj) =
rj
a
· 1 + (1− rj

a
) · 0 =

rj
a
.

To compute E(Yj) is more complicated since they depend on Xk, 1 ≤ k ≤ N . If a
resistant bacterium was lost in the first phase (i.e., Xj = 1), then the expectation
of the change of resistant bacteria in phase two is (recall the probabilities Qr for
picking a resistant and 1−Qr for a sensitive bacterium)

E(Yj |X1, . . . , XN , Xj = 1) = Qr(Rj) · 1 +Qs(Rj) · 0
= (mr̄(X1, . . . , XN ) + (1−m)rj) · 1(5)

+ (m(1− r̄(X1, . . . , XN )) + (1−m)(1− rj)) · 0
= mr̄(X1, . . . , XN ) + (1−m)rj ,(6)

where r̄(X1, . . . , XN ) is the average of all rj after the first phase (and Xj = 1). If
sensitive bacteria were lost in the first phase then perform the growth process as
above but ρ(Rj , a) times and consequently

E(Yj |X1, . . . , XN , Xj = 0) =

ρ(rj)∑
k=1

(
Qr(Rj) · 1 +Qs(Rj) · 0

)
= ρ(Rj , a)(mr̄(X1, . . . , XN ) + (1−m)rj),(7)

where Xj = 0. Now, r̄(X1, . . . , XN ) can change quite drastically if a lot of sensitive
bacteria were lost in the first phase, but not if resistant bacteria were lost in the
first phase. However, we assume that the portion of resistant bacteria does not
change too much after the first phase, so we just use r̄ and rj as they were before
the first phase. This is equivalent to saying that the quotient ρ/J is very small,
which is the assumption made in the previous section (so that Qr does not depend
on µ(R, a)). However, the outcome of Yj still depends drastically on Xj . Let us write
ρ(Rj , a) = ρ(rj , a) to simplify the notation in the coming computations, so that we
regard ρ(rj , a) also as a function of the relative abundance of resistant bacteria for
individual j. We have

E(Yj |Xj = 1) = mr̄ + (1−m)rj ,(8)

E(Yj |Xj = 0) = ρ(rj , a)(mr̄ + (1−m)rj).(9)

We now get

E(Yj) = E(Yj |Xj = 1)P (Xj = 1) + E(Yj |Xj = 0)P (Xj = 0)(10)

=
rj
a

(mr̄ + (1−m)rj) + (1− rj
a

)ρ(rj , a)(mr̄ + (1−m)rj)(11)

= m(
rj
a

+ (1− rj
a

)ρ(rj , a))(r̄ − rj) +
r2
j

a
+ (1− rj

a
)rjρ(rj , a).(12)
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Consequently,

E(Yj −Xj) = E(Yj)− E(Xj)

(13)

= m(
rj
a

+ (1− rj
a

)ρ(rj , a))(r̄ − rj) +
r2
j

a
+ (1− rj

a
)rjρ(rj , a)− rj

a
.(14)

So

Zj = E(Yj −Xj) = mβ(rj , a)(r̄ − rj) + α(rj , a),

where

β(rj , a) =
rj
a

+(1− rj
a

)ρ(rj , a), and α(rj , a) =
r2
j

a
(1−ρ(rj , a))+rj(ρ(rj , a)− 1

a
).

An easy computation yields α′a(x, a) ≥ 0 and α ≥ 0.
We want to show that ∂Zj/∂a increases in m, i.e., that ∂2Zj/∂m∂a ≥ 0. To do

this, we will first need that β′a(x) = ∂β/∂a(x) is positive and decreasing in x. We
have

β′a(rj) =
rj
a2

(ρ(rj , a)− 1) + ρ′a(rj , a)(1− rj
a

).

Since ρ′a(x, a) is positive from the assumptions and ρ(rj , a) ≥ 1, we clearly have
β′(a) ≥ 0. We may without loss of generality order the rj so that r1 ≤ r2 ≤ . . . ≤ rN .
Recall that both ρ and ρ′a are decreasing functions in x. The condition (1) means
that β′a(x) is decreasing in x and hence β′a(rj , a) is decreasing in j. To prove (3), we
need the following lemma, which we state in a more general form.

Lemma 2.1. Let ξ ≥ 0 be a decreasing function and f ≥ 0, both defined on a
compact interval I. Suppose that µ(I) = 1. Then∫

I
ξ ◦ f(x) dµ

∫
I
f(x) dµ ≥

∫
I
ξ ◦ f(x)f(x) dµ.

T. Persson pointed out that this lemma is quite similar to the Chebyshev integral
inequality and he supplied an elegant proof based on this. However, for our purposes
we take another route.

Proof. Let α(x) = f(x) −
∫
f(x) dµ. Then

∫
α(x) dµ = 0. Put A = {x : α(x) ≥ 0}

and B = {x : α(x) < 0}. Since ξ(x) is decreasing, we have∫
ξ ◦ f(x)

(
f(x)−

∫
f(x) dµ

)
dµ =

∫
ξ(f(x))α(x) dµ

=

∫
A
ξ(f(x))|α(x)| dµ−

∫
B
ξ(f(x))|α(x)| dµ(15)

≤
∫
A
ξ

(∫
f(x) dµ

)
|α(x)| dµ−

∫
B
ξ

(∫
f(x) dµ

)
|α(x)| dµ(16)

= ξ

(∫
f(x) dµ

)∫
α(x) dµ = 0.

This proves the lemma. �
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16 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

Remark 2.2. It also follows from the proof of the lemma that there are constants
c, c′ ≥ 0 which only depend on ξ such that

c

∫
I

∣∣∣∣f(x)−
∫
I
f(x) dµ

∣∣∣∣dµ ≤ ∫
I
ξ ◦ f(x) dµ

∫
I
f(x) dµ−

∫
I
ξ ◦ f(x)f(x) dµ

≤ c′
∫
I

∣∣∣∣f(x)−
∫
I
f(x) dµ

∣∣∣∣ dµ.(17)

Indeed, the difference between the first terms on the lines (15) and (16) is∫
A
ξ

(∫
f(x) dµ

)
|α(x)| dµ−

∫
A
ξ(f(x))|α(x)| dµ

=

∫
A

(
ξ

(∫
f(x) dµ

)
− ξ(f(x))

)
|α(x)| dµ.

Since ξ is Lipschitz continuous, and since α(x) ≥ 0 on A, we conclude that there are
constants c1 ≥ 0 and c2 ≥ 0 that only depend on ξ such that

c1

∫
A
|α(x)|2 dµ ≤

∫
A

(
ξ

(∫
f(x) dµ

)
− ξ(f(x))

)
|α(x)| dµ(18)

≤ c2

∫
A
|α(x)|2 dµ.

A similar inequality holds for the difference of the two last terms in (15) and (16).
Indeed, by the same argument, remembering that α(x) ≤ 0 on B, there are constants
d1 ≥ 0 and d2 ≥ 0 such that

d1

∫
B
|α(x)|2 dµ ≤

∫
A

(
ξ(f(x))− ξ

(∫
f(x) dµ

))
|α(x)| dµ(19)

≤ d2

∫
B
|α(x)|2 dµ.

So we see that

c1

∫
A
|α(x)|2 dµ+ d1

∫
B
|α(x)|2 dµ

≤
∣∣∣∣∫
I
ξ ◦ f(x) dµ

∫
I
f(x) dµ−

∫
I
ξ ◦ f(x)f(x) dµ

∣∣∣∣
≤ c2

∫
A
|α(x)|2 dµ+ d2

∫
B
|α(x)|2 dµ.

Taking c = min(c1, d1) and c′ = max(c2, d2) gives the desired result.

Recall that Z =
∑

j Zj can be written as

Z = Bm+A,

where

B =
∑
j

(r̄ − rj)β(rj , a) and A =
∑
j

α(rj , a)

both depend on a. Therefore, with A′a =
∑

j α
′
a(rj , a), we have

∂Z

∂a
= mB′a +A′a,
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and

∂2Z

∂m∂a
= B′a =

N∑
j=1

(r̄ − rj)β′a(rj , a).

Applying the lemma to the uniformly distributed point measure µ = 1
N

∑N
j=1 δj(x)

on the interval I = [1, N ], where f(j) = rj and ξ(x) = β′a(x) it follows that

B′a =
∂B

∂a
=

N∑
j=1

(r̄ − rj)β′a(rj , a) ≥ 0,

with strict inequality if a > 1 and the distribution of rj is such that not all are equal.
In particular, if the β-diversity is zero, i.e., the distribution of the resistant bacteria
is completely uniform, then B′a = 0. This proves our first prediction (Proposition
1.1).

We also note that ∂Z/∂a is clearly positive since every α′a(rj , a) ≥ 0, 1 ≤ j ≤ N
(this is simply equivalent to the unsurprising fact that the greater the antibiotic use
in the population, the faster the proportion of bacteria that are resistant increases).

From the remark after the lemma, putting α(j) = r̄− rj , we see that the sum B′a
is comparable to the deviation:

B′a ∼
∑
j

|r̄ − rj |2.

Hence, we have also settled the second prediction.

Remark 2.3. A natural question is to ask whether

B =
∂Z

∂m
=

N∑
j=1

(r̄ − rj)β(rj , a) ≥ 0.

But this follows easily from the fact that ∂2Z/∂m∂a ≥ 0 and integrating. Suppose
that m1 ≤ m2 and fix some a ≥ 1. Then

Z(m1, a) =

∫ a

1
∂aZ(m1, t) dt,(20)

Z(m2, a) =

∫ a

1
∂aZ(m2, t) dt.(21)

Since ∂aZ is increasing in m, we have Z(m1, a) ≤ Z(m2, a) for all a ≥ 1 and all
choices of m1 ≤ m2. Hence, B ≥ 0.

Remark 2.4. Another consequence of the model is that if no antibiotics are present,
then Z will no longer depend on m. Indeed, since ρ(x, 1) = 1, we have

B =
∑
j

β(rj , 1)(r̄ − rj) =
∑
j

r̄ − rj = 0.

Hence, hygiene has no effect on the rate of increase of the number of resistant bacteria
in the absence of antibiotics.
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18 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

Analysis of a simple compartmental model

It is common to study the spread of antibiotic resistant bacteria using the epidemi-
ological compartmental modelling framework (12), and to connect our results to this
rich tradition, we here show the main result of our study within this framework. The
within-host diversity of bacteria is modelled as a subdivision of the host population
into compartments with different portions of different bacterial strains. Since this is
necessarily a crude representation of diversity, we will opt for simplicity rather than
nuance in the choice of model. We begin with a model with 4 compartments, and
then simplify.

Consider a commensal that is ubiquitous, or nearly so, such as E. coli. There
are two strains, a sensitive strain and a resistant strain. And hosts are divided into
compartments based on which strain(s) they harbour. Hosts in compartment S have
only the sensitive strain, and those in R only the resistant. Hosts in compartment
SR harbour mostly sensitive bacteria, but there are a few resistant cells, and hosts
in RS have mostly resistant bacteria, but there are a few sensitive cells. Hosts flow
from S to SR as they contract resistant bacteria by transmission. From SR they can
either return to S, as the sensitive bacteria outcompete the resistant bacteria due to a
fitness cost of resistance, or continue to R due to competitive release under antibiotic
treatment that kills the sensitive cells. From R, hosts flow to RS by transmission of
sensitive bacteria, and from there either return to R due to treatment, or transition
to S due to a cost of resistance. The model is represented in Figure S1 A.

For simplicity, now assume that the cost of resistance is negligible, such that there
are no flows from SR to S or from RS to S. The resulting model is represented in
Figure S1 B. Since hosts in R and RS cannot leave this pair of compartments, and
RS is dominated by resistant bacteria, R and RS can be combined. This yields the
model represented in Figure S1 C. This model is described by the following ordinary
differential equations:

dR

dt
= aSR,(22)

dSR
dt

= βSR− aSR,(23)

dS

dt
= −βSR,(24)

S +R+ SR = 1,(25)

where a is the antibiotic pressure on the host population and β is the transmis-
sion rate. Improvements in hygiene lower β. Competitive release under antibiotic
treatment is represented by the flow from SR to R according to aSR.

Let us first discuss the model informally to build intuition. The first prediction,
that hygiene should attenuate the effect of antibiotic pressure on the competitive
release of resistant bacteria, can be intuited by noting, firstly, that the rate at which
R increases in the model in Figure S1 C depends on both the antibiotic pressure,
a, and the proportion of hosts that are in compartment SR, and, secondly, that
the rate at which new hosts enter compartment SR, and thus become available to
treatment induced competitive release, depends on β, which, in turn, decreases with
hygiene. The second prediction, that this is because improvements in hygiene make
resistant strains less uniformly distributed across the host population, can also be
intuited from the model. Note, firstly, that the distribution of resistant strains is
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most uniform when SR is large, and, secondly, that the rate of increase in R depends
on SR. Put another way, a large SR corresponds to the situation discussed in the
main text, where resistant bacteria are present in many host individuals, but have a
low abundance in the hosts in which they are present.

We now give a sketch of a proof that the first (and main) prediction follows from
this model, at least under some circumstances (conditions on the prevalences of R
and SR). We stress that this prediction holds locally around any given initial values
on R and SR. With some conditions on R and SR, we can prove this globally as well,
meaning far away from the initial values. These conditions can most likely be relaxed,
at least up to some point, but for our purposes we only wish to illustrate that the
same phenomenon can be found in this compartment model as in the metacommunity
model.
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20 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

Assume that the system of differential equations above is defined for t ≥ 0 with
some initial values SR(0) and R(0). The first prediction is equivalent to the propo-
sition that the second partial derivative of R satisfies

(26)
∂2R(t)

∂a∂β
≥ 0,

with strict inequality for t > 0. Locally, i.e., for t close to 0 this is always true, as
we will see below.

Let us first reduce the equations to a system in two variables, in R and SR. Let
us also use the simpler variables x = R and y = SR:

dy

dt
= β(1− y − x)x− ay,(27)

dx

dt
= ay.(28)

By making a simple change of variables (e.g. ŷ = y/β, x̂ = x) one can easily see
that (26) is satisfied locally around any initial point y0 = y(x0), where x0 = x(0)
and y0 = y(0), (note that the initial point is not dependent on the parameters a and
β). However, in order to analyse the long term behaviour, we take another route.

Eliminating the t-variable, we get

(29)
dy

dx
= y′ =

β

a
(1− y − x)

x

y
− 1 =

β

a
(1− x)

x

y
− β

a
x− 1.

Hence, the solution curves y = y(x) only depend on γ = β
a and the initial value

y(x0) = y0. So let us keep in mind that y = y(x, γ), and write

y′ = γ(1− x)
x

y
− γx− 1.

We also note that R′ = x′ = ay(x, γ), and thus, after some calculations,

∂2R′

∂a∂β
= − β

a2

∂2y

∂γ2
.

We recall that both a and β are positive numbers. So if we can show that yγγ = ∂2y
∂γ2

is negative, the result follows by integrating in the time-domain.
We first show that yγ = ∂y

∂γ is non-negative. Differentiating (29) with respect to γ
we get,

(30) y′γ = (1− x)
x

y
− γ(1− x)x

yγ
y2
− x.

Considering this as a linear equation in yγ , assuming that a solution y = y(x, γ)
exists, we write

(31) y′γ + γ(1− x)x
yγ
y2

= (1− x)
x

y
− x.

We see that the integrating factor

µ(x) = exp

{∫ x

x0

γ(1− τ)
τ

y2
dτ

}
satisfies µ(x) ≥ 1 and is increasing. We get, after integrating,

yγ =
1

µ(x)

∫ x

x0

µ(ξ)
ξ

y
(1− ξ − y) dξ.
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Since µ(x) ≥ 1 and the integrand is non-negative, we have yγ ≥ 0.
We now go one step further to investigate the sign of yγγ . Differentiating (31)

with respect to γ we get

(32) y′γγ = −2(1− x)x
yγ
y2
− γ(1− x)x

yγγ
y2

+ 2γ(1− x)x
y2
γ

y3
,

which is equivalent to

(33) y′γγ + γ(1− x)
x

y2
yγγ = −2(1− x)x

yγ
y3

(y − yγ).

Multiplying by the same integrating factor µ(x), and integrating we see that yγγ is
non-positive if y − yγ ≥ 0.

We see directly that locally we have yγγ ≤ 0, since yγ(x0) = 0 (the starting point
does not depend on γ).

In forward time (when y = y(x) is further away from the initial value y0 = y(x0))
it is also true under some circumstances, i.e., conditions on x and y, and possibly
it is simply true for all 0 ≤ x, y ≤ 1. We will not go through all possible such
conditions on y and x here, but as an example, suppose that y ≥ x. Then, since
µ(x) is increasing, by the Mean Value Theorem for integrals, for some 0 ≤ η ≤ x,

(34) yγ =
µ(η)

µ(x)

∫ x

x0

ξ

y
(1− ξ − y) dξ ≤

∫ x

x0

ξ

y
(1− ξ − y) dξ.

Using that ξ ≤ y we get

yγ ≤
∫ x

x0

ξ

y
(1− ξ − y) dξ

≤
∫ x

x0

(1− ξ − y) dξ ≤ x− x0 ≤ x ≤ y.(35)

So as long as y ≥ x the statement holds that yγγ ≤ 0 (with strict inequality if
x, y 6= 0, 1). If we require that y ≥ min(x, 1 − x), which is a slightly stronger
condition, then, using that y ≥ x on [0, 1/2] and that y ≥ 1− x on [1/2, 1],

yγ ≤
∫ x

x0

ξ

y
(1− ξ − y) dξ(36)

=

∫
[x0,x]∩[0,1/2]

ξ

y
(1− ξ − y) dξ +

∫
[x0,x]∩[1/2,1]

ξ

y
(1− ξ − y) dξ(37)

≤
∫

[x0,x]∩[0,1/2]
(1− 2ξ) dξ +

∫
[x0,x]∩[1/2,1]

0 dξ(38)

≤
∫

[x0,x]∩[0,1/2]
(1− 2ξ) dξ ≤ 1

2
− x0 − (

1

4
− x2

0) ≤ 1

4
.(39)

Combining this with the estimate just before (see (35)), this means that yγ ≤ y in
the almost triangle shaped domain D = {(x, y) : y ≥ min(x, 1−x)X[0,3/4]+

1
4X[3/4,1]},

where XI is the characteristic function on I (i.e., the function that takes the value
1 on I and 0 elsewhere). Although it is very likely that these estimates can be
improved, they show that the phenomenon we proved in the metacommunity model
also holds in this simple compartment model, at least for a large proportion of the
states in the phase space. Finally, we recall that the phenomenon holds locally
around every initial point. This does not imply a global statement, since far away
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22 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

from these initial values, x = R and y = SR may take different routes for different
parameters a and β.
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Supplement B:
Statistical analysis of resistance data

1. Introduction

Here we analyse data on antibiotic resistance, antibiotic use, and consumption
of alcohol-based hand rub in long-term care facilities (LTCF) given in the report
”Point prevalence survey of healthcare-associated infections and antimicrobial use in
European long-term care facilities. April-May 2013” from the European Centre for
Disease Prevention and Control (ECDC), henceforth ”the LTCF report” (25). We
also use data on nation-wide resistance from the ECDC surveillance report ”Antimi-
crobial resistance surveillance in Europe 2014” (26). The analyses were performed
in R version 3.5.0 (21).

2. Description of the data

The dataset analysed includes for LTCF in each country the median consump-
tion of alcohol-based hand rub in litres per 1000 resident days, the percentage of
residents that were being treated with antibiotics at the time point when the study
was performed, the percentage of treated residents receiving penicillins, the percent-
age receiving other β-lactams, the proportion of Enterobacteriaceae isolates from
the facilities that were resistant to third generation cephalosporins, and the number
of Enterobacteriaceae isolates that were tested for resistance. It also includes for
each country the proportion of E. coli isolates that were resistant to third genera-
tion cephalosporins in nation-wide surveillance (not only LTCF) in the same year.
The hand rub data (”Handrub”) were extracted from the map in Figure 17 in the
LTCF report, and were coded as the centre of the given interval. Data given as ≥ 8
were coded as 10. The percentage of residents on antibiotic treatment was taken
as the medians from Table 17 in the LTCF report, and the percentages of treated
residents on different antibiotics (penicillins and other β-lactams, respectively) were
taken from Table 19 in the LTCF report. The data on Enterobacteriaceae resis-
tant to third generation cephalosporins were extracted by measurement in Figure 36
in the LTCF report, using Adobe Photoshop, and proportions were calculated for
the isolates for which the resistance status was known. These proportions were then
multiplied with the number of isolates tested to yield the counts of resistant and sen-
sitive isolates. The proportion of E. coli resistant to third generation cephalosporins
in nation-wide surveillance pertain to 2013, and were taken from Table 3.4 in the
ECDC report ”Antimicrobial resistance surveillance in Europe 2014”. Only countries
that provided data for all variables were included in the analysis.

3. Statistical analyses

The log-odds of resistance to third generation cephalosporins in Enterobacteriaceae
was modelled using logistic regression on the counts of resistant and sensitive isolates
for each country. Two models were evaluated.
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24 HYGIENE AND THE COMPETITIVE RELEASE OF RESISTANT BACTERIA

Model 1. The first model is that this (log-odds) of resistance, let us call it L, is

(40) L = β0 + β1 × “Baseline” + β2 × “Handrub”

+ β3 × “Beta-lactam treatment”

+ β4 × “Handrub” × “Beta-lactam treatment”,

where “Baseline” is the proportion of E. coli resistant to third generation cephalo-
sporins in each respective country as a whole, as described above, and “Beta-lactam
treatment” is the prevalence of β-lactam (penicillins + other β-lactams) treatment
in the LTCF in each country. The inclusion of the baseline means that the model
estimates the effect of the use of hand rub and β-lactams in LCTFs as being pro-
portional to the resistance in the corresponding country. Were we to estimate the
difference in log-odds, we would need to put the β1 exactly equal to 1 in front of the
resistance in each country as this would yield a difference between LTCFs and the
country as a whole. This model posits that

Odds(LTCF ) = Odds(Country)·
exp(β2 · handrub+ β3 · β lactams+ β4(handrub · β lactams))

This is entirely feasible using an offset in the statistical software R. However, there
is no strong prior reason to restrain β1 to be exactly equal to 1. Thus, we use the
following model:

Odds(LTCF ) = Odds(Country)β1 ·
exp(β2 · handrub+ β3 · β lactams+ β4(handrub · β lactams))

and retain this model if it gives reasonable output. The deviance table for this model
is:

Df Deviance Resid-Df Resid-Dev Pr(> X )
NULL 11 35.930
Country 1 15.9072 10 20.023 6.652 · 10−5 ∗∗∗

Handrub 1 4.0251 9 15.997 0.044827 ∗

Beta-lactam-treatment 1 3.1580 8 12.839 0.07557
Handrub ×
Beta-lactam-treatment 1 7.8964 7 4.943 0.004953 ∗∗

And the table of estimates is:

Estimate Lower CI95 Upper CI95
(Intercept) -0.649 -1.900 0.5830
Baseline 0.932 0.273 1.6600
Handrub 0.220 -0.089 0.5330
Beta-lactam-treatment 0.971 0.386 1.5900
Handrub ×
Beta-lactam-treatment -0.157 -0.273 -0.0466

There is thus a significant negative interaction between “Handrub” and “Beta-
lactam treatment”. The p-value for the interaction term is well below 0.05, and
its CI95 does not include 0. This model has 5 degrees of freedom and an AIC of
43.15532.
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Model 2. Since it is biologically unclear whether all β-lactams or only non-penicillin
β-lactams should be included, we also use a model with only non-penicillin β-lactams.
This model is (with L as above):

(41) L = β0 + β1 × “Baseline” + β2 × “Handrub”

+ β3 × “Other Beta-lactam treatment”

+ β4 × “Handrub” × “Other beta-lactam treatment”,

where “Other beta-lactam treatment” includes only non-penicillin β-lactams, and
the other variables are defined as above. This model has 5 degrees of freedom and
an AIC of 49.56753.

Model choice. We retain model 1, as it has the lower AIC.

Comments. The dataset has few observations, so if we were to consider confounding
factors, a non-significant effect would not be evidence of lack of influence. Since
the data are from an observational study, it is impossible to state that the model
is correct. However, we believe that it contains the minimal set of explanatory
variables.
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