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29 Abstract

30 In this paper we have reconstructed electroencephalography (EEG) sources using weighted 

31 Minimum Norm Estimator (wMNE) for visual oddball experiment to estimate brain functional 

32 networks. Secondly we have evaluated the impact of time-frequency decomposition algorithms 

33 and scout functions on brain functional networks estimation using phase-locked value (PLV).  

34 Lastly, we compared the difference between target stimuli with response (TR) and non-target 

35 with no response (NTNR) cases in terms of brain functional connectivity (FC). We acquired 

36 the EEG data from 20 healthy participants using 129 channels EEG sensor array for visual 

37 oddball experiment. Three scout functions: i) MEAN, ii) MAX and iii) PCA were used to 

38 extract the regional time series signals. We transformed the regional time series signals into 

39 complex form using two methods: i) Wavelet Transform (WT) and ii) Hilbert Transform (HT). 

40 The instantaneous phases were extracted from the complex form of the regional time series 

41 signals. The FC was estimated using PLV. The joint capacity of the time-frequency 

42 decomposition algorithms/scout functions applied to reconstructed EEG sources was evaluated 

43 using two criteria: i) localization index (LI) and ii) R. The difference in FC between TR and 

44 NTNR cases was evaluated using these two criteria. Our results show that the WT has higher 

45 impact on LI values and it is better than HT in terms of consistency of the results as the standard 

46 deviation (SD) of WT is lower. In addition, WT/PCA pair is better than other pairs in terms of 

47 consistency as the SD of the pair is lower. This pair is able to estimate the connectivity within 

48 parietal region which corresponds to P300 response; although WT/MEAN is also able to do 

49 that, However, WT/PCA has lower SD than WT/MEAN. Lastly, the differences in connectivity 

50 between TR and NTNR cases over parietal, central, right temporal and limbic regions which 

51 correspond to target detection, P300 response and motor response were observed. Therefore, 

52 we conclude that the output of the connectivity estimation might be affected by time-frequency 

53 decomposition algorithms/scout functions pairs. Among the pairs, WT/PCA yields best results 
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54 for the visual oddball task. Moreover, TR and NTNR cases are different in terms of estimated 

55 functional networks.

56

57 Introduction

58 Brain connectivity may be defined as the links between different units of the brain. These links 

59 can be anatomical or structural referred to as structural connectivity (SC), statistical 

60 dependencies known as functional connectivity (FC) and due to causal interaction known as 

61 effective connectivity (EC). 

62 Neuroimaging techniques are widely used to estimate the brain cortical networks 

63 involved in the normal brain cognitive functions as well as in neurological diseases [1-6]. 

64 Diffusion Tensor Imaging (DTI) can be adapted to estimate SC with higher capability [7-9]. 

65 However, this technique is unable to estimate the dynamic connectivity among the cortical 

66 regions. The functional Magnetic Resonance Imaging (fMRI) technique is widely utilized to 

67 characterize the cortical FC [10-12] as it provides excellent spatial resolution. However fMRI 

68 has relatively lower temporal resolution [13,14] (slow sampling rate; ~1s). Hence it cannot 

69 capture the dynamic activity of the cognitive processes that have extremely short duration.  

70 These processes require excellent temporal resolution to capture the dynamic changes. Thus, 

71 Electroencephalography (EEG) can solve this problem. EEG is used to measure the scalp 

72 electrical potentials using sensor-array. EEG provides excellent temporal resolution. Hence, 

73 EEG data with suitable signal processing techniques can provide relative information regarding 

74 brain FC elicited during cognitive activities [15-18]. However, EEG suffers from low spatial 

75 resolution issue due to volume conduction [19,20]. Same underlying source may influence the 

76 EEG signals acquired from two neighbourhood sensors [21]. Thus, estimation of connectivity 

77 on EEG signals measured from scalp does not exactly convey the true neural linkages among 
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78 two brain areas [22]. Some approaches have been proposed to solve this issue. For example, 

79 non-linear methods like phase-locked value (PLV) [23] and imaginary coherence (IC) [24] 

80 have been proposed for FC estimation as these approaches are insensitive to volume conduction. 

81 The application of these methods on reconstructed EEG source signals provides superior spatial 

82 and temporal resolution [25-27]. 

83 Many algorithms have been proposed for EEG source reconstruction [28-31]. For FC 

84 estimation, several linear and non-linear methods have been developed [27,32,33]. In [34-37], 

85 some studies have discussed the application of the connectivity estimation methods on the 

86 dynamics source signals reconstructed from scalp EEG. These methods provide high efficiency 

87 for the FC estimation as the FC is directly estimated from the source space (cortex level). In 

88 this context firstly the algorithms used to perform EEG source localization by solving the ill-

89 posed EEG inverse problem for source localization have to be implemented, followed by the 

90 FC estimation in the source space. 

91 Several approaches have been proposed in the past decades in order to solve the ill-

92 posed EEG inverse problem. For example, Minimum Norm Estimator (MNE) [38], Depth-

93 weighted Minimum L2 Norm Estimator (wMNE) [39], Low Resolution Brain Electromagnetic 

94 Tomography (LORETA) [40], standardized Low Resolution Brain Electromagnetic 

95 Tomography (sLORETA) [41] and others. These methods are widely used to solve the ill-posed 

96 inverse problem for EEG source localization in recent researches [42-45]. As an outcome, the 

97 spatial resolution of the EEG has been improved using EEG source localization.    

98 Secondly the brain FC estimation methods are categorized into linear and non-linear 

99 methods. The linear approaches include cross-correlation [46] and coherence [47], whereas  

100 non-linear methods include mutual information [48], phase synchronization [49] etc. Linear 
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101 and non-linear methods are widely used for FC estimations in the sensor space [50-52] as well 

102 as source space [53-56].  

103 Based on the literature review it is observed that the estimated FC depends on the 

104 algorithms to solve the EEG ill-posed inverse problem and the methods for connectivity 

105 estimation. Hassan et al. reported that the use of wMNE in conjunction with the phase-locking 

106 value (PLV) provides better results as compared to the other combinations in the sensor space 

107 [26,57]. This combination has been adapted for FC analysis in the source space [25,58-60]. 

108 In this research, we planned to utilized wMNE to reconstruct the dipolar sources from 

109 EEG by solving the ill-posed inverse problem. Then, we applied PLV to estimate the pairwise 

110 connections between the regions-of-interest (ROIs). Time-frequency decomposition 

111 algorithms like complex Morlet Wavelet Transform (WT) and Hilbert Transform (HT) [33,61] 

112 can be adapted to transform the signals in time domain into complex time-frequency domain 

113 for instantaneous phase extraction. These two different time-frequency decomposition 

114 algorithms may have an effect on the extraction of instantaneous phases that may affect the FC 

115 estimation using PLV. In our study, we applied PLV on 148 regional time series signals to 

116 estimate the FC. 

117 The estimated dipolar sources on the cortex were downsampled into 148 regions based 

118 on Destriuex atlas [62] to form regional time series. The dipolar sources within a region were 

119 grouped together into one unique source. This unique source is then used to express the cortical 

120 activity of that particular region from Destriuex atlas. Brainstorm toolbox [63] provides few 

121 options (scout functions) to perform the grouping. The scount functions are MEAN, PCA, 

122 MAX and others. MEAN averages all dipolar sources within a cortical region to produce one 

123 unique source for that particular cortical region. Using MAX, the unique source selected from 

124 the maximum sources across all the dipolar sources within that particular cortical region. And, 
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125 PCA takes the first mode of the PCA decomposition of all the sources within a cortical region 

126 to form a unique source of that particular region. Different regional time series can be generated 

127 using different scout functions. Thus, the scout functions can affect the extraction of 

128 instantaneous phases from regional time series signals which may affect the FC estimation 

129 using PLV. 

130 Hence we believe that the network differences between two oddball cases are 

131 significant. In addition we also assume that different time-frequency decomposition algorithms 

132 and scout functions may have slightly different impact on FC estimation. 

133 Based on our hypotheses, we have two main objectives. 1) To evaluate the differences 

134 in terms of functional connectivity among oddball cases in the source space. Previously the 

135 evaluation was done in the sensor space [50,51,64], 2) To assess the joint capacity of the time-

136 frequency decomposition algorithms / scout functions applied to reconstructed EEG sources to 

137 evaluate brain FC elicited by our oddball task; as the joint capacity has not been evaluated by 

138 other studies. In this study, we also assess the impact of the scout functions and time-frequency 

139 decomposition algorithms on FC estimation. 

140

141 Methodology

142 The flow chart of the research is depicted in Fig 1. Dense EEG electrode arrays was used to 

143 acquire the EEG data for visual oddball experiment. Secondly the dipolar sources were 

144 reconstructed from clean scalp EEG data using wMNE. Regional time series was computed 

145 based on Destrieux atlas using different down-sampling scout functions (PCA, MAX and 

146 MEAN). In the third step, time-frequency decomposition was carried out using Morlet WT and 

147 HT. After decomposition, regional time series in complex form in gamma band was used to 
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148 extract the instantaneous phases. The extracted instantaneous phases were used to estimate the 

149 FC using PLV. Proportional thresholding was applied to retain only 10% of strongest 

150 connectivity. Lastly, performance of each combination of the time-frequency decomposition 

151 algorithms with scout functions was evaluated based on the Localization index (LI) and R 

152 criterions. Statistical tests were performed to evaluate the level of significance.

153

154 Experiment setup and data acquisition

155 In an oddball paradigm, the researchers asked the participants to distinguish the novel stimuli 

156 (target) within a series of randomly displayed frequent stimuli (non-target). 

157 We randomly presented the target stimuli (circle) and non-target (square) stimuli on the 

158 computer monitor for 500ms during our visual oddball paradigm [64]. The fixation time was 

159 set as 1000ms. During the fixation, an empty dark screen was presented. We requested the 

160 subjects to pay attention towards the monitor. They have to make motor response by pressing 

161 the keyboard button when the target stimuli appears on the computer monitor. When the the 

162 non-target stimuli appears; the motor response is not required. Total 135 visual stimuli were 

163 presented on the monitor. 40 out of 135 stimuli were the target stimuli, whereas 95 stimuli were 

164 the non-target stimuli. The stimuli were projected on the monitor randomly. 

165 Our oddball paradigm is categorized into 4 different oddball cases. The ‘correct’ cases 

166 are target stimuli with response (TR) and non-target stimuli with no response (NTNR). While, 

167 the ‘incorrect’ cases are target stimuli with no response (TNR) and non-target stimuli with 

168 response (NTR). In TR case, the participants correctly respond to the target stimuli, whereas in 

169 TNR case the subjects fail to respond to the target stimuli. In NTR case, the subjects respond 

170 incorrectly to the non-target stimuli. In NTNR case, the participants did not provide the motor 

171 response when non-target stimuli appeared. In this study, we used TR case for the evaluation 
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172 of the scout functions and time-frequency decomposition algorithms. Moreover, we used TR 

173 and NTNR to compare the differences between the two cases in term of connectivity as these 

174 two cases are opposite to each other. 

175 The 128-channel sensor array (HydroCel Geodesic Sensor Net) from EGI company 

176 with a sampling frequency of 250 Hz was used to acquire EEG data. The EEG data was 

177 acquired from 20 right-handed healthy participants with an age of around 19–23 years with 

178 normal or corrected-to-normal vision.  None of them had a history of substance abuse and a 

179 personal or family history of psychiatric or neurological diseases. 

180 The sampling frequency of the EEG acquisition system is 250 Hz. The maximum time 

181 period of the epoch is about 500ms.  The data acquisition for TR case will be stopped once the 

182 subjects provided the motor response, hence the period of the epoch for this case could be less 

183 than 500 ms. The raw data was converted into Matlab format by netstation. The high frequency 

184 artifacts and DC components were removed using a finite impulse response (FIR) digital filter 

185 with a band-pass frequency range from 0.5 Hz to 70 Hz. The EEGLAB function called eegplot() 

186 was used to plot the filtered EEG data. The EEG samples that consist of artefacts induced by 

187 muscles contraction and eye blinking were manually rejected.  For TR case, the clean EEG 

188 data were shifted to the right to align with the event when the button is pressed by the 

189 participants. For NTNR case, shifting is not required. The data of 2 participants was rejected. 

190 For TR and NTNR cases, three trials have been randomly selected from each subject (3 × 18 = 

191 54 trials) to perform the analysis. We performed the analysis 3 times by selecting different 

192 trials from each subject for both cases.

193
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194 EEG source reconstruction

195 The generative model of EEG data, E(t) can be expressed as linear consolidation of time-

196 varying current dipole sources S(t) with 3-dimensional (3D) orientation: 

𝐸(𝑡) = 𝐿.𝑆(𝑡) + 𝑛(𝑡) (1)

197 where n(t) denotes the additive noise  and L denotes the lead fields matrix of the dipolar sources 

198 [26]. This process is essentially known as forward modelling. On the other hand, inverse 

199 modelling is known as the process of solving the inverse problem by reversing the step of 

200 estimating S(t) given E(t) and L. 

201 Forward modelling

202 The physical process of the neuronal current propagation from brain cortical surfaces to the 

203 EEG electrodes on the scalp is described by the lead field L. The electrical conductivities and 

204 geometry of the tissues in the head are required to compute L. 

205 Ideally, the geometrical model of an individual’s head should be obtained from various 

206 structural MRI and digitized sensor positions. Unfortunately, taking individual MRI is costly. 

207 Thus, anatomical templates are commonly used in EEG source analysis. We utilized ICBM152 

208 template (a non-linear average of the MRI images of 152 individual’s heads) for our study 

209 [65,66]. To obtain the electrical properties of the tissues in the head, we utilized boundary 

210 element method (BEM) [67]. The realistically-shaped shells that represent the brain, scalp and 

211 skull are included in BEM. 

212 Based on Destriuex atlas, the cortical surface was partitioned into 148 ROIs. EEG 

213 forward modelling was done using Brainstorm toolbox. The surface meshes of the scalp, skull 

214 and brain which are realistically-shaped were extracted from the ICBM152 template. BEM was 

215 used to calculate the forward head model (lead field) from these 148 ROIs to the 129 EEG 
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216 channels as implemented in Open MEEG software package [68] included in Brainstorm 

217 toolbox. In this case, we set the number of vertices per layer as 1922 (default). The electrical 

218 conductivity for brain, skull and skin were set to 1 S/m, 0.0125 S/m and 1 S/m respectively.  

219 Inverse modelling

220 In inverse modelling, dipolar sources are estimated over the cortical regions given the EEG 

221 signals and lead field matrices. MNE [38] imposes L2-norm constraints on the source 

222 distribution are efficient as the method is linear in the sensor data. L2-norm is introduced to 

223 regularize the problem. A weighted matrix is introduced to MNE algorithm to improve the 

224 source estimation in terms of surface sources. This method is known as wMNE [39]. The 

225 weighting matrix adjusts the properties of the solution by reducing the bias inherent to MNE 

226 algorithm. The source estimated by wMNE is expressed as

𝑆𝑤𝑀𝑁𝐸 = (𝐿𝑇𝑊𝐸𝐿 + 𝜌𝐼) ‒ 1𝐿𝑇𝑊𝐸𝐸 (2)

227 where WE is the diagonal weighting matrix which consists of weighted factor for depth 

228 normalization,  denotes the regularization parameter and I is the identity matrix. The inverse 𝜌

229 estimation of sources was performed by Brainstorm toolbox. The value of  was set between 𝜌

230 0.1 and 0.3 [60]. After that, the dipolar sources were projected on the 3D cortical surface. The 

231 regional time series was computed based on three different scout functions offered by the 

232 Brainstorm toolbox. 

233

234 Time-frequency decomposition

235 We used HT and WT to decompose the regional time series into time-frequency representation. 
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236 Hilbert Transform

237 The regional time series signals were decomposed into gamma band (30 – 60 Hz) using FIR 

238 band pass filter. After filtering, HT was applied. HT of a function f(t) can be defined as 

239 convolution of f(t) with . HT of a regional time series signal x(t) can be mathematically 1
𝜋𝑡

240 represented as: 

𝑦(𝑡) =
1
𝜋(𝑃𝑉)

∞

∫
‒ ∞

𝑥(𝑡)
𝑡 ‒ 𝜏𝑑𝜏

(3)

241 where PV denotes the Cauchy principle value [69]. 

242 Wavelet Transform

243 WT outputs a time-frequency plane for regional time series signal x(t). During spectral analysis, 

244 complex Morlet Wavelet function provides magnitude and phase information of the time series 

245 signals [70]. Mathematically, the Wavelet function is defined as follow:

𝑦(𝑡) = 𝜋 ‒ 0.25 × 𝑒𝑗𝜔𝑡 × 𝑒
‒ 𝑡2

2 (4)

246 where  is a sinusoid in complex form of  multiplied by a normalization factor ( ) 𝑦(𝑡) 𝑒𝑗𝜔𝑡 𝜋 ‒ 0.25

247 and Gaussian envelope ( ). This process is to ensure the Morlet Wavelet has unit energy. 𝑒
‒ 𝑡2

2

248

249 Functional connectivity estimation

250 HT and WT convert the time series signal x(t) into complex function of time  defined as:𝛿(𝑡)

𝛿(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) = 𝐵(𝑡)𝑒 ‒ 𝑗∅(𝑡) (5)
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251 where  denotes the instantaneous phase with respect to time and B(t) denotes the ∅(𝑡)

252 instantaneous amplitude with respect to time [69]. A MATLAB function angle() is used to 

253 extract the instantaneous phases of the regional time series signals in radian form. 

254 The phase differences  between two regional time series signals a and b at time 𝜃𝑎𝑏(𝑡,𝑛)

255 bins t and trial n were computed as follows: 

𝜃𝑎𝑏(𝑡,𝑛) = ∅𝑎(𝑡,𝑛) ‒ ∅𝑏(𝑡,𝑛) (6)

256 where  and  are the instantaneous phase of regional time series signals a and b ∅𝑎(𝑡,𝑛) ∅𝑏(𝑡,𝑛)

257 [71].

258 An index known as PLV was used to define the degree of synchronization between the 

259 two estimated instantaneous phases [23]. Mathematically, PLV is expressed as: 

𝑃𝐿𝑉 𝑆
𝑎𝑏(𝑡) =  

1
𝑁|

𝑁

∑
𝑛 = 1

𝑒𝑗𝜃𝑎𝑏(𝑡,𝑛)|

(7)

260 where S denotes the subjects and N denotes the total number of trials. The grand average of 

261 PLV over 18 subjects  is defined as 𝑃𝐿𝑉𝐺𝐴
𝑎𝑏(𝑡)

𝑃𝐿𝑉𝐺𝐴
𝑎𝑏(𝑡) =

1
𝑀|

𝑀

∑
𝑆 = 1

𝑃𝐿𝑉 𝑆
𝑎𝑏(𝑡)|

(8)

262 where M denotes the total number of subjects. Adjacency matrix was formed to represent the 

263 connectivity graph. The connectivity graph was normalized with the 200 ms pre-stimulus 

264 baseline using Z-score normalization procedure. The normalized graph is then defined as 
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𝑛𝑜𝑟𝑚𝑃𝐿𝑉𝐺𝐴
𝑎𝑏(𝑡) = (𝑃𝐿𝑉𝐺𝐴

𝑎𝑏(𝑡) ‒ 𝜇𝐺𝐴
𝑎𝑏)/𝜎𝐺𝐴

𝑎𝑏 (9)

265 where  and  are the grand-averaged mean and standard deviation calculated from the 𝜇𝐺𝐴
𝑎𝑏 𝜎𝐺𝐴

𝑎𝑏

266 200 ms pre-stimulus baseline. 

267 Next, the connectivity graph was thresholded using proportional thresholding approach 

268 [6,72]. A small percentage (10%) of strongest estimated connections were retained. 

269

270 Performance analysis

271 In Destriuex atlas [62], 148 cortical regions were group into 14 macro ROIs. We predefined 

272 the 11 distinct ROIs reported to be implicated in the visual oddball paradigm based on the 

273 previously published functional imaging studies of visual oddball task [3,73-89]. The 11 

274 predefined ROIs are listed in bottom of Fig 1. 

275 We performed the performance analysis using two criterions. These criterions quantify 

276 the identified networks distributed within the predefined ROIs as ‘correct’ networks whereas 

277 the identified networks distributed outside the predefined ROIs are identified as ‘incorrect’ 

278 networks. 

279 The first criteria is Localization Index (LI) [26]. LI is a ‘global’ indicator to quantify 

280 the performance of the scout functions/time-frequency decomposition algorithms pair. It was 

281 computed over the 11 predefined ROIs. LI is defined as the ratio between the number of 

282 identified edges within all predefined ROIs and the total number of estimated edges. 

283 Mathematically, LI is defined as 

𝐿𝐼 =
𝑁𝐸𝑇𝜀

𝑁𝐸𝑇𝜀 + 𝑁𝐸𝑇 '
𝜀 (10)
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284 where  denotes the number of estimated connections within the 11 predefined ROIs and 𝑁𝐸𝑇𝜀

285  denotes the quantity of estimated edges outside the predefined ROIs. The LI ranges 𝑁𝐸𝑇 '
𝜀

286 between 0 (no connections are identified with the predefined ROIs) and 1 (all connections are 

287 identified within the predefined ROIs).  

288 Another criteria used for performance analysis is R [26], known as the ‘local’ indicator 

289 to quantify the local distribution of identified networks within each ROI. Ratio between 

290 quantity of estimated connections within each predefined ROI and total identified connections 

291 within all predefined ROIs. Mathematically, the R can be expressed as: 

𝑅𝑖 =
𝑁𝐸𝑇 𝑖

𝑅𝑂𝐼

𝑁𝐸𝑇𝜀 (11)

292 where i denotes the 11 predefined ROIs (see Fig 1) and  denotes the number of 𝑁𝐸𝑇 𝑖
𝑅𝑂𝐼

293 estimated connections within the ROI i. The Ri criteria ranges from 0 (no estimated edges are 

294 found inside ROI i) to 1 (all estimated edges are found inside ROI i).  

295

296 Results and discussion

297 In this study, we have performed source localization of EEG data acquired during visual 

298 oddball task .We used wMNE algorithm to solve the EEG inverse problem. Fig 2A depicts the 

299 estimated current density sources on 3-dimensional (3D) cortex between 240 – 500 ms of the 

300 epoch. From the top view of the cortex, it is observed that the majority of current sources are 

301 intensively distributed on the parietal and central regions. These activations are generally 

302 elicited by P300 and motor response. The bottom, left and right views show stronger current 

303 sources over the left temporal region. On the front view, peak current sources are mainly 
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304 distributed on the frontal region. On the back view, lower intensity of current sources are 

305 observed over occipital region. 

306 We partitioned the cortical surface of the brain into 148 regions based on Destrieux 

307 cortical atlas. These regions are equally parcelled over right and left hemispheres of the brain 

308 surface. These regions are also known as scouts in Brainstorm jargon. We applied several scout 

309 functions, i.e. MEAN, MAX and PCA, as source down-sampling algorithm to create the scout 

310 (regional) time series (148 regions from Destrieux atlas). Fig 2B - 2D depicts the regional time 

311 series projected on 3D cortex between 240 – 500 ms. As we can see on the figure, the regional 

312 times series generated by different scout functions are different in terms of current density 

313 distribution and intensity. Therefore, scout functions could be a factor that affecting the 

314 performance of FC estimation. 

315 We applied WT and HT to decompose the regional time series signals into time-

316 frequency domain. Fig 3 depicts the time-frequency representations of a regional time series 

317 (right central region). The peak magnitude in gamma band (30 – 60 Hz) was observed over 

318 both spectrograms which is elicited by motor planning and integration. However, both 

319 algorithms show different intensity in gamma band as well as in other bands. Therefore, time-

320 frequency decomposition algorithms could be another factor that affects the performance of 

321 FC estimation. 

322 We extracted the instantaneous phase of the regional time series in gamma band using 

323 PLV to estimate the FC. The connectivity graphs obtained for the 6 different combinations of 

324 the time-frequency decomposition algorithms and scout functions are presented in Fig 4. The 

325 colour-coded circles are the nodes of the network while the lines linking the two nodes are 

326 denoted as an edge. The colours of the nodes show the intensity level of the node degree. The 

327 main purpose of the node degree here is to use as a comparative parameter to distinguish the 
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328 identified networks estimated by different combinations of methodologies. Indeed, the 

329 differences can be observed based on the edges. For qualitative visual inspection of the 

330 estimated networks, the node degree is compulsory for the comparisons between the estimated 

331 networks. The qualitative visual inspection of the estimated edges indicate that the results are 

332 highly dependent on the two factors, i.e. time-frequency decomposition algorithms and scout 

333 functions. 

334 The performance analysis was carried out on TR case using criterion LI to quantify 

335 the results shown in Fig 4. In this performance analysis, mean values of LI and their 

336 corresponding standard deviations were used to quantify the efficiency (depends on LI values) 

337 and consistency (depends on standard deviation values), respectively, of the scout functions 

338 and time-frequency decomposition algorithms. We conducted three analyses in TR case using 

339 different trial selections to evaluate the consistency of the methods based on the obtained 

340 results. Fig 5 depicts the mean values of the criterion LI on TR case for different scout functions 

341 (MEAN, MAX and PCA) and time-frequency decomposition algorithms (WT and HT). We 

342 performed the Pearson’s correlation analysis to describe the interplays between the variability 

343 of each factor and the different factors/combinations. We noted that the combinations with 

344 same scout function have lower correlation values (0.194 for Wavelet/PCA vs. Hilbert/PCA 

345 and Wavelet/MAX vs. Hilbert/MAX) than the combinations with same time-frequency 

346 decomposition algorithms (0.979 for Hilbert/PCA vs. Hilbert/MAX and 0.986 for 

347 Wavelet/PCA vs. Wavelet/MAX). The correlation values show that time-frequency 

348 decomposition algorithms have higher variability and therefore, the time-frequency 

349 decomposition algorithms strongly impact the LI values as compared to the scout functions.

350 As observed, regardless of scout functions, HT yields slightly higher mean LI values 

351 than WT. Theoretically, HT yields slightly higher efficiency than WT based on the connectivity 

352 estimation over expected ROIs (based on literatures) using PLV. However, as we can observe, 
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353 the difference between these two time-frequency decomposition algorithms in term of LI are 

354 minor (0.01 in PCA; 0.007 in MAX; 0.003 in MEAN). We performed Student’s t-test. The 

355 results show no significant difference between WT and HT in scout functions of PCA, MAX 

356 and MEAN. Application of both algorithms produces similar results with minor difference 

357 [69,90,91]. Therefore, we can conclude that application of both algorithms on connectivity 

358 estimation using PLV is efficient as the result shows that PLV is able to localize more than 

359 80% of significant connections using both algorithms to extract the instantaneous phases of the 

360 regional time series. However, in terms of consistency, WT is better. Based on the results, we 

361 observe that WT is more consistent in extracting instantaneous phases for connectivity 

362 estimation as the standard deviation values are lower. As mentioned earlier, we conducted the 

363 analysis three times on same methodology by different trial selections in TR case. The standard 

364 deviation represents the fluctuations or more precisely, variability of the factors across different 

365 selected trials on the same case. In this situation, WT is more consistent than HT across the 

366 different trials. Therefore, we conclude that WT performed better in instantaneous phase 

367 extractions for connectivity estimation for visual oddball paradigm.  

368 Hence time-frequency decomposition algorithms have stronger effect on mean LI 

369 values, whereas scout functions have minor impact on the mean LI values. Combinations of 

370 scout functions (PCA, MAX, and MEAN) with same time-frequency decomposition algorithm 

371 (HT) provide the higher mean LI value. The result indicates that these combinations have 

372 higher efficiency in connectivity estimation over expected ROIs using PLV. Among these 

373 combinations, MAX with HT provides highest averaged LI value (LI=0.843). However, some 

374 minor differences are observed among these combinations. According to the results of the 

375 Student’s t-test, these minor differences are insignificant. Hence, in term of efficiency, PCA, 

376 MAX and MEAN with HT provides similar results with minor differences. Nevertheless, in 

377 term of consistency, MAX/HT is better as the standard deviation is smaller among these three 
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378 combinations. Therefore, the application of HT in conjunction with scout function MAX yields 

379 better outcome than the other two combinations. 

380 On the other hand, combinations of WT with three scout functions produce lower mean 

381 LI values than combinations of HT with the three scout functions. In these three combinations, 

382 WT/MEAN gives higher mean LI value than others. However, the differences are still minor. 

383 Thus, we performed Student’s t-test. The results demonstrate that WT/PCA and WT/MEAN 

384 pairs are significantly different (p<0.05). WT/MEAN pair provides higher efficiency in 

385 connectivity estimation. However, in terms of consistency, WT/PCA pair is better. 

386 Hence we can conclude that WT is better than HT in terms of consistency of the results 

387 [92]. WT with MEAN scout function gives higher efficiency in connectivity estimation. 

388 However, WT with PCA pair has better consistency than other combinations. 

389 Now we discuss the outcomes obtained from the quantitative comparison of the 

390 performance of the time-frequency decomposition algorithms and scout functions on FC 

391 estimation, based on the R criterion. The R criterion is known as a ‘local’ indicator. The R 

392 values reflect the distribution of estimated links in each predefined ROI obtained from literature. 

393 R is known to be important as the brain regions activated during the visual oddball paradigm 

394 (consists of P300 and motor response) are supposed to be distinct. Moreover, the estimated 

395 network is known to be dependent on the time-frequency decomposition algorithms and scout 

396 functions. 

397 In Fig 6, the straight line curves of the R values obtained for the two time-frequency 

398 decomposition algorithms are superimposed and plotted for each scout function. Results 

399 indicate that all signal processing algorithms identified a comparable percentage of significant 

400 connections for all scout functions. As shown in Fig 6 the SD values of WT/Scout functions is 

401 mostly lower than the HT/Scout functions. Only few SD values in WT/MAX and WT/MEAN 
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402 pairs are slightly higher. (For examples: LF, LT and RT in WT/MAX pair; LF, LC, LT, RT 

403 and LP in WT/MEAN pair). However, the WT is still considered as a consistent algorithm to 

404 extract instantaneous phases for. This result is correlated with the result in the preceding part 

405 for LI calculation. 

406 Student’s t test was carried out to statistically compare the differences between different 

407 factors (WT/PCA vs. HT/PCA; WT/MAX vs. HT/MAX; WT/MEAN vs. HT/MEAN) in 4 

408 different ROIs (LC; RC; LP; RP) to identify the significant pairs of factors with higher 

409 efficiency. These 4 ROIs are significant in oddball tasks [93-96]. Neural activity in LP and RP 

410 corresponds to P300 (decision making) while neural activity in LC and RC corresponds to 

411 motor planning and integration. 

412 As shown in Fig 6, combinations of WT with 3 scout functions yield higher averaged 

413 R values as compared to combinations of HT with 3 scout functions. WT/PCA pair yields 

414 higher average R values on the 4 ROIs than HT/PCA pair. Results indicate no significant 

415 differences between the combinations in LC, RC and LP. However, a significant difference is 

416 observed in RP (p=0.023). On the other hand, as depicted in Fig 6, Wavelet/MAX gives higher 

417 average R values than Hilbert/MAX as well over the ROIs of LC, RC, LP and RP. The 

418 differences are still minor between these two combinations. Statistical outcomes demonstrate 

419 that no significant differences are observed on these two pairs of factors. Lastly, we applied 

420 Student’s t test on the combinations of WT/ MEAN and HT/MEAN. Results reveal that the 

421 differences are not between the combinations in LC, RC and RP. However, a significant 

422 difference is observed in LP (p=0.021). 

423 Based on the statistical results, we note that WT/PCA pair yields greater R value than 

424 Hilbert/PCA over parietal region (RP) and the difference is significant. Moreover, WT/MEAN 

425 pair yields greater R value than Hilbert/MEAN over parietal region (LP) as well and the 
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426 difference is significant. According to other researches, activity over parietal region is 

427 essentially elicited by P300 response which is a significant oddball event [97,98]. Thus, we 

428 believe that WT/PCA and WT/MEAN pairs provide good performance for PLV to localize the 

429 connectivity triggered by P300 response. 

430 By combining the analysis from LI and R, we can say that WT is more consistent than 

431 HT. Moreover, we also realized that WT/PCA and WT/MEAN pairs have high performance. 

432 Hence the results of Wavelet/PCA pair is more consistent. Besides that, PLV also was able to 

433 localize more than 80% of networks (LI=0.831) using WT/PCA pair. The efficiency of this 

434 pair is acceptable and the consistency of this pair is better. Therefore, we conclude that 

435 WT/PCA is adequate and a good choice for visual Oddball task. 

436 We performed the comparisons between TR and NTNR cases in order to validate the 

437 performance of the WT/PCA pair based on LI and R criterions. Moreover, we would like to 

438 analyse the differences of TR versus NTNR in terms of FC using R criterion. 

439 Fig 7 shows the distribution of the estimated brain functional networks on cortical 

440 surface for TR and NTNR cases. As illustrated, the difference in terms of estimated 

441 connectivity among both cases is obvious. Consequently, target and non-target stimuli elicited 

442 different brain networks during oddball task. As depicted in Fig 7, the difference in the 

443 estimated networks is illustrated on the cortical surface.  Furthermore, the quantitative analysis 

444 is required to evaluate the difference is done using LI and R parameters. 

445 Fig 8 shows the mean LI value of WT/PCA for TR and NTNR cases. It is observed that 

446 the PLV is able to localize denser networks over the predefined ROIs in TR case which are 

447 significant for visual oddball event including P300, motor response and others elicited by target 

448 stimuli. In our case, we observe that TR case has greater LI than NTNR case. In other words, 

449 target stimuli triggered higher brain connectivity. We performed statistical test (ANOVA) to 
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450 evaluate the difference between these two cases. The TR case is significantly different (p=0.002) 

451 from NTNR case in terms of average LI values. Thus, we conclude that TR case triggered 

452 denser networks as compared to NTNR case [50,99]. Moreover, WT/PCA is sufficient for PLV 

453 to use as a connectivity estimation modality for visual oddball paradigm. 

454 So far, we compared the difference between TR and NTNR case using ‘global’ 

455 indicator. Now, we will analyse the differences between TR and NTNR cases within ROIs 

456 using ‘local’ indicator, criterion R. The comparisons of R values between two cases were 

457 plotted on a line graph shown in Fig 9. As seen the major differences between TR and NTNR 

458 cases are observed within majority of ROIs especially LL, RL, LC, RC, LP, RP and LT. TR 

459 case has denser cortical connectivity within these ROIs than NTNR case. ANOVA tests were 

460 carried out for each ROI to statistically compare the difference between both cases within each 

461 ROI.

462 For ROIs in limbic (LL & RL) regions, target stimuli elicited greater cortical activity. 

463 Based on ANOVA the TR case is significantly different than NTNR case for R values within 

464 LL and RL (p=0.028 & p=0.002 respectively). According to Destrieux atlas, Cingulate cortices 

465 (Cingulate gyrus and sulcus) are included in the limbic regions. Our result show that target 

466 stimuli elicited denser networks over bilateral limbic regions than non-target stimuli which is 

467 in line with other researches [86,100,101]. These cortical activities are mostly related to P300 

468 response (decision making for the response to target stimuli) [102-105] as well as target stimuli 

469 detection [106]. Therefore, TR case is different with NTNR case in terms of the estimated 

470 network over limbic regions as the target detection process and P300 response are present in 

471 TR case, but absent in  NTNR and  the difference is significant. 

472 For ROIs in central (LC & RC) regions, the difference between TR and NTNR cases in 

473 terms of R is obvious. Greater central cortical activity is observed in TR case than in NTNR. 
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474 Results of the statistical test shows that TR case is different from NTNR case in terms of the 

475 corresponding R values within these two ROIs and the differences are significant (LC: p=0.05; 

476 RC: p=0.03). According to our oddball paradigm, instead of non-target stimuli, the subjects 

477 provided motor response to the target stimuli. Thus, higher cortical activity is found over 

478 central regions in TR case than NTNR case. Our result is correlated with other studies 

479 [76,100,105,107-110]. Therefore, TR case is significantly different from NTNR in terms of 

480 cortical network over central regions. 

481 For ROI in right temporal (RT) lobe, superior temporal activity is observed in TR case. 

482 ANOVA test indicates that the difference between TR and NTNR cases in terms of R values 

483 are significant (p=0.036) within this ROI. Some studies reported that cortical connectivity 

484 distributed over temporal regions corresponds to visual target detection [111] and P300 

485 response [102,112,113]. Moreover, in [103,114], the authors reported that right temporal region 

486 is more dominant than left temporal during P300 response. Hence, TR case is different from 

487 NTNR case in terms of the connectivity over right temporal region for P300 response. 

488 Lastly, in parietal (LP & RP) regions, higher parietal activity is noticed in TR case. The 

489 results of statistical tests denote that both cases are significantly distinct with each other in LP 

490 (p=0.049) and RP (p=0.007) in terms of their designated R values. Denser bilateral cortical 

491 activity is observed over parietal regions in TR case that corresponds to P300 response 

492 [105,115-118] and motor coordination for button pressing [76,119,120]. Thus, NTNR case has 

493 lower bilateral parietal activity as no P300 and motor responses are required for non-target 

494 stimuli. 

495
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496 Conclusion

497 In this study our aim is to observe the FC for visual oddball task using the source space. We 

498 used wMNE method to reconstruct the sources for data acquired by EEG for visual oddball 

499 task. We applied three different scout functions (MEAN, MAX and PCA) to generate the 

500 regional time series signals. We applied two time-frequency decomposition algorithms (HT 

501 and WT) to represent the regional time series signals into complex functions. We extracted 

502 instantaneous phases from the complex form of regional time series signals and estimated the 

503 FC using PLV. The connectivity graphs were proportionally thresholded to retain 10% of 

504 strongest networks. We evaluated the performance of the scout functions/time-frequency 

505 decomposition algorithms pairs based on LI and R. Lastly, we compared the differences 

506 between TR and NTNR cases based on the LI and R.

507 Our results demonstrate that time-frequency decomposition algorithms have higher 

508 impact on the LI values than the scout functions. In addition, WT is better than HT in terms of 

509 the consistency of LI. All pairs show good efficiency in connectivity estimation as all pairs 

510 yield more than 80% of LI. However, WT/PCA pair is more consistent than others. Moreover, 

511 WT/PCA is capable to estimate the connectivity within parietal region which corresponds to 

512 P300 response. Lastly, we observe the differences in connectivity between TR and NTNR cases 

513 over parietal, central, right temporal and limbic regions which correspond to target detection, 

514 P300 response and motor response. 

515 In conclusion, the outcome of the connectivity estimation might be affected by scout 

516 functions/time-frequency algorithm pairs. Consequently, WT/PCA is the best choice for visual 

517 oddball task as the scout function to generate regional time series signals and time-frequency 

518 decomposition algorithms to transform the signals into gamma band for instantaneous phase 
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519 extraction. The TR and NTNR cases are different in terms of FC. Greater R values are observed 

520 over the regions which correspond to P300 and motor response. 

521 The performance of the combinations of scout functions/time-frequency decomposition 

522 algorithms have not been evaluated so far in the literature. We found that the WT/PCA is best 

523 for visual oddball task. We believe that PCA is superior for generation of regional time series 

524 signals and WT is superior for time-frequency decomposition for extraction of instantaneous 

525 phases. On the other hand, we found that higher connectivity over parietal, temporal, central 

526 region and limbic regions are significant for P300 response. Thus, we believe that this 

527 discovery of P300 response could be used as an electrophysiological marker to distinguish the 

528 healthy individuals and the subjects with mild cognitive impairment diseases as well as the 

529 marker for the diagnosis and prediction of mild cognitive impairment disorders [96,121-123]. 

530
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