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Abstract

The human brain works in a form of network architecture in which dynamic modules 

and subgraphs were considered to enable efficient information communication 

supporting diverse brain functions from fixed anatomy. Previous study demonstrated 

musical training induced flexible node assignment changes of visual and auditory 

systems. However, how the dynamic subgraphs change with musical training still 

remains largely unknown. Here, 29 novices healthy young adults who received 24-week 

piano training, and another 27 novices without any intervention were scanned at three 

time points—before and after musical training, and 12 weeks after training. We used 

nonnegative matrix factorization to identify a set of subgraphs and their corresponding 

time-dependent coefficients from a concatenated functional network of all subjects in 

sliding time windows. The energy and entropy of the time-dependent coefficients were 

computed to quantify the subgraph’s dynamic changes in expression. The musical 

training group showed significantly increased energy of time-dependent coefficients of 

3 subgraphs after training. Furthermore, one of the subgraphs, comprised of primary 

functional systems and cingulo-opercular task control and salience systems, showed 

significantly changed entropy in the training group after training. Our results suggest 

that interaction of functional systems undergoes significant changes in their fine-scale 

dynamic after a period of musical training.

Keywords: brain plasticity; dynamics; functional connectivity; musical training; 

nonnegative matrix factorization
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Author Summary

We designed a longitudinal experiment to investigate the musical training induced 

dynamic subgraph changes in 29 novice healthy young adults before and after musical 

training compared with another 27 novice participants who were evaluated longitudinal 

but without any intervention. The nonnegative matrix factorization was employed to 

decompose the constructed dynamic functional connectivity matrix to a set of 

subgraphs and their corresponding time-dependent coefficients. We found that 

functional systems interacted closely with each other during transient process, and the 

musical training group showed significantly increased energy and entropy of time-

dependent coefficients after training when compared with the control group. The 

present study suggests that musical training could induce the reconfiguration of 

functional subgraphs in young adults.
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Introduction

The human brain works in a form of network architecture in which dynamic modules 

and subgraphs were considered to enable efficient information communication 

supporting diverse brain functions from fixed anatomy [1]. Network neuroscience 

provides tools to help reveal network structure and processes that support integrated 

brain functions across multiple spatial and temporal scales [2]. In network neuroscience, 

greatly interconnected nodes known as modules can reconfigure over time when 

healthy human participants engage in motor skill learning [3], executive cognition tasks 

[4] and musical training [5]. Musical performance is one of the most complex skills, 

like instrument performance involving musical notations sight-reading, hand 

movements, auditory feedback and higher-order cognition mediation, which needs 

continuous and dynamic information integration of multiple functional systems [6-8]. 

Previous studies have reported that musical training is related with behavioral, 

structural, and functional changes on time scales ranging from days to years [9-12].In 

our previous work, we used sliding window to construct the dynamic functional brain 

network and quantitatively evaluated the dynamic statistics of the 13 well-known 

functional systems by identifying putative functional modules in the brain network [5]. 

We found more flexible node (brain region) assignment changes of visual and auditory 

systems in the musical training group after musical training. It has been proven that not 

only the nodes assignment changes during tasks or at resting state, but also the clusters, 

also known as subgraphs, whose strengths or weights vary together, were dynamic in 
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brain functional network. More importantly, the switching behaviour of the subgraph 

was considered to be associated with the transience of brain states during development 

[13] and a key substrate of cognitive control process and behaviour [14]. Di et al [15] 

demonstrated that the resting-state connectivity variations were associated with the low 

or high intrinsic activities of specific networks which may reflect the changes in mental 

state. Musical performance strongly depends on the integration of brain functional 

systems, while how the dynamic subgraphs change with the musical training still 

remains largely unknown. The answer is important to reveal the nature of training-

induced plasticity and to provide new evidence regarding the functional architecture of 

the brain network by exploring the dynamic changes of the functional subgraphs before 

and after musical training in young adults.

Nonnegative matrix factorization (NMF) is an unsupervised machine-learning method 

[16] to factorizes a matrix into two matrices: features matrix and coefficients matrix, 

with the property that all three matrices have no negative elements. NMF has been 

widely used in a variety of domains, such as image processing [17], natural language 

processing [18], facial and speech recognition [16, 19], and computational biology [20]. 

When NMF is used for spatially and temporally overlapping subgraph detection in 

neuroimage, the functional connectivity matrix, concatenated from all subjects’ 

functional networks in sliding time windows, can be decomposed into a matrix of 

subgraphs and a matrix of time-dependent coefficients that quantify the level of 

expression in each time window for each subgraph [13]. Other coactiviation pattern 
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driven approaches, such as principal component analysis (PCA) [21] or independent 

component analysis (ICA) [22], may yield positive or negative subgraph interactions 

and time-dependent expression coefficients. NMF enforces nonnegativity giving rise to 

the nonnegative combination of basis subgraphs and time-dependent expression 

coefficients, which eases the neurophysiological interpretability of the expressed 

functional subgraphs over time. Previous studies have shown changes in dynamics of 

subgraphs over development [13] and cognitive control behaviour [14] by using NMF. 

This computational tool allows us to track how set of subgraphs are dynamically 

expressed during experimentally modulated changes in musical training model.

In this study, we applied the NMF to decompose the constructed dynamic functional 

connectivity matrix to a set of subgraphs and their corresponding time-dependent 

expression coefficients as shown in Fig 1. The dynamic functional connectivity was 

constructed from the resting state fMRI of 29 novice healthy young adults in the training 

group and 27 matched young adults in the control group scanning from 3 time points. 

Participants in the training group received 24 weeks piano training while participants 

in the control group without any training. We compared the differences of the subgraph 

expression between the two groups after and before musical training. We hypothesized 

that participants in the training group would exhibit more flexible dynamic subgraph 

expression after musical training compared with the controls without any intervention.

Fig 1. Flowchart of the dynamic functional connectivity expression. (A) The resting-state 
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fMRI data were all preprocessed for each subject in each scanning session. (B) The average 

time series for each of the 264 ROIs were divided into 141 time windows Sliding time windows 

were used to divide the average time series for each of the 264 ROIs into 141 time windows. 

(C) Wavelet coherence was computed between each pair of regional time series for each time 

window to obtain multiple functional networks for each subject in each scanning session. (D) 

The upper triangle matrix of functional network in each time window for each subject in each 

scanning session were extracted and unfolded into a vector to obtain a concatenated matrix 

through time windows for one subject and then through all subjects and scanning sessions (left). 

Then, a nonnegative matrix factorization method was used to decompose the concatenated 

matrix into nonnegative matrix W of a set of subgraphs and H of time-dependent coefficients 

which quantify the level of expression in each time window for each subgraph (right). Notes: 

C1, control group at time point 1; C2, control group at time point 2; C3, control group at time 

point 3; T1, training group at time point 1; T2, training group at time point 2; T3, training group 

at time point 3.
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Results

Participants and demographics

There were no significant differences in gender, age, education, Beck Depression 

Inventory (BDI), IQ and Advanced Measures of Music Audiation (AMMA) scores (𝑝

) between the control group (age: , education: > 0.05 23.33 ± 1.39 ys

, BDI: , AMMA: ) and the training group 16.70 ± 1.26 ys 5.15 ± 3.87 51.93 ± 15.31

(age: , education: , BDI: , AMMA: 23.10 ± 1.37 ys 16.59 ± 1.09 ys 4.71 ± 3.62

) at baseline. And no significant differences were found in the 57.28 ± 11.08

behavioural tests, including digit span, digit symbol, block design, and the trail-making 

tests (parts A and B) between both groups at baseline. A mixed ANOVA was performed 

to test the interaction of the group over time, while no significant interaction effects of 

group over time were found in any of these behavioural tests.

Subgraphs and their expression coefficients

As shown in Fig 2A, the reconstruction error (residual sum of squares, RSS) is more 

dependent on the number of subgraphs  and less sensitive to changes in the parameter 𝑘

, which means robust results of sparse time-dependent coefficients. Parameter , 𝛽 𝛼

which depends on the range and level of sparsity of the expression coefficients , was 𝐻

set to be the square of the maximal element in  to regulate the magnitude of 𝑉

connection strengths in the subgraphs . We observe that the RSS decreases with 𝑊

increasing  showing in Figure 2B. Based on the firs-order difference of RSS versus 𝑘

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 15, 2019. ; https://doi.org/10.1101/639856doi: bioRxiv preprint 

https://doi.org/10.1101/639856
http://creativecommons.org/licenses/by/4.0/


9

, we selected , as steadily increasing derivative RSS when k lager than 10. 𝑘 𝑘 = 10

Then,  was selected for considering the minimum of the RSS against  𝛽 = 10 ‒ 1 𝛽

when . After selecting the two parameters, the NMF decomposition was 𝑘 = 10

performed to obtain a set of 10 subgraphs and their corresponding time-dependent 

coefficients for each individual. The obtained 10 subgraphs and the average time-

dependent coefficients for both groups at each time point were presented in Fig 3. We 

can observe that the subgraphs captured varying interactions among brain regions. 

Some subgraphs showed distributed interactions across the entire network, while other 

subgraphs showed relatively local interactions, suggesting a complex landscape of the 

brain. 

Fig 2. Optimal parameters selection. (A) The grid residual sum of squares (RSS) was 

computed in the range of  and . (B) The averaged RSS across 𝑘 = [1,⋯,30] 𝛽 = [100,⋯,10 ‒ 3]

 versus the number of subgraphs  was plotted showing an decrease RSS with increasing . 𝛽 𝑘 𝑘

(C) The first-order difference of RSS versus  was plotted and  was selected as 𝑘 𝑘 = 10

steadily increasing derivative RSS when  lager than 10. (D) The RSS was plotted against  𝑘 𝛽

for  and  was selected to be the first minimum of the steadily decreasing 𝑘 = 10 𝛽 = 10 ‒ 1

RSS.

Fig 3. Nonnegative matrix factorization of functional connectivity matrix. A set of 10 

subgraphs and their corresponding average time-dependent coefficients for both groups at each 

time point were obtained from applying nonnegative matrix factorization to the concatenated 

functional connectivity matrix. Notes: C1, control group at time point 1; C2, control group at 
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time point 2; C3, control group at time point 3; T1, training group at time point 1; T2, training 

group at time point 2; T3, training group at time point 3.

Significantly expressed functional systems

Permutation test with 95% confidence interval threshold was performed to detect 

significantly expressed functional systems for the obtained 10 subgraphs. As presented 

in Fig 4, black circles indicate significantly expressed functional systems and these 

systems were mapped into a brain surface which were differentially distributed in each 

subgraph. All subgraphs were not mapped into individual functional systems in one-to-

one manner, which suggested that functional systems do not function as distinct entities 

over short timescales. Instead, several functional systems were presented during 

transient process, which together produce a complex brain dynamics landscape that 

support cognition. We observed that almost all functional systems were expressed in 

either of the 10 subgraphs except the ventral attention and dorsal attention. The default 

mode presented a broad expression in all subgraphs, as well as the primary functional 

systems, such as the sensory-motor, auditory and visual systems. However, functional 

systems related to higher-order cognition tended to less expressed and usually co-

activated with primary functional systems.

Fig 4. Significantly expressed functional systems. Permutation tests were performed to 

determine the significantly expressed functional systems. Functional system labels were 

randomly permuted 1000 times and the mean connectivity in each system was computed to 
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contrast the null distribution. The blue lines represent the mean values (solid lines) and 95% 

confidence intervals (dash lines) of the mean connectivity for each functional system in the null 

distribution. The red lines represent the real mean connectivity of each functional system. Those 

with black circles indicate significantly expressed functional systems whose mean connectivity 

strength was above the 95% confidence interval threshold. Significantly expressed functional 

systems in each subgraph were mapped into a brain surface showing a differentially distribution 

across subgraphs.

Musical training induced subgraphs differences in expression and 

dynamics

The energy and entropy of each subgraph’s corresponding time-dependent coefficients 

were computed and the ANOVA was used to detect the interaction effect of group over 

time for both quantitative measurements. For energy analyses, significant interaction 

effects were found in time-dependent coefficients of subgraph 4 (𝐹2,102

), subgraph 6 ( ) and subgraph 10 (= 3.257, 𝑝 = 0.043 𝐹2,102 = 3.639, 𝑝 = 0.030 𝐹2,102

). Post-hoc comparisons found that participants showed increased = 3.567, 𝑝 = 0.032

energy for all the three subgraphs when comparing Tp2 with Tp1 (subgraph 4, 

; subgraph 6, ; subgraph 10, ) in the training group as 𝑝 = 0.035 𝑝 = 0.005 𝑝 = 0.006

shown in Fig 5. When comparing Tp3 with Tp2, only subgraph 4 ( ) and 𝑝 = 0.020

subgraph 10 ( ) showed significant decrease in the training group. 𝑝 = 0.003

Significantly expressed functional systems in subgraph 4 included sensory, default 

mode, visual, and fronto-parietal task control systems. Subgraph 6 included sensory, 
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default mode, visual, fronto-parietal task control, and auditory systems. And the 

subgraph 10 included sensory, default mode, visual, auditory, cingulo-opercular task 

control, and salience systems. For entropy analyses, significant interaction effects were 

only found in subgraph 10 ( ) with post hoc pairwise 𝐹2,102 = 7.943, 𝑝 = 0.001

comparisons showing increased entropy when comparing Tp2 with Tp1 ( ) 𝑝 < 0.001

and decreased entropy when comparing Tp3 with Tp2 ( ) in the training group 𝑝 = 0.001

as shown in Fig 6. All these significant changes were Bonferroni corrected for multiple 

comparison. Besides, these significant changes showed no correlation with the practice 

time in the training group.

Fig 5. Energy analyses of the time-dependent coefficients. (A) Comparison showed 

increased energy for subgraph 4, including sensory, default mode, visual, and fronto-parietal 

task control systems significantly expressed, when comparing Tp2 with Tp1 ( ), and 𝑝 = 0.035

decreased energy when comparing Tp3 with Tp2 ( ) in the training group. (B) 𝑝 = 0.020

Comparison showed increased energy for subgraph 6, including sensory, default mode, visual, 

auditory, and fronto-parietal task control systems significantly expressed, when comparing Tp2 

with Tp1 ( ) in the training group. (C) Comparison showed increased energy for 𝑝 = 0.005

subgraph 10, including sensory, default mode, visual, auditory, cingulo-opercular task control, 

and salience systems significantly expressed, when comparing Tp2 with Tp1 ( ), and 𝑝 = 0.006

decreased energy when comparing Tp3 with Tp2 ( ) in the training group. Notes: Tp1, 𝑝 = 0.003

time point 1; Tp 2, time point 2; Tp 3, time point 3.
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Fig 6. Entropy analyses of the time-dependent coefficients. Subgraph 10 with sensory, 

default mode, visual, auditory, cingulo-opercular task control, and salience system significantly 

expressed, showed increased entropy when comparing Tp2 with Tp1 ( ), and 𝑝 < 0.001

decreased entropy when comparing Tp3 with Tp2 ( ) in the training group. Notes: Tp1, 𝑝 = 0.001

time point 1; Tp 2, time point 2; Tp 3, time point 3.
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Discussion

A large and increasing number of analyses of neuroimaging data have addressed 

connectivity of functional network in musical training model [23-25]. However, these 

studies have focused on the static functional connectivity and did not specifically target 

the nonstationary nature of the functional connectivity that contains a wealth of 

information. Specifically, our results showed profound and noticeably dynamic 

interaction of brain functional systems. We also found significant alterations of musical 

training induced dynamic interaction of brain functional systems.

Nonnegative matrix factorization has been proposed to identify a set of subgraphs of a 

functional brain network that dynamically vary across subjects and across time, so that 

the connectivity for a subject in each time window is a nonnegative combination of 

basis subgraphs [13, 26]. According to its underlying assumptions, functional systems 

belonging to the same subgraph have a same coactivation pattern and allow interacting 

with each other. Indeed, multiple studies have shown high correspondence of 

coactivation pattern and dynamic integration between functional systems from overall 

functional connectivity analyses [27-29]. Applied to sliding window that offers 

detecting dynamic functional connectivity, nonnegative matrix factorization effectively 

probes dynamic interactions of functional systems. Previous analyses in musical 

training model evaluated static functional connectivity within or between functional 

systems [23-25]. The current work, on the other hand, targeted the dynamic interaction 
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of functional systems within the assembly of all subjects in a concatenated functional 

connectivity network. Notably, while our dynamic functional connectivity operated on 

an unsupervised matrix decomposition method, the obtained nonnegative combination 

of basis subgraphs and sparse time-dependent expression coefficients eases the 

neurophysiological interpretability of the relative expression of different subgraphs 

over time. Our findings, thus, likely reflect dynamic interaction of functional systems 

in musical training model.

In our study, analyses of association between functional system interaction and musical 

training induced plasticity showed increased interaction of functional systems in the 

training group after a period of musical training, particularly with regards to the primary 

functional systems. Similar results were found in our previous study of static functional 

connectivity analyses [25], as well as in cross-modal integration studies [30, 31]. 

Interaction of functional systems increases likely drive networks toward a more 

collaborative pattern in complex task. A plausible explanation for these changes may 

be enhanced functional integration after a period of training. The brain works in the 

form of brain network organization, global integration of local (functionally specialized) 

interaction, which global integration via long-range weak connections facilitate diverse 

cognitive function mediated by short-range dense connections [1, 32]. The long-range 

weak connections are relatively flexible and more likely to be modulated for various 

functional demands, especially complex tasks involving multiple functional specialized 

systems. On the other hand, high proportions of cycles and minimized wiring length in 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 15, 2019. ; https://doi.org/10.1101/639856doi: bioRxiv preprint 

https://doi.org/10.1101/639856
http://creativecommons.org/licenses/by/4.0/


16

structural connection patterns may underlie the functional integration of local 

interaction, giving rise to the spatially and temporally highly organized functional brain 

network [32]. These architectures facilitate a high level of information integration [33] 

and the formation of an integrated ‘dynamic core’ which is the potential neurological 

system associated with higher cognition and consciousness [34, 35].

As for the primary functional systems, we observed more enhanced interaction between 

them, however, less for higher-order cognitive-related systems. Considering that 

musical performance involving interaction of several modalities and higher-order 

cognitive functions, it is likely that the musical training induced plasticity in young 

adults may follow a bottom-top mechanism. A large amount of studies has consistently 

observed plastic effects of musical training on musical related regions [9, 10, 12, 36]. 

Plastic changes in multisensory integration and strengthening connections between 

brain regions may also have an effect beyond the most relevant musical related regions, 

such as the mirror neuron system [37], reward system [38], and subcortical 

hippocampus [8]. In the light of previous analyses across multiple systems, one may 

postulate that primary systems are more associated with musical training induced 

plasticity.

Results from entropy analyses of time-dependent coefficients suggest that interaction 

between functional systems undergoes significant changes in their fine-scale dynamic 

after a period of musical training. We observed differences in the time-dependent 
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variability of the subgraph 10, consisting of sensory, visual, auditory, default mode, 

cingulo-opercular task control and salience systems, after training in the training group 

when compared with the control group (Fig 6). The changed entropy of time-dependent 

coefficients in the training group after musical training parallels our previous findings 

in the dynamic modularity analyses [5], yet with markedly higher effects. Greater 

switching behaviour of the subgraph illustrates increasing flexibility of the interaction 

between functional systems after musical training. Noteworthy, the flexible interaction 

has been shown between functional systems during executive cognition [4], 

reinforcement learning [39], and musical training [25]. In the current study, flexible 

interaction was found between the primary functional systems, as well as the higher-

order cognitive related systems—cingulo-opercular task control and salience systems. 

Piano playing involves sight-read notations and simultaneously producing the 

appropriate motor action, and then auditory feedback to be checked to identify whether 

the played notes are well tuned. During the procedure, the primary functional systems, 

including visual, sensory and auditory are the most relevant and important aspects of 

music perception [40-42]. Besides, higher-order cognitive related systems for control, 

adjustment and reward are also critical during this procedure [43, 44]. Findings in the 

current study suggest the cingulo-opercular task control system and salience system 

may also play a vital role in piano playing. The cingulo-opercular task control system, 

a positive-task network, was considered to maintain task goals, sustain adjustments for 

feedback control, and monitor errors [45, 46]. The salience system is implicated in the 
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detection and integration of emotional and sensory stimuli, as well as in modulating the 

switch between the internally directed cognition of the default mode regions and 

externally directed cognition of the central executive network [47]. We can speculate 

that the cingulo-opercular task control system may work as a monitor and mediator to 

modulate the information from primary systems and other functional systems during 

piano performance. Moreover, information of emotional and sensory stimuli was 

detected and integrated by the salience system, then may transform to default mode 

regions or higher-order cognitive related systems, so that an accurate and expressed 

performance could be presented.

It can be seen that the differences between the training group and the control group 

essentially concern the Tp2 of the measurements, and that at Tp3 the modifications 

decrease for the training group and become again close to the control group. Alterations 

were not sustained, which suggested that once the training process was over, the 

functional networks reversed to their original states. On one hand, unlike the learning 

induced morphological changes, which may involve slow-evolving mechanisms such 

as neuronal or glial cell genesis [48], we suggest that the dynamic functional changes 

resemble fast-adjusting manner. On the other hand, the overall decrease in the changed 

time-dependent coefficients at the 12 weeks follow-up assessment showed no 

significant correlation with the practice time. This could be due to the decrease of piano 

performance at the 12 weeks follow-up. We may speculate the relationship between the 

decrease of the qualified time-dependent coefficients and the piano performance if it 
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scored.

There are still some limitations in the current study. First, control group in experimental 

design was only one passive control group without any intervention compared with the 

training group. It could be better to add an active control group for explanation of 

observed results [49]. Second, plastic changes of dynamic interaction between 

functional systems were found by using nonnegative matrix factorization, obtaining a 

set of subgraphs and their corresponding time-dependent coefficients. The dynamic 

behaviour was quantized by overall energy and entropy, while we cannot convey how 

these dynamic interacted functional systems switch their behaviour, and how the switch 

behaviour further changed by the musical training. Other methods [50] could be used 

for detecting different aspects of the dynamic switch pattern. Third, each subgraph 

obtained from nonnegative matrix factorization included more than one functional 

system, and the corresponding coefficients indicated overall co-expression pattern of 

functional systems. How these functional systems dynamically changed in the musical 

training model could be investigated by using sliding window combined with 

independent component analysis [51]. Future studies could shed more light on these 

issues.
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Methods

Longitudinal experiment design

Sixty young adults, all native Chinese speakers, were recruited from local university. 

All participants meet the criteria: (1) no history of neurologic or psychiatric diseases or 

health problems affecting dexterity; (2) without any experience of musical training; (3) 

no depression based on the Beck Depression Inventory (BDI) [52]; (4) right-handers 

defined by a handedness questionnaire (a modified version of the Edinburgh 

Handedness Inventory) [53]; (5) the Advanced Measures of Music Audiation (AMMA) 

[54] score between 20 and 80; (6) IQ score no higher than 140 obtained by the Wechsler 

Adult Intelligence Scale-Revised Chinese revised version (WAIS-RC) [55].

Participants were randomly enrolled in the training group and control group. Four 

participants dropped out due to personal reasons during the program, which caused 29 

participants (13 males) in the training group and 27 participants in the control group 

(13 males). Participants in the training group received 24 weeks piano training while 

the control group without any intervention. The piano training program included 

professional instructions, practice with the instructions and a final piano performance. 

Professional musicians provided instructions about music theory, progressive difficulty 

in piano performance and technical finger motor exercise once a week in the form of 

one-hour one-to-two teaching sessions. Instructions of music theory and progressive 

difficulty in piano performance referred to the Bastien Piano for Adults-Book 1 [56] 
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and technical finger motor exercises referred to the Hanon Piano Fingering Practice. 

A minimum five 30-minute practice sessions (i.e. five days, each day at least 30-minute 

practice) and maximum seven 60-minute practice sessions (i.e. seven days, each day at 

most one-hour practice) per week in the assigned room were required after the weekly 

piano course, and the practice time for each participant was logged. At the end of the 

training program, participants performed selected pieces from Bastien Piano for Adults-

Book 1 assessed by professional musicians, and those who were able to individually 

and skilfully complete the selected pieces achieved the equivalent of the Central 

Conservatory of Music piano level 4. 

All participants both in the training group and the control group received behavioural 

tests and scanning sessions at three time points: at the beginning (Tp1) and the end (Tp2) 

of 24 weeks training and at 12 weeks after training (Tp3). The repeated behavioural 

tests at all three time points included three subtests (block design, digit symbol, and 

digit span) of the Wechsler Adult Intelligence Scale-Revised Chinese revised version 

[55] and trail making tests (parts A and B). Two sample t-test implemented in SPSS 

(SPSS version 22) was used to test the demographic data except for the gender (Chi-

squared test), musical aptitude test and behavioural tests at baseline. A mixed ANOVA 

with between-subject factor group (training group and control group) and within-

subject factor time (Tp1, Tp2 and Tp3) including age, gender, and education as 

covariates of no interest was employed to test the interaction effects of group and time 

on the assessments of the repeated behavioural tests, following a post hoc pairwise t-
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test between the factor of time. 

Image acquisition

All of the MRI data were obtained using a SIEMENS Trio Tim 3.0T scanner with a 12-

channel phased array head coil in the Imaging Centre for Brain Research, Beijing 

Normal University. The 3D high-resolution brain structural images were acquired using 

T1-weighted, sagittal 3D magnetization prepared rapid gradient echo (MPRAGE) 

sequences. The sequence parameters had a repetition time (TR)=2530 ms, echo time 

(TE)=3.39 ms, inversion time (TI)=1100 ms, flip angle=7°, FOV=256 mm×256 mm, 

in-plane resolution=256×256, slice thickness=1.33 mm, and 144 sagittal slices covering 

the whole brain. During the resting state session, the participants were instructed to hold 

still, stay relaxed and keep their eyes closed but not fall asleep. The functional MRI 

data were obtained using an echo-planar imaging (EPI) sequence with the following 

parameters: 33 axial slices, thickness/gap=3.5/0.7 mm, in-plane resolution=64×64, 

repeat time (TR)=2000 ms, echo time (TE)=30 ms, flip angle =90°, and a field of view 

(FOV)=200 mm×200 mm. None of the participants fell asleep according to a simple 

questionnaire after the scan.

Data preprocessing

Data preprocessing was conducted using the Data Processing Assistant for the Resting-

State Toolbox (DPARSF, http://rfmri.org/DPARSF; [57]. The first 10 volumes were 

discarded allowing for signal equilibrium and adaption for the participants to the 
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circumstances. The remaining data were slice-timing corrected for interleaved and 

realigned to the first image in the series for head motion correction. Notably, no data 

were excluded when the head motion excluding criteria were displacement >  2.5mm

and rotation > . Then, the resulting data were normalized to the Montreal 2.5°

Neurological Institute (MNI) space and spatial smoothed with an 8-mm Gaussian 

Kernel. Spurious variances were removed through linear regression, including 24 

parameters from head motion correction, the global mean signal, the white matter signal, 

the cerebrospinal fluid signal, and head motion scrubbing (each “bad” volumes with 

frame-wise displacement > 0.2 mm and their 1 forward and 2 back neighbours as a 

regressor) [58]. Finally, the preprocessed data were performed band-pass temporal 

filtering (0.01-0.1 Hz) to reduce the effect of low frequency drift and high frequency 

noise [59, 60].

Dynamic functional network construction

The brain was functionally partitioned into  regions, and for each region, the 𝑁 = 264

time series was obtained by averaging the time series of all voxels extracted from 

denoting 5-mm radius spheres centered on previously reported coordinates [61]. By 

using sliding time windows, each time series was divided into  time windows 𝑇 = 141

with window length  and step of one TR [51, 62], as shown in Fig 1. In 𝐿 = 50 TRs

each time window, time series was transformed into time-frequency space by using 

Morlet wavelet transform [63]. The wavelet coherence was used to calculate the 

functional connectivity between any pair of regions. As shown in Fig 1C, for each 
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subject at each time point (i.e. Tp1, Tp2 and Tp3), we obtained 141  264 × 264

symmetric functional connectivity network in which each element  represents the 𝐴𝑖𝑗𝑙

wavelet coherence between regions  and  in time window . We extracted the 𝑖 𝑗 𝑙

upper triangle of each  for all subjects at three time points and unfolded each upper 𝐴𝑖𝑗𝑙

triangle matrix in to a vector. Then, all these vectors were concatenated into a matrix 

 with size , where  is the number of sessions of all 𝑉 𝑁(𝑁 ‒ 1)/2 × 𝑇𝑆 𝑆 = 168

subjects at three time points.

Nonnegative matrix factorization

The sparse nonnegative matrix factorization (NMF) algorithm was employed to 

decompose the concatenated dynamic functional connectivity matrix to a set of 

subgraphs and their corresponding time-dependent expression coefficients:

min𝑊,𝐻{1
2

‖𝑉 ‒ 𝑊𝐻‖2
𝐹 + 𝛼‖𝑊‖2

𝐹 + 𝛽
𝑇

∑
𝑡 = 1

‖𝐻(:,𝑡)‖2
1}

Such that 𝑊,𝐻 ≥ 0

where  is the concatenated matrix across time windows, subjects and time points,  𝑉 𝑊

is a matrix of subgraph connectivity with size , and  is a matrix of 𝑁(𝑁 ‒ 1)/2 × 𝑘 𝐻

time-dependent expression coefficients for each subgraph and subject with size , 𝑘 × 𝑇𝑆

as shown in Fig 1D. The parameter  is the number of subgraph,  is the penalty 𝑘 𝛽

parameter which enforces the sparsity on the expression coefficients matrix and  is a 𝛼

parameter which gives an upper on the connection strengths within the functional 

subgraphs. By performing a grid-search procedure over a range of parameters  and 𝑘

, the residual sum of squares, defined as , was computed to 𝛽 𝑅𝑆𝑆 = ‖𝑉 ‒ 𝑊𝐻‖𝐹
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optimize the values for hyperparameters  and .𝑘 𝛽

The 264 nodes were mapped to 13 well-known functional systems, including sensory, 

cingulo-opercular task control, auditory, default mode, memory retrieval, visual, 

fronto-parietal task control, salience, subcortical, ventral attention, dorsal attention, 

cerebellar and uncertain systems [61]. For each obtained subgraph, 1000 permutation 

tests were performed to determine the most highly expressed functional systems. 

Functional system labels were randomly permuted 1000 times and the mean 

connections in each system was computed to construct the null distribution. 

Significantly expressed functional system was defined if its connection strength was 

above the 95% confidence interval threshold.

To quantify the subgraph’s dynamic changes in expression, the signal energy of the 

time-dependent coefficients for each subgraph and subject was computed, which was 

defined as , where  is time-dependent coefficients for each subgraph and ∑𝐿
𝑛 = 1𝐸2

𝑛 𝐸𝑛

subject in each time window and  is the length of the signal for a subject. To quantify 𝐿

the dynamic switching behaviour of subgraph expression, the signal entropy was 

computed using a histogram-based entropy estimator method that computed the entropy 

as , where  is a probability mass function of the time-∑𝑛
𝑖 = 1 ‒ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖) 𝑃(𝑥)

dependent coefficients computed using the histogram [64]. 
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Statistical analysis

A two-sample t test for demographic data and a Chi-squared test for gender were 

performed to test whether there were any significant differences between the two groups 

at baseline. A mixed ANOVA with a between-subject factor group (training group and 

control group) and within-subject factor time (Tp1, Tp2 and Tp3) was used to test the 

interaction effect of the group and time on the repeated measured behavioural tests with 

age, gender and education as covariates of no interest. Significant interactions were 

followed by a Bonferroni post hoc pairwise t-test between the factor of time to 

determine which of the time points differ from each other.

For each subgraph, the mixed ANOVA with a between-subject factor group (training 

group and control group) and within-subject factor time (Tp1, Tp2, and Tp3) was 

employed to test the interaction effect of the group and time on the dynamic signal 

energy and entropy with age, gender and education as covariates of no interest. 

Significant interactions were followed by a Bonferroni post hoc pairwise t-test between 

the factor of time. In addition, correlation analysis was performed between the 

subgraph’s dynamic changes (only those for which the post hoc pairwise t test was 

significant) and practice time in the training group.

Ethics Statement
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the study.
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Figure Legends

Fig 1. Flowchart of the dynamic functional connectivity expression. (A) The 

resting-state fMRI data were all preprocessed for each subject in each scanning session. 

(B) The average time series for each of the 264 ROIs were divided into 141 time 

windows Sliding time windows were used to divide the average time series for each of 

the 264 ROIs into 141 time windows. (C) Wavelet coherence was computed between 

each pair of regional time series for each time window to obtain multiple functional 

networks for each subject in each scanning session. (D) The upper triangle matrix of 

functional network in each time window for each subject in each scanning session were 

extracted and unfolded into a vector to obtain a concatenated matrix through time 

windows for one subject and then through all subjects and scanning sessions (left). Then, 

a nonnegative matrix factorization method was used to decompose the concatenated 

matrix into nonnegative matrix W of a set of subgraphs and H of time-dependent 

coefficients which quantify the level of expression in each time window for each 

subgraph (right). Notes: C1, control group at time point 1; C2, control group at time 

point 2; C3, control group at time point 3; T1, training group at time point 1; T2, training 

group at time point 2; T3, training group at time point 3.
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Fig 2. Optimal parameters selection. (A) The grid residual sum of squares (RSS) was 

computed in the range of  and . (B) The averaged 𝑘 = [1,⋯,30] 𝛽 = [100,⋯,10 ‒ 3]

RSS across  versus the number of subgraphs  was plotted showing an decrease 𝛽 𝑘

RSS with increasing . (C) The first-order difference of RSS versus  was plotted 𝑘 𝑘

and  was selected as steadily increasing derivative RSS when  lager than 10. 𝑘 = 10 𝑘

(D) The RSS was plotted against  for  and  was selected to be the 𝛽 𝑘 = 10 𝛽 = 10 ‒ 1

first minimum of the steadily decreasing RSS.
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Fig 3. Nonnegative matrix factorization of functional connectivity matrix. A set of 

10 subgraphs and their corresponding average time-dependent coefficients for both 

groups at each time point were obtained from applying nonnegative matrix factorization 

to the concatenated functional connectivity matrix. Notes: C1, control group at time 

point 1; C2, control group at time point 2; C3, control group at time point 3; T1, training 

group at time point 1; T2, training group at time point 2; T3, training group at time point 

3.
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Fig 4. Significantly expressed functional systems. Permutation tests were performed 

to determine the significantly expressed functional systems. Functional system labels 

were randomly permuted 1000 times and the mean connectivity in each system was 

computed to contrast the null distribution. The blue lines represent the mean values 

(solid lines) and 95% confidence intervals (dash lines) of the mean connectivity for 

each functional system in the null distribution. The red lines represent the real mean 

connectivity of each functional system. Those with black circles indicate significantly 

expressed functional systems whose mean connectivity strength was above the 95% 

confidence interval threshold. Significantly expressed functional systems in each 

subgraph were mapped into a brain surface showing a differentially distribution across 

subgraphs.
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Fig 5. Energy analyses of the time-dependent coefficients. (A) Comparison showed 

increased energy for subgraph 4, including sensory, default mode, visual, and fronto-

parietal task control systems significantly expressed, when comparing Tp2 with Tp1 (

), and decreased energy when comparing Tp3 with Tp2 ( ) in the 𝑝 = 0.035 𝑝 = 0.020

training group. (B) Comparison showed increased energy for subgraph 6, including 

sensory, default mode, visual, auditory, and fronto-parietal task control systems 

significantly expressed, when comparing Tp2 with Tp1 ( ) in the training 𝑝 = 0.005

group. (C) Comparison showed increased energy for subgraph 10, including sensory, 

default mode, visual, auditory, cingulo-opercular task control, and salience systems 

significantly expressed, when comparing Tp2 with Tp1 ( ), and decreased 𝑝 = 0.006

energy when comparing Tp3 with Tp2 ( ) in the training group. Notes: Tp1, 𝑝 = 0.003

time point 1; Tp 2, time point 2; Tp 3, time point 3.
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Fig 6. Entropy analyses of the time-dependent coefficients. Subgraph 10 with 

sensory, default mode, visual, auditory, cingulo-opercular task control, and salience 

system significantly expressed, showed increased entropy when comparing Tp2 with 

Tp1 ( ), and decreased entropy when comparing Tp3 with Tp2 ( ) in 𝑝 < 0.001 𝑝 = 0.001

the training group. Notes: Tp1, time point 1; Tp 2, time point 2; Tp 3, time point 3.
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