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Abstract

Mendelian randomization (MR) is an increasingly popular causal inference tool used
in genetic epidemiology. But it can have limitations for evaluating simultaneous causal
relationships in complex data sets that include, for example, multiple genetic
predictors and multiple potential risk factors associated with the same genetic variant.
Here we use real and simulated data to investigate Bayesian network analysis (BN) as
an alternative approach. A Bayesian network describes the conditional dependencies/
independencies of variables using a graphical model (a directed acyclic graph) and its
accompanying joint probability. In real data, we found BN inferred simultaneous
causal relationships that confirmed the individual causal relationships suggested by
bi-directional MR, while allowing for potential horizontal pleiotropy (that violates MR
assumptions). In simulated data, BN with two directional anchors (mimicking genetic
instruments) had greater power for a fixed type 1 error than bi-directional MR, while
BN with a single directional anchor performed better than or as well as bi-directional
MR. Both BN and MR could be adversely affected by violations of their underlying
assumptions (such as genetic confounding due to unmeasured horizontal pleiotropy).
BN with no directional anchor generated inference that was no better than by chance,
emphasizing the importance of directional anchors in BN (as in MR). Under highly
pleiotropic simulated scenarios, BN outperformed both MR (and its recent extensions)
and two recently-proposed alternative approaches: a multi-SNP mediation
intersection-union test (SMUT) and a latent causal variable (LCV) test. We conclude
that BN is a useful complementary method to MR for performing causal inference in
complex data sets such as those generated from modern “omics” technologies

Author summary

Mendelian randomization (MR) is a popular method for inferring causal relationships
between variables (such as between an intermediate biological factor and a disease
outcome). However, MR relies on a number of assumptions that may be hard to verify,
and it is not ideally suited to comparing different underlying causal scenarios. Here we
propose the use of an alternative method, Bayesian network analysis (BN), as a
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complementary tool to MR. We use real and simulated data to investigate the
performance of MR, BN and several other recently-proposed methods, and find that
BN performs as well as, or better than, the other methods, particularly under complex
scenarios. We conclude that BN is a useful complementary method to MR for
performing causal inference in complex data sets.

Introduction 1

Causal inference methods offer an attractive avenue for understanding complex 2

mechanisms in disease development and identifying ways to intervene upon them. An 3

observed association between a risk factor and disease outcome does not necessarily 4

imply causation, as it may arise via an alternative mechanism such as reverse 5

causation or confounding [1]. A gold standard experimental approach for causal 6

inference is to carry out a randomized controlled trial (RCT). By randomly allocating 7

participants to intervention and control groups, an RCT can eliminate selection bias 8

or confounding. However, it is an expensive and time-consuming process, and its 9

result may imply a relatively short-term effect unless the trial is of long duration. 10

Furthermore, intervention via an RCT is not always ethical, or (due to technical 11

limitations) not feasible, for example when the potential risk factor involves DNA 12

methylation or small metabolite variation. 13

Traditional non-experimental approaches for causal inference include discordant 14

identical twin studies and longitudinal studies, which can be used to infer causal 15

relationships under certain assumptions. Studies of identical twins are not subject to 16

genetic confounding, and confounding by shared environmental factors is expected to 17

be low (but reverse causation – which is unshared, and a major distorter of 18

observational estimates — may bias the findings). In longitudinal studies with many 19

repeated measures, methods such as g-computation can be applied [2, 3], but most 20

longitudinal studies do not have the data measurements that allow the use of this 21

approach. 22

Mendelian Randomization 23

Mendelian randomization (MR) [4, 5] is an alternative non-experimental approach for 24

causal inference applicable to a general population. In its simplest form it utilizes a 25

genetic variant whose robust association with a risk factor provides a directional 26

causal anchor. The approach is based on the fact that there is only one fixed direction 27

of causation between the genetic variant and the outcome. Use of the genetic variant 28

(which is allocated at gamete formation during conception) has some analogies to the 29

randomization procedure in an RCT. Hence, causal inference is made from the 30

difference in the outcome seen between people with different genetic variants. These 31

genetic variants, usually single nucleotide polymorphisms (SNPs), can be considered to 32

operate as instrumental variables (IVs) provided certain conditions are met. 33

MR has been widely applied to evaluate the causal role of traditional risk factors in 34

disease, such as HDL and LDL cholesterol in cardiovascular disease [6, 7]. It has also 35

been applied to identify innovative drug targets in early stage drug development or to 36

discover novel risk factors at the molecular level by scanning “omics” data 37

systemically [8–10]. An advantage of MR is that individual-level data are not 38

necessarily required; inference can be performed on the basis of summary statistics 39

measuring the relationship between the genetic instrument(s) and the risk factor, and 40

the relationship between the genetic instrument(s) and the outcome [11]. This means 41

that the summary statistics required to perform MR analysis can be derived from 42

different studies, in an approach termed two-sample MR [12–14]. 43
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Nevertheless, MR has limitations. MR works only if there is a genetic variant 44

robustly associated with the risk factor. It has relatively low statistical power and 45

thus requires a large sample size. MR also has drawbacks in analysis of large-scale 46

“omics” data. Such data often include a number of measured traits that are highly 47

correlated with each other, and some of these may be associated with the same genetic 48

variant(s) and the same outcome. If MR were naively applied for each of these 49

correlated traits, this could violate the MR assumption that the genetic variant used 50

as an instrument influences the outcome only via the risk factor tested. 51

To address this issue, several approaches that attempt to either detect or allow for 52

pleiotropy in the context of MR, or to investigate more complex networks of 53

relationships between variables, have been proposed [15–22]. MR can also be used in a 54

“bi-directional”’ or “reciprocal” fashion to determine the direction of causation 55

between two variables, say X and Y [12,23]. In most of these approaches, an 56

underlying hypothesised graphical structure representing the relationships between 57

variables must be assumed (rather than being learned from the data). However a 58

recently-proposed addition to bi-directional MR, known as MR Steiger [24], moves a 59

step further by first carrying out an initial determination of whether a genetic variable 60

G is most suitable as an IV for variable X or Y, prior to conducting standard a MR 61

analysis between them based on the determined relationship. This use of Steiger 62

filtering in the context of bi-directional or reciprocal MR is an important component 63

that improves correct directional identification. Another recent method [25] achieves a 64

similar goal through use of a latent causal variable (LCV) model to infer, for all pairs 65

of traits of interest, the extent to which part or all of the genetic component of one 66

trait is causal for another, suggesting (although not formally demonstrating) that one 67

trait may itself be causal on the other. 68

Bayesian Network Analysis 69

Bayesian network analysis (BN) is another non-experimental, statistical technique for 70

causal inference. It was first formalized and developed by Pearl [26] and has now 71

become widely applied in the social and natural sciences. Briefly, a Bayesian network 72

describes the conditional dependencies of variables using a graphical model known as a 73

directed acyclic graph (DAG) and an accompanying joint probability [27]. In a DAG, 74

the variables and their conditional relationships are represented as nodes and 75

directional edges (arrows), respectively. The joint probability is decomposed as a 76

product of local probabilities where the local probability of each variable is explained 77

by its conditional dependencies on its immediate neighbours [28]. The local 78

probability distribution can take any form, but usually a multinomial distribution is 79

used for discrete variables and a multivariate normal distribution is used for 80

continuous variables. 81

Valid estimation of the underlying conditional dependencies (and thus causal 82

inference) in BN can be made under three assumptions: 1) the causal Markov 83

assumption, 2) the causal faithfulness assumption, and 3) the causal sufficiency 84

assumption. The causal Markov assumption states that a variable is independent of all 85

other variables, except for its effect or descendent (“child”/“grandchild” etc.) 86

variables, conditional on its direct causal (or “parent”) variables [28, 29]. The causal 87

faithfulness assumption states that the network structure and the causal Markov 88

relations assumed represents all (and the only existing) conditional independence 89

relationships among variables [27, 30]. The causal sufficiency assumption corresponds 90

to asserting that there are no external variables which are causes of two or more 91

variables within the model, implying that all causes of the variables are included in the 92

data and there are no unobserved confounding variables [27, 30,31]. A further 93

(sometimes unappreciated) assumption is that of no measurement error i.e. the 94
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variables are measured without any errors [30]. These assumptions are essential for 95

causal inference, and are quite commonly assumed in other causal inference methods, 96

but they are generally impossible to validate (and, indeed, may be considered unlikely 97

to hold completely, raising the question of sensitivity to their violation). In the MR 98

literature a large (and growing) set of sensitivity analyses allow relaxation of some of 99

the assumptions required for identification [32]. 100

In most analyses using BN, the true causal relationships (and the corresponding 101

network structure) are unknown. Hence, the network is estimated from the most likely 102

DAG (i.e. the DAG that has the best score (highest or lowest, depending on how the 103

score function is defined), or the highest posterior joint probability, out of all possible 104

DAGs. As the number of variables in the data set increases, the number of all possible 105

DAGs increases and the enumeration of all possible DAGs becomes infeasible [33]. 106

Thus, in many cases, the most likely DAG is estimated using a model search algorithm 107

or a model averaging algorithm. As the DAG structure is learned/estimated, the 108

parameters of the probability distributions are also learned/estimated from the data 109

using a parameter search algorithm such as maximum likelihood estimation or 110

Bayesian estimation. 111

Intuitively, one would expect BN to perform better when directional anchors are 112

available. Directional anchors prevent edges from coming towards certain nodes, which 113

reduces the number of all possible DAGs dramatically and improves the model search 114

process by distinguishing one possible DAG out of a statistically equivalent class of 115

DAGs [30]. In analysis of “omics” data, genetic variants are natural instruments that 116

can be used to define directional anchors. 117

BN has some advantages over other causal inference methods with regards to the 118

ability to accommodate large complex data relatively flexibly. This feature is 119

particularly useful when the study aims to address simultaneous causal relationships 120

in “omics ”-scale data sets, for example in studies of gene expression [34] or 121

metabolites [35]. Recent methods have been developed that allow the analysis of 122

hundreds of variables, including both discrete and continuous data types, taking 123

advantage of the ability of genetic variables to operate as causal anchors to help orient 124

the direction of relationships between non-genetic variables [36–39]. (Note that 125

MR-based approaches [24] also exist for constructing such networks). Nevertheless, 126

BN has known limitations. The model search process, particularly when there are 127

large numbers of variables, requires massive computational power and often 128

elimination or pre-filtering of variables is required. The conditional relationships 129

implied by each tested model are only strictly valid in the (somewhat implausible) “no 130

measurement error, no unmeasured confounding” situation (though this assumption 131

may sometimes be defended by appealing to “prior background knowledge”); any 132

violation of the assumed relationships will lead to violation of the posterior 133

probabilities used as the basis of the network scores. In particular, in common with 134

other causal inference methods, BN results will be biased in the presence of hidden 135

confounding factors. This is due to violation of the causal sufficiency assumption 136

required for valid causal inference. 137

Results 138

We applied MR and BN approaches to both real and simulated (see Figs 1 and 2) 139

data, in order to investigate the properties and performance of the different 140

approaches. We also applied two recently proposed methods, LCV [25] and 141

SMUT [40], along with BN, MR and a recent MR extension [22], to data generated 142

under a more complex simulation scenario involving extreme pleiotropy. 143
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Motivating Example: TwinsUK Data 144

As an initial motivating example, we investigated possible causal relationships between 145

metabolites and body mass index (BMI) using the TwinsUK study data [41]. We 146

applied both MR and BN to these data, and compared the causal inferences obtained. 147

We note that this example is intended as a (relatively straightforward) illustration of 148

analysing data using both MR and BN approaches, rather than making any strong 149

claims for the validity of the instruments (and thus for the robustness of the inferences 150

obtained) in this particular case. 151

The metabolites considered were the omega-3 fatty acids eicosapentaenoate (EPA) 152

and dihomo-linolenate (DGLA). For testing whether a causal relationship existed 153

between these metabolites and BMI, genetic IVs for EPA and DGLA were chosen 154

based on knowledge gained from prior investigation of this data set (along with an 155

additional German cohort) [42]; we note that re-use of (some of) the same data used 156

to identify the instruments can, in theory, run the risk of over-fitting. Based on these 157

previous results, the SNP rs174556 in FADS1-2-3 was used as an IV for EPA, while 158

the SNPs rs968567 in FADS1-2-3 and rs6498540 in PDXDC1 were used as IVs for 159

DGLA. 160

rs174556 and rs968567 are correlated with an r2 value of ≈ 0.52. It is conceivable 161

that rs174556 is actually a causal variant for DGLA, and so could have an effect on 162

BMI operating in parallel through both EPA and DGLA. This would violate one of 163

the three assumptions required for the genetic variant to be used as an instrumental 164

variable (IV) for EPA, namely the no- horizontal pleiotropy assumption that the IV 165

has no effect on the outcome besides the effect mediated through the risk factor (EPA). 166

MR, based on the individual level data (rather than based on summary statistics 167

via two-sample MR), was used to test for a causal relationship between each 168

metabolite and BMI. The rationale for using individual level data (rather than 169

performing the asymptotically equivalent two-sample MR analysis) was to allow 170

comparison with BN which (at least in its current implementations) requires access to 171

individual level data. A causal relationship from BMI to each metabolite was also 172

tested using MR with an instrumental variable for BMI given by a BMI allele score 173

formed (on the basis of prior knowledge [43,44]) from 39 BMI-associated SNPs. Again, 174

individual level data (and resulting individual level BMI allele scores) were used, 175

although the weighting of the SNPs to construct the allele score variable could be 176

considered to incorporate external information as ‘prior knowledge’, being informed by 177

previous results from larger studies [43, 44]. 178

Table 1 shows the results of applying Mendelian randomisation to the TwinsUK 179

data set. Both metabolites, EPA and DGLA, were inferred to have a causal 180

relationship with BMI at the 0.05 significance level (p-values 0.047 and 0.019 181

respectively). Conversely, reverse causation (with BMI causing the metabolite levels) 182

did not show such compelling p-values (0.665 and 0.707 respectively). Mendelian 183

randomisation between the metabolites provided somewhat conflicting results, with 184

both directions achieving p-values < 0.05, but overall there seemed to be stronger 185

support for a causal effect from DGLA to EPA. 186

Despite recent debate about the utility and potential for misinterpretation of 187

p-values in scientific research [45], we note that p-values can still be considered as 188

useful summaries of the compatibility between a data set and an underlying 189

hypothesized model [45, 46]. Indeed, in the human genetics literature, p-values remain 190

the most commonly-used summary measures indicating the extent of evidence for 191

potential associations. While this interpretation is only strictly correct if the entire 192

assumed data generating model (not just the lack of existence of the targeted effect) 193

holds, genetic associations identified using this paradigm have generally proved highly 194

reproducible [47] – indeed, it is this very fact that underpins their potential utility for 195
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use in MR. Thus, while we concur with the opinion [45] that the use of absolute 196

significance thresholds should be avoided (and we do not propose that any particular 197

threshold should be considered as “correct”), we still consider p-values to be useful 198

summary measures that may be used (as here) to inform the comparison of competing 199

hypotheses, or (as in our simulation studies presented later) as a heurstic to examine 200

the relative performance of different methods (in terms of true and false detections of 201

relationships) as the thresholds are varied. 202

Fig 3A shows the average network from BN analysis when all variables are included. 203

The thickness of the edges indicates their strength or probability of existence (i.e. 204

frequency of edge presence in all replicates), providing a visual representation of the 205

relative support for the possible causal effects. The red numbers indicate the 206

probability of existence of the edge, and the numbers in brackets indicate the 207

probability of the edge operating in direction shown, given that it exists. The edges for 208

which both numbers are provided are those in which we are most interested, namely 209

those that represent relationships between BMI and the metabolites. The other edges 210

were constrained such that edges from the SNPs and the BMI score variables could 211

only go in one direction (outwards from the variable towards a child node), consistent 212

with the notion of these variables acting as genetic instruments or anchor variables. 213

The average network shows strong evidence (overall probabilities of 0.89 = 0.96× 0.93, 214

and 0.86 = 0.99× 0.87, respectively) of DGLA and EPA being causal on BMI. 215

With the removal of the BMI score variable (Fig 3B), the probabilities are slightly 216

decreased to 0.82 = 0.93× 0.88 and 0.76 = 0.98× 0.78, still supporting the direction of 217

relationships between the metabolites and BMI when one instrument (the BMI score) 218

is removed. Similarly, when only the BMI score anchor variable is present (Fig 3C), 219

the relationships between the metabolites and BMI are still supported, although with 220

reduced probabilities of 0.75 = 0.94× 0.80 and 0.76 = 0.99× 0.77. However, when all 221

instruments are removed (i.e. only variables DGLA, EPA and BMI are included in the 222

analysis) (Fig 3D), the direction-of-edge probabilities between the three variables are 223

all close to 0.5, illustrating the fact that, in the absence of any instrumental variables 224

to anchor the network, all networks connecting all three variables are statistically 225

equivalent, thus the likelihoods are equal and no directional preference can be 226

determined. 227

The fits of the four models shown in Fig 3 A–D are not directly comparable, as 228

they contain (and thus model data at) different numbers of variables. However the fits 229

of models that do or do not contain arrows between the genetic variables and the 230

non-genetic variables can be examined by fitting networks equivalent to that shown in 231

Fig 3A (so modelling data at all measured variables), but with certain arrows 232

“blacklisted” to not be allowed to exist. The average network score (BIC) when both 233

Instrument(s) Risk factor Outcome Instrument–risk factor p-value(s) MR p-value
rs174556 EPA BMI 3.18× 10−16 0.047

BMI Allele Score BMI EPA 1.74× 10−15 0.665
rs968567, rs6498540 DGLA BMI 0.00127, 0.00337 0.019
BMI Allele Score BMI DGLA 1.74× 10−15 0.707

rs174556 EPA DGLA 6.93× 10−20 0.0319
rs968567, rs6498540 DGLA EPA 0.0120, 0.0263 0.0012

Table 1. Mendelian randomisation results for TwinsUK data. The Instrument–risk
factor p-value(s) are from the regression of the risk factor on the instrument(s), and
the MR p-value is from the regression using the predicted value of the risk factor as an
explanatory variable for the outcome variable.

June 3, 2019 6/45

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/639864doi: bioRxiv preprint 

https://doi.org/10.1101/639864
http://creativecommons.org/licenses/by/4.0/


the SNPs and the BMI allele score are allowed to have children (equivalent to Fig 3A) 234

is -33500.99. The average network score when SNPs can have children but the BMI 235

allele score is constrained to have no children (conceptually similar to Fig 3B) is 236

-33528.85. The average network score when the BMI allele score can have children but 237

the SNPs are constrained to have no children (conceptually similar to Fig 3C) is 238

-33546.05. The average network score when SNPs and BMI allele score are both 239

constrained to have no children (conceptually similar to Fig 3D) is -33573.91. These 240

average BICs illustrate the considerably better fit obtained when all anchor variables 241

are allowed to influence the values of the other variables in the model. 242

Overall, these results support the inference seen with this data set using MR. They 243

also illustrate the advantage in BN analysis of being able to easily include 244

simultaneously anchor variables for both BMI and the metabolites – although 245

removing one or other anchor still produced broadly similar inference concerning the 246

direction of the relationships between the metabolites and BMI, we found the support 247

for these relationships (as measured by the estimated probabilities of the directions of 248

the relevant edges, see Figs 3B and 3C) was lowered. 249

Similarly to MR, the fitted BN also suggests a causal relationship from DGLA to 250

EPA, with the estimated probability of the direction decreasing as the number of 251

anchor variables is reduced. 252

Simulation Study 1: Quantitative Traits 253

MR and BN powers and type I errors 254

We used three simulation models (Fig 1) to investigate the powers and type I errors of 255

MR, MR Steiger and BN for testing the relationship X to Y, with assumed effect size 256

βXY or βY X = 0.5 (or 0). The results in the middle and right hand plots (models 2 257

and 3) of Fig 4 involve weak confounding, while those in the middle and right hand 258

plots of Fig 5 involve strong confounding. Detailed results under weak confounding for 259

testing either X to Y or Y to X (given an effect βXY , with different effect sizes) using 260

MR and MR Steiger are shown in Figs S1-S3, with a comparison between MR, MR 261

Steiger and BN shown in Figs S4-S6 (for BN implemented via the BNLearn 262

algorithm [48]) and Figs S7-S9 (for BN implemented via the deal algorithm [49]). 263

Comparison of Figs S4-S6 with Figs S7-S9 shows the power when using deal to be 264

consistently lower than when using BNLearn (with no compensating advantage in 265

terms of better type 1 error), and for this reason we discard the deal algorithm from 266

any further consideration. 267

Direct comparison between MR/MR Steiger and BN is complicated as the most 268

natural processes for determining if X is causal on Y (or for examining the extent of 269

the evidence for X being causal on Y) are different for the three methods. For 270

MR/MR Steiger, we make inference based on a type I error (p-value) threshold given 271

by α (the probability of a false positive). As mentioned previously, we concur with the 272

opinion [45] that, in real data analysis, use of absolute p-value thresholds should be 273

avoided, and we do not in fact propose that any particular threshold should be 274

considered as “correct”; here we instead use the thresholds as heuristics and examine 275

the performance of the methods (in terms of true and false detections of relationships) 276

as the thresholds are varied. For BN, we make inference based on an estimated 277

posterior probability that X is causal on Y, and again examine performance of the 278

method as the threshold for declaring detection is varied. Given the lack of direct 279

comparability between the methods, we use different thresholds (and different colours) 280

for MR/MR Steiger and BN in the plots shown in Fig 4-5 and Figs S1-S9: for 281

MR/MR Steiger we use α values of 0.01, 0.05 and 0.1, while for BN we use probability 282

thresholds of 0.7, 0.8 and 0.9. The resulting powers and type I errors are therefore not 283
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directly comparable, but they do give some indication of how the methods perform 284

using thresholds that might be considered reasonable choices in practice. 285

For MR, the correct type I error (corresponding to the chosen α level) is generally 286

observed (Figs 4 and 5, panels D, E, G, H; Figs S1 and S2, panels A and D; Fig S3, 287

panel D), except when G is used as the instrument and there is genetic confounding 288

(Figs 4 and 5, panels F and I; Fig S3, panel A). When MR Steiger is used, the type I 289

error and power are both reduced compared to MR (resulting in a conservative test, 290

provided a valid instrument is available) due to the extra condition that a variable 291

must pass a p-value threshold to be selected as a valid instrument, whereas in MR this 292

is already assumed. Under model 3, MR Steiger with G used as a possible instrument 293

can show inflated type 1 error (Fig 4, panel I), while for MR Steiger with Z used as a 294

possible instrument, both the type I error and the power are generally zero due to Z 295

never actually being chosen as a valid instrument for X in any of the 1000 simulation 296

replicates (Figs 4 and 5, panels C, F, I; Fig S6, panels A, C, D). This behaviour of MR 297

Steiger never actually choosing the proposed instrument is also seen under models 1 298

and 2, when Z is used as a possible instrument and the true direction of effect goes 299

from X to Y, or when G is used as a possible instrument and the true direction of effect 300

goes from Y to X (Figs 4 and 5, panels D, E, G, H; Figs S4 and S5, panels A and C). 301

For BN, we find the power is generally higher when both G and Z are used 302

together rather than using either alone (Figs 4 and 5, panels A and B). Under model 1, 303

the probability of making an incorrect inference is very low when testing Y to X when 304

there is actually an effect from X to Y (Fig S4, panel B) or vice versa (Figs 4 and 5, 305

panel G), and zero when there is no effect at all (Figs 4 and 5, panel D; Fig S4, panels 306

C and D). Under model 2, there is a small chance of making an incorrect inference 307

when testing X to Y (and no such effect exists,) particularly under strong confounding 308

when Z is included as a possible explanatory variable (Fig 5, panels E and H). For 309

model 3, there is a fairly large chance of making an incorrect inference when testing X 310

to Y, if in fact there is an effect from Y to X (Fig 4, panel I), or vice versa (Fig S6, 311

panel B), when there is weak confounding and G is included as a possible explanatory 312

variable. 313

Receiver operating characteristic (ROC) curves 314

Figs 6 and 7 show receiver operating characteristic (ROC) curves for MR/MR Steiger 315

and BN for testing the relationship X to Y under simulation models 1-3, with assumed 316

effect size βXY or βY X = 0.5. The results in the middle and right hand plots (models 317

2 and 3) in Fig 6 involve weak confounding, while those in Fig 7 involve strong 318

confounding. The curves are constructed with respect to testing for a causal effect 319

from X to Y, where the curves for true/false positives are constructed by gradually 320

relaxing the detection threshold (based on type I error α for MR, or posterior 321

probability of existence of an arrow for BN) used. For the top plots (panels A-C), false 322

positives on the x-axis are counted using simulations when there is no effect 323

(βXY = 0), while true positives on the y-axis are counted under simulations when 324

there is a weak effect (βXY = 0.1). For the bottom plots (panels D-F), the false 325

positive rate is calculated in a slightly different way, by simulating from a model where 326

there is a causal effect from Y to X. Overall, the ROC curves are most appealing for 327

BN, showing a generally higher power for a given type error rate. 328

BN inference on direction of causality 329

To illustrate the ability of BN to infer the direction of causality, Fig S10 shows box 330

plots of the probability estimates of X being causal on Y (top row) and of Y being 331

causal on X (bottom row) given by BN, for data simulated under model 1 where X 332
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was causal on Y. As the true effect size βXY increases, the probability of correctly 333

(top row) detecting an X to Y effect increases, while when βXY is zero, the probability 334

of incorrectly detecting this effect is near zero. When both G and Z are included in 335

the BN analysis (panel A) the probability estimates are higher than when only one of 336

these is included (panels B and C), illustrating the advantage of using the extra 337

information from both variables. In addition, as the true effect size, βXY , increases, 338

the probability of falsely (bottom row) detecting a Y to X effect decreases, with the 339

lowest probability seen when both G and Z are included in the BN analysis (panel D), 340

again illustrating the advantage of using the extra information from both variables. 341

Fig S11 shows the BN box plots for data simulated under model 2, the 342

non-genetic-confounding model. Here the probabilities are all closer to 0.5, illustrating 343

that BN does not work quite as well in this scenario as under model 1. In particular, 344

when there are no effects between X and Y, the probabilities are much further from 345

zero, with a mean well above 0. Fig S12 shows the BN box plots for data simulated 346

under model 3, the genetic-confounding model. This shows better estimates of near 347

zero when there is no effect from X to Y. However, for the analysis with only G 348

included, it can be seen the probability estimates approach 0.5 as the effect size 349

increases, rather than increasing to above 0.5 as occurred for models 1 and 2. 350

An overall summary of the performance of the methods based on Simulation Study 351

1 is given in Table 2. 352

Underlying true scenario
Method Assumptions Met Non-Genetic-Confounding Genetic-Confounding
MR OK OK Very poor, huge type I error

MR Steiger Low power Low power Poor, bad ROC curves
BN Excellent ROC curves OK, but possible inflated Possible inflated type I error

type I error for no effect for reverse effect

Table 2. Performance of MR, MR Steiger and BN on the simulated quantitative trait
data

Simulation Study 2: Binary Traits 353

Data were simulated according to Fig 2, under four different scenarios with generating 354

model parameter values as listed in Table 3. Fig 8 shows the average BN inferred 355

when genetic variable Q was constrained to have no parents. For scenarios A and B, 356

the only edges detected are those starting at (directed away from) Q, as the generating 357

parameters for these causal relationships outweigh any others (the estimates of which 358

do not meet the strength threshold to be plotted). The generating parameters under 359

the other two models (panels C and D) are more evenly balanced, and this is reflected 360

by most edges appearing in the average network with a probability strength of at least 361

0.4. 362

Fig 8C shows an edge from Y to W with direction probability 0.72, which is in the 363

opposite direction from how it was simulated. We explain this by noting that the two 364

edges between Q and Y, and between Y and W, are much stronger than other edges in 365

the model, each with probability strength 1, and so are always inferred to be in the 366

model. The weak relationship between Q to W can be modelled by an additional edge 367

from Q to W, but can also be modelled via the edges from Q to Y to W, which has 368

the advantage of using 2 edges rather than 3 edges to model the entire system of 369

relations between Q, Y and W. Therefore, although incorrect, this model was 370

sometimes chosen as the best model on account of the fact that the BIC measure used 371

in BNLearn algorithm penalizes the number of edges in the network. 372
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Parameters influencing Y Parameters influencing H Parameters
influencing W

Frequency β0 βq βW βH α0 αq αW δ0 δq
Scenario of Q=1 (Q to Y) (W to Y) (H to Y) (Q to H) (W to H) (Q to W)

A 0.49 0.2 0.3 0.25 0.15 0.2 0.4 0.2 0.1 0.3
B 0.49 -0.9 -0.3 -0.1 0.2 0.0 0.2 0.2 0.2 0.3
C 0.49 -1.0 -1.0 -0.8 0.2 0.0 0.2 0.2 0.2 0.3
D 0.49 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.2

Table 3. The parameter values for each scenario used to simulate discrete binary
data. Models are described in detail by Shih et. al. [50].

Fig 9 shows the average BN for scenarios A–D when the model is fitted with the 373

extra constraint that Y (representing the outcome, hepatocellular carcinoma) has no 374

child nodes. The results are similar to Fig 8 except that panel C now has the edge from 375

W to Y in the correct direction (as implied by the extra constraint), and the edge from 376

Q to W is much stronger since it is now the best way to model the causal relationship 377

between Q and Y. This highlights the fact that constraints (if known) should be added 378

to provide better causal inference as well as to improve computational efficiency. 379

Simulation Study 3: More complex networks involving 380

horizontal pleiotropy 381

We also carried out a simulation study involving more complex networks of variables 382

including extreme pleiotropy (see Methods). This included 4 metabolites (Fig 10, left 383

hand panels) simulated to have no effects, 4 metabolites (Fig 10, middle panels) 384

simulated to have a causal effect on the outcome Y, and 4 metabolites (Fig 10, right 385

hand panels) with a reverse effect (so that Y influenced the metabolite). We applied 386

two recently proposed methods, LCV [25] and SMUT [40], along with BN, MR and a 387

recent MR extension (MR-BMA) [22]. 388

Fig 10 shows the powers and type I errors of MR, LCV, SMUT, BN using one 389

metabolite risk factor (B1), BN using all 12 metabolite risk factors (B12) and 390

MR-BMA, for testing the relationship between each metabolite and Y. MR, LCV, 391

SMUT and B1 tested the relationship between each metabolite and Y separately 392

(ignoring any information from other metabolites), whereas MR-BMA and B12 tested 393

the relationships between Y and all 12 metabolites in one analysis. MR, LCV, B1 and 394

B12 were used to test for a causal effect between metabolites and Y in either direction 395

while MR-BMA could only be used to test from the metabolites to Y. The methods 396

required different approaches to handle the 10,000 SNPs that were potentially causal 397

on the metabolites or Y: for MR, B1 and B12 a weighted allele score was constructed 398

(using SNPs passing a p-value threshold of p < 5× 10−6), SMUT and MR-BMA used a 399

subset of SNPs passing a p-value threshold of p < 5× 10−6 with any metabolite, and 400

LCV was the only test to use all 10,000 SNPs in the final analysis. 401

For MR and SMUT, we see high power to detect a true causal relationship when it 402

is present (Fig 10, middle panels), however there is very high inflated type I error 403

when the effect is in the opposite direction (Fig 10, right hand panels). There is also 404

inflated type I error when there are no effects at all (Fig 10, left hand panels). This is 405

due to the instrumental variable assumptions being violated, similar to what was seen 406

previously for MR in Simulation Study 1. 407

For LCV, the results are rather poor, presumably as the method is primarily 408

designed to detect a genetic causality proportion (GCP) (which is not directly 409

encapsulated by our simulation model), and genetic confounding effects are often 410

problematic when not accounted for. There is a very low detection rate for the GCP 411
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when there is a causal relationship between the metabolite and Y in either direction. 412

Somewhat perversely, the detection rate for a direct causal relationship, in either 413

direction, is much higher when there are no effects (Fig 10, left hand panels) compared 414

to when there is an effect (Fig 10, middle and right hand panels)! Another reason for 415

the poor performance may be the fact that the LCV test was really designed for larger 416

sample sizes than used here. 417

For BN with only one risk factor (B1), there is very high power to detect a causal 418

relationship in the correct direction when it is present, due to the use of allele scores 419

for both the metabolite and Y. The type I error when there is a reverse effect is also 420

very low, despite our previous observations (in Simulation Study 1) suggesting 421

potential inflated type I error when there is genetic confounding and a reverse effect. 422

This may be due to the effect sizes of the SNPs directly affecting the metabolite and 423

those affecting Y being quite different, meaning that the complex nature of the 424

confounding does not interfere too much with inference here (although clearly the 425

same robustness is not seen for MR). 426

For BN with all 12 risk factors (B12), there is very high power to detect causal 427

relationships when they are present, even higher than with B1, most probably due to 428

the complementary manner in which all of the data is used together to better resolve 429

the direction of edges. The type I errors are also much lower than B1 for the same 430

reason. The powers are higher than for MR-BMA, probably due to the fact that the 431

SNPs that affect Y are modelled in BN but are not accounted for in the MR-BMA 432

analysis. 433

MR-BMA shows very high power when there is an effect and very low type I error 434

when there is no effect or a reverse effect. Although MR-BMA is powerful (with low 435

type I error) at successfully selecting only those metabolites that affect Y, its power is 436

slightly lower than that of BN, and, unlike BN, it cannot detect a reverse effect from 437

Y to the metabolites. 438

Discussion 439

There is a growing interest in the use of causal inference methods in genetic 440

epidemiology. With “omics” data becoming increasingly available in large cohort 441

studies, we now have potential to uncover novel predictive and prognostic markers at 442

the molecular level, variation in which may correlate with disease status even in its 443

early stages. But, to make use of such markers, it is crucial to evaluate the extent to 444

which any observed associations are due to causal relationships between the variables. 445

For the past decade, MR has been a popular approach used to strengthen or 446

undermine a hypothesized causal relationship identified from epidemiological studies. 447

However, conventional MR may not be readily applicable to infer simultaneous causal 448

relationships in large-scale “omics” data because it generally deals with only one 449

potential cause and one potential effect at a time. A naive application of MR, such as 450

testing a causal effect of each “omics” variable on the disease outcome one at a time, 451

may violate the no-pleiotropy assumption. Recent developments in MR [16–22] may 452

alleviate this concern to some extent, but, in most of these approaches, an underlying 453

hypothesised graphical structure representing the relationships between variables must 454

be assumed (rather than being learned from the data). 455

Here we suggest BN analysis as a complementary approach for performing 456

exploratory analysis of causal relationships in complex data. We note that BN in the 457

context used here could be considered as an implementation of the basic logic of MR, 458

however the algorithmic details (and required calculations) for the two methods as 459

performed in practice are quite different. We illustrate the proposed approach through 460

a motivating example where two correlated risk factors are associated with the same 461
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genetic variant, and show how BN analysis can help to resolve their their simultaneous 462

potential causal effects. Our example illustrated that BNs could infer causal 463

relationships even in the absence of a genetic anchor for the risk factor, as long as a 464

genetic anchor for the outcome is available. In principle, BN can be applied to more 465

complicated data with much larger numbers of variables [39], as long as the 466

conditional dependencies of the variables are graphically representable as DAGs. 467

However, it is unclear how to interpret the estimated posterior probability from BN 468

analysis and to what extent it is comparable with the p-value from MR. We therefore 469

conducted a series of simulation studies and showed that BN with both directional 470

anchors outperformed bi-directional MR based on ROC curves of the true positive rate 471

(i.e. power) for a fixed false positive rate (i.e. type I error). The behaviour of both 472

approaches will depend on the sample size and the absolute value of the causal effect 473

as well as on the presence of confounding; both BN and MR perform better as the true 474

causal effect (or the sample size) increases. BN performs better with more directional 475

anchors available, since they remove uncertainty in the model search and help orient 476

the true causal directions between other variables. However, even when only a single 477

directional anchor is available, BN performs as well as or better than MR, at least 478

under the scenarios and parameter values considered here. In our study, the 479

performance of both BN and MR was affected by genetic confounding but barely 480

affected by non-genetic confounding. (However, note that non-genetic confounding 481

can, in some circumstances, create serious bias, and MR has begun addressing this by 482

carrying out between-sibling analyses which are protected from the common sources of 483

this bias [51]). In models involving pleiotropic relationships, BN outperformed both 484

MR and the recently-proposed MR-BMA method, as well as outperforming the 485

(conceptually somewhat different) LCV method. 486

To our knowledge, this is the first study to compare the performance of MR and 487

BN in both real and simulated data. Previously, Ainsworth et al. [52] applied MR, BN 488

and structural equation modelling to simple simulated data scenarios and noted that 489

BN and structural equation modelling could offer potentially attractive alternative (or 490

at least complementary) approaches to MR. Given that structural equation modelling 491

and BN overlap in many situations (for example, if the graphical model is a DAG and 492

the local distribution follows a normal distribution), this current study corroborates 493

that suggestion. We show here that BN analysis with both directional anchors has 494

greater power than bi-directional MR when applied to the same data, and further 495

report on scenarios where BN could be more easily applied than MR. These include 496

data with multiple risk factors and/or data with no genetic variant for one of the risk 497

factors available. 498

BN, like any statistical approach for causal inference, has limitations. Its 499

assumptions (required for valid inference) are easily violated. For example, modelling 500

all possible causes and confounding factors of all variables in the data is usually 501

impossible (although this limitation is shared with most other methods for causal 502

inference). BN cannot explain a cyclic or feedback relationship among variables, 503

whereas bi-directional MR can test this to some extent. The performance of BN is 504

affected by the sample size and true causal effect sizes, and the posterior probability 505

threshold that corresponds to any particular type 1 error rate is therefore hard to 506

define. Arguably the most serious limitation of BN is the fact that analysis is 507

performed on individual level data, and the method is not readily extended to 508

summary data (although this represents an interesting topic for future investigation). 509

In contrast, MR approaches such as two-sample MR can utilize previously generated 510

results, including those based on summary statistics, to make robust causal inference. 511

Indeed, this is the predominant mode of MR analysis at present (although there may 512

well be a move back to single sample individual participant data analysis in the future, 513
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given the availability of large-scale studies such as UK Biobank [53]). 514

There are some limitations to our current study. First, in our simulations, we 515

consider only fairly simple scenarios with relatively small numbers of variables where 516

both BN and MR can easily be applied (although we note that BN can readily be 517

extended to utilize larger numbers of variables [36–39]). It is possible that BN may 518

perform differently or worse in larger, more complex data sets. Thus, further studies 519

on more complex real and simulated data (for example involving known biological or 520

metabolic pathways) are required. In spite of these limitations, our study highlights 521

the utility of BN as an appealing approach for performing causal inference in complex 522

biological data sets that thus warrants further investigation. 523

Materials and methods 524

Mendelian Randomisation 525

Mendelian randomisation was performed using two-stage least squares linear 526

regression [54]. The first linear regression used one or more genetic variables (either a 527

single SNP, two SNPs or an allele score) as the explanatory variable(s) and the 528

hypothesized risk factor as the response variable. The second linear regression used 529

the predicted values of the risk factor for each individual from the first regression as 530

the explanatory variable, and the outcome as response variable. The p-values from the 531

second linear regression were denoted as MR p-values and were used as a measure of 532

evidence of a causal relationship. All analyses were performed using the lm() function 533

in the R statistical software package. 534

We note that MR was originally [4] introduced as a general approach that uses the 535

directionality from genetic variable to phenotype as the basic principle, but not with 536

any particular analytical strategy (such as that suggested by its use here) in mind. In 537

practice, the large majority of MR studies have attempted effect estimation and have 538

used either two-stage least squares linear regression for analysis carried out within a 539

single study sample, or two-sample MR based on summary statistics when utilizing 540

data from two separate studies [12, 14] (which provides equivalent inference). This 541

motivates our choice of two-stage least squares linear regression as reflecting the most 542

commonly used analysis strategy, while also having the advantage of allowing direct 543

comparison with BN (which, at least in its current implementations, requires access to 544

individual level – rather than summary statistic level – data). 545

Bayesian Networks 546

A variety of algorithms have been proposed for performing BN. We considered two 547

different Bayesian Network methods, deal [49] and BNLearn [48], which were 548

implemented in C++ in our own software package, BayesNetty [55], using a hill 549

climbing algorithm with random restarts and likelihood-based network scores for 550

model selection. The BNLearn method used the Bayesian information criterion (BIC) 551

to form the network score and (as we demonstrate) was found to be more powerful 552

and robust than deal. The BNLearn method is therefore the primary method used to 553

generate the Bayesian Network results presented in this article. 554

Networks were drawn using the igraph [56] R package. Average networks were 555

calculated by bootstrapping the data with replacement 1000 times, and selecting the 556

best-fit network for each replicate. The probability of an edge existing, and the 557

probability of the edge being in a particular direction (given that it exists) were 558

estimated by counting the proportion of times that such events occurred amongst the 559

1000 best-fit bootstrap networks. For plotting the resulting average network, only 560
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edges that were considered sufficiently strong in the context of the current average 561

network [48] were plotted. 562

MR Steiger 563

In addition to MR and BN, we also considered a recently-proposed extension of MR 564

known as MR Steiger [24]. This approach involves applying two tests which must both 565

pass a p-value threshold in order to conclude a causal relationship between variables X 566

and Y: firstly a test to decide if a genetic variable G is most suitable as an IV for 567

variable X or Y, then a standard MR test using G as an instrument to test either the 568

relationship X to Y, or the relationship Y to X. 569

Multivariable MR based on Bayesian Model Averaging 570

We also considered a recently-developed extension to multivariable MR [16,57] termed 571

“multivariable MR based on Bayesian model averaging” (MR-BMA) [22]. MR-BMA, 572

like original multivariable MR, is basically an extension of standard MR to model not 573

one, but multiple, risk factors on an outcome, thus accounting for measured pleiotropy. 574

MR-BMA aims to address the problem of selecting, from many potential causal risk 575

factors, those that are most useful for one outcome variable, using Mendelian 576

randomisation principles. The method is based on inverse-variance weighted (IVW) 577

linear regression in a two-sample framework, where the associations between genetic 578

factors and the outcome (tested in sample 1) are regressed on the genetic associations 579

with all the risk factors (tested in sample 2) in a multivariable regression approach. 580

Latent Causal Variable method 581

We also applied the recently-developed latent causal variable (LCV) method [25] 582

which infers, for pairs of measured traits, the extent to which part or all of the genetic 583

component of one trait is causal for the other. This method makes use of genetic data 584

across the whole genome, rather than following the usual MR approach of selecting 585

specific genetic variants to be used as instruments. The method tests a newly-defined 586

quantity between two traits, the “genetic causality proportion” (GCP), where large 587

(positive or negative) values of GCP imply that interventions on one trait are likely to 588

affect the other, suggesting (without specifically testing) that one trait may itself be 589

causal on the other. Formally, the GCP test performs a two-sided test of the null 590

hypothesis that the GCP= 0. The software also produces p-values for “full causality” 591

between the two traits in either direction. 592

The underlying graphical model used to motivate the LCV method actually 593

corresponds to a model in which an (unmeasured) latent variable is the causal variable 594

for both measured traits. One could therefore argue that demonstration of such an 595

effect suggests that it is actually the latent variable that should be intervened upon, 596

rather than one of the traits, if one wishes to bring about a corresponding change in 597

the value of the other trait. 598

Multi-SNP Mediation Intersection-Union Test 599

We also considered a recently-proposed multi-SNP mediation intersection-union test 600

known as SMUT [40]. SMUT tests the joint mediation effects of multiple (potentially 601

correlated) genetic variants on a trait through a single mediator, effectively generating 602

a hypothesis test for mediation but with a multivariate exposure. SMUT adopts the 603

classical mediation framework, takes a frequentist approach, and relies on individual 604
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level data, treating the mediator effect as fixed and the effects of multiple SNPs upon 605

the mediator as random. 606

Motivating Example: TwinsUK Data 607

The data analysed here consisted of 5654 twins with measurements of BMI, the two 608

metabolites EPA and DGLA, and 42 SNPs. For the purposes of the current analysis 609

we used all twins and treated them as independent (i.e. ignoring pairwise clustering 610

due to twin relationships; this will overestimate the statistical significance (nominal 611

p-value) of any observed associations, but we anticipate that this phenomenon should 612

affect all the methods evaluated equally). Three SNPs were used directly as IVs: 613

rs174556 for EPA, and rs968567 and rs6498540 for DGLA. The other 39 SNPs 614

known [43,44] to be associated with BMI were combined into a weighted allele score 615

variable (i.e. the number of effect alleles for each individual were counted for each the 616

39 SNPs, and these were summed, weighting by their previously estimated [43,44] 617

regression coefficient). The EPA and DGLA data were pre-processed by logging and 618

adjusting for study day using linear regression, and were then normal quantized [42]. 619

The genetic variables (rs174556, rs968567, rs6498540 and the weighted allele score) 620

were used as instruments in MR to explore causal relationships between the 621

metabolites and BMI. Relationships between all variables were also explored via BN, 622

with the directional constraint that arrows were constrained to come out from (rather 623

than go into) any nodes corresponding to genetic variables. 624

Simulation Study 1: Quantitative Traits 625

We also investigated the performance of BN and MR via computer simulations of a 626

quantitative trait. Data were simulated for two continuous variables (X and Y), 627

together with a genetic instrument G (coded as 0, 1, 2, mimicking a SNP) and a 628

continuous instrumental variable Z (mimicking a SNP allele count). Data were 629

simulated for 2500 individuals under three different generating models (shown in Fig 630

1), using a variety of values for the regression coefficients (the βs). These models cover 631

a variety of plausible scenarios in terms of potential confounders (C and S). In each 632

case, the direction of causality goes from X to Y. 633

For all three simulation models, the following analyses were implemented: 634

1. MR(G): Test the relationship X to Y using MR with G used as an IV for X. 635

2. MR(Z): Test the relationship Y to X using MR with Z used as an IV for Y. 636

3. MR St.(G): Test the relationship X to Y (or Y to X) using MR Steiger with G 637

used as an IV for X (or Y). 638

4. MR St.(Z): Test the relationship X to Y (or Y to X) using MR Steiger with Z 639

used as an IV for X (or Y). 640

5. BN(G,Z): Perform BN with variables X, Y, G and Z. 641

6. BN(G): Perform BN with variables X, Y, G only. 642

7. BN(Z): Perform BN with variables X, Y, Z only. 643

For BN, G and Z were constrained to operate as instruments i.e. the direction of the 644

arrows was constrained to come out from (rather than go into) these nodes. For the 645

purpose of network fitting, all variables were treated as continuous, regardless of 646

whether they actually followed a continuous or discrete distribution. 647
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For MR and MR Steiger, powers and type I errors (based on 1000 simulation 648

replicates) were calculated for different values of βXY (ranging from 0 to 0.5), with α 649

thresholds of 0.01, 0.05 and 0.1 used to define detection of a relationship. For BN, 650

powers and type I errors (based on 1000 simulation replicates) for testing X to Y and 651

Y to X were calculated with βXY equal to either 0 or 0.5, with probability thresholds 652

0.7, 0.8 and 0.9 used to define detection of a relationship. As a further visualisation of 653

the performance of BN for different values of βXY ranging from 0 to 0.5, the estimated 654

probabilities (based on the average bootstrap network) of an edge existing from X to 655

Y and from Y to X were calculated for each of the 1000 simulation replicates, and the 656

distributions plotted as box plots. 657

Receiver operating characteristic (ROC) curves (based on 1000 simulation 658

replicates) for the detection of an edge existing from X to Y were generated by 659

imposing either different α thresholds (for MR and MR Steiger) or different probability 660

thresholds (for BN). As the relevant threshold is relaxed, the chance of a true positive 661

detection of a relationship increases, but so does the chance of a false detection of a 662

relationship. Evaluation of power (a true positive effect from X to Y) was performed 663

by simulating data under models with βXY equal to 0.1, 0.3 and 0.5. Evaluation of 664

type 1 error (a false positive effect from X to Y) was performed by simulating data (a) 665

under a model with no effect (i.e. with βXY equal to 0), and (b) under a model with 666

an effect in the ‘wrong’ direction (i.e. from Y to X, with βY X equal to 0.1, 0.3 or 0.5). 667

Simulation Study 2: Binary Traits 668

We also investigated the utility of BNs for performing causal inference in a binary trait 669

setting. Discrete binary data was simulated for 5000 individuals using four models 670

considered in recent work by Shih et al. [50], in the context of quantifying the effects 671

of alcohol consumption and high alanine transaminase levels on hepatocellular 672

carcinoma. We used the same graph (Fig 2) and parameter settings (Table 3) used by 673

Shih et al. [50]. The data simulated consisted of four binary variables: Q, a gene; W, 674

high alcohol; H, high alanine transaminase; and the outcome variable, Y, representing 675

hepatocellular carcinoma. The data were analysed using BN with the constraint that 676

Q has no parent nodes, and then again with the extra constraint that Y has no child 677

nodes. For the purpose of network fitting, all variables were treated as multimomial 678

(binomial), reflecting the fact that they followed a discrete distribution. 679

Simulation Study 3: More complex networks involving 680

horizontal pleiotropy 681

We also carried out a simulation study involving more complex networks of variables, 682

as considered by Zuber et al. [22] in their development of the “multivariable MR based 683

on Bayesian model averaging” (MR-BMA) method. We simulated data in a very 684

similar manner to Zuber et al. [22] and then applied MR-BMA, along with BN, MR, 685

SMUT and LCV. Data was simulated for 1000 individuals, using 1000 replicates 686

(allowing us to determine powers and type I errors using p-value thresholds of 0.1, 0.05 687

and 0.01, or posterior probability thresholds of 0.7, 0.8 and 0.9, respectively). 688

To inform our simulation model, we used the same publicly available summarized 689

data on genetic associations with risk factors derived from a recent metabolite 690

GWAS [58] as was used by Zuber et al. [22]. To avoid selection bias we took the same 691

subset of 150 independent SNPs as Zuber et al. [22], that had been found to be 692

associated with any of the three main lipid measurements (LDL-cholesterol, 693

triglycerides or HDL-cholesterol) at a genome-wide level of significance (p-value 694

< 5× 10−8) in an external data set, namely a large meta-analysis by the Global Lipids 695

Genetics Consortium [59]. 696
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Beta-coefficients and standard errors of genetic associations between the 150 SNPs 697

and the 118 metabolites with available data were extracted from the metabolite 698

GWAS [58], in order to allow us to retain the empirically observed relationships 699

between SNPs and metabolites. The set of metabolites was reduced by excluding at 700

random one from each pair of metabolites that had a genetic correlation (calculated 701

using the beta-coefficients of the 150 SNPs) stronger than |r| > 0.99. From the 702

resulting 92 metabolites, 12 were chosen at random to be used in our simulation study. 703

Four of the metabolites were chosen to be used in the simulation model as null 704

variables (with no effects on the outcome variable, Y), four were chosen to be used in 705

the simulation model with a direct effect on Y, and the other four were chosen to be 706

used in the simulation model with a reverse effect (from Y to the metabolites). 707

The data for the 150 SNPs were simulated using the allele frequencies given in by 708

the Global Lipids Genetics Consortium [59], assuming Hardy-Weinberg equilibrium 709

(HWE). The four metabolites with direct effects on Y were simulated conditional on 710

the simulated data for the 150 SNPs (based on their corresponding beta-coefficients 711

for association with metabolites). Y was then simulated based on these four 712

metabolites and 75 randomly-chosen SNPs (with beta-coefficients derived from their 713

relationship with a randomly discarded metabolite, Ile). The metabolites not directly 714

affecting Y were simulated based on the 150 SNPs and (for the 4 metabolites where a 715

reverse effect was present) on Y. Any causal effects between the metabolites and Y, or 716

vice versa, were simulated using a beta-coefficient of value 0.3, and the standard error 717

was set to 1. A further 9775 SNPs with no effects on any other variables were 718

simulated assuming HWE using a minor allele frequency simulated from a uniform 719

distribution between 0.01 and 0.5. This gave a final simulated data set consisting of 720

10,000 SNPs, 12 metabolites and one outcome variable, Y. 721

We performed MR between every individual metabolite and Y, as well as MR in 722

the reverse direction to test if Y has a causal effect on each metabolite. Weighted allele 723

score variables were used as instrumental variables and were re-constructed within 724

each simulation replicate using SNPs passing a p-value threshold of p < 5× 10−6 of 725

association with the appropriate metabolite or with Y, using the estimated regression 726

coefficients as weights. The same SNPs were also used as the genetic variants in 727

SMUT (using the R package SMUT [40]), which was also performed between every 728

individual metabolite and Y (or vice versa for reverse causal effects). 729

The MR-BMA test was performed using R code written by the MR-BMA authors 730

and was designed to detect which risk factors for an outcome are causal. The test 731

outputs marginal probabilities for each metabolite being causal on the outcome 732

variable; these are the probabilities presented in the results. The SNPs were chosen for 733

the MR-BMA test using a p-value threshold of p < 5× 10−6 for association with any 734

of the metabolites. 735

We also applied the LCV method proposed by O’Connor and Price [25]. The test 736

was evaluated using the R code written by the LCV authors and uses only one 737

metabolite and the outcome variable at any one time, together with all 10,000 SNPs. 738

Average Bayesian networks (BN) were used to estimate the probabilities of causal 739

effects between the metabolites and Y using the same instrumental variables as used 740

by the MR tests. Bayesian network analyses were initially performed using only 4 741

variables for every metabolite: the metabolite itself, the outcome Y, and the 2 742

corresponding allele scores (one for the metabolite and one for Y). Subsequently we 743

considered Bayesian network analyses that used all 12 metabolites, Y, and the 13 744

relevant allele score variables (for the 12 metabolites and Y) simultaneously. In all 745

analyses, the allele score variables were constrained to operate as individual genetic 746

instruments i.e. to have one and only one edge going from itself to the corresponding 747

instrumented variable (either a metabolite or Y). 748
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Model Graph Equations

Model 1 G X ZY

G ∼ B(2, 0.4)
Z ∼ N (0, 1)
X ∼ N (βGXG, 1)
Y ∼ N (βXYX + βZYZ, 1)

Model 2,
non-genetic confounding G X Z

C

Y

G ∼ B(2, 0.4)
Z ∼ N (0, 1)
C ∼ N (0, 1)
X ∼ N (βGXG+ βCXC, 1)
Y ∼ N (βXYX + βZYZ + βCYC, 1)

Model 3,
genetic confounding G X Z

S

Y

G ∼ B(2, 0.4)
Z ∼ N (0, 1)
S ∼ N (βGSG, 1)
X ∼ N (βGXG, 1)
Y ∼ N (βXYX + βZYZ + βSY S, 1)

Fig 1. Simulation models used in Simulation Study 1 of quantitative trait data. Data
were simulated for two continuous variables (X and Y), together with a genetic
instrument G (coded as 0, 1, 2) and a continuous instrumental variable Z. Parameter
values for models involving weak confounding were chosen as βGX = 0.1, βZY = 0.075
and βCX = βCY = βGS = βSY = 0.25. For models involving strong confounding, the
parameter values were the same except that βCX = βCY = βGS = βSY = 0.5 i.e. the
parameters controlling the confounding effects were doubled. The parameter βXY was
varied using values of 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. For the calculation of ROC curves
where false positives were counted as detections of an arrow between X and Y in the
wrong direction, the direction of causality was reversed between X and Y , such that
for model 1 the equations become X ∼ N (βY XY + βGXG, 1) and Y ∼ N (βZY Z, 1),
with βY X varied using values of 0.1, 0.3 and 0.5 (and similarly for models 2 and 3).
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Q

W

H

Y

Fig 2. Graph of the simulation model used for Simulation Study 2 for four different
parameter scenarios as described by Shih et al. [50]. The data simulated consisted of
four binary variables: Q, representing a gene; W, representing high alcohol; H,
representing high alanine transaminase; and the outcome variable, Y, representing
hepatocellular carcinoma.
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Fig 3. Average Bayesian networks for the TwinsUK data using either (A) all
available variables or (B, C, D) a subset of variables, as shown. The red numbers
indicate the probability of existence of the edge, and the numbers in brackets indicate
the probability of the edge operating in direction shown, given that it exists. The
thickness of an edge indicates its strength (probability of existence).
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Fig 4. Performance (power and type I error) of different methods for detecting an
edge from X to Y, under different generating scenarios that include weak confounding.
Left hand plots (A, D, G) are generated under model 1 (no confounding), middle plots
(B, E, H) are generated under model 2 (non-genetic confounding), and right hand
plots (C, F, I) are generated under model 3 (genetic confounding).

June 3, 2019 26/45

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/639864doi: bioRxiv preprint 

https://doi.org/10.1101/639864
http://creativecommons.org/licenses/by/4.0/


A  −  Test X to Y when βXY = 0.5

po
w

er
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

B  −  Test X to Y when βXY = 0.5

po
w

er
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

C  −  Test X to Y when βXY = 0.5

po
w

er
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

D  −  Test X to Y when βXY = 0
ty

pe
 I 

er
ro

r
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

E  −  Test X to Y when βXY = 0

ty
pe

 I 
er

ro
r

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

F  −  Test X to Y when βXY = 0

ty
pe

 I 
er

ro
r

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

G  −  Test X to Y when βYX = 0.5

ty
pe

 I 
er

ro
r

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

H  −  Test X to Y when βYX = 0.5

ty
pe

 I 
er

ro
r

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

I  −  Test X to Y when βYX = 0.5

ty
pe

 I 
er

ro
r

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MR
(G)

MR St.
(G)

MR St.
(Z)

BN
(G,Z)

BN
(G)

BN
(Z)

α
0.01
0.05
0.1

prob. threshold

0.9
0.8
0.7

Fig 5. Performance (power and type I error) of different methods for detecting an
edge from X to Y, under different generating scenarios that include strong
confounding. Left hand plots (A, D, G) are generated under model 1 (no confounding),
middle plots (B, E, H) are generated under model 2 (non-genetic confounding), and
right hand plots (C, F, I) are generated under model 3 (genetic confounding).
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Fig 6. ROC curves for different methods for detecting an edge from X to Y, under
different generating scenarios that include weak confounding. Left hand plots (A, D,
G) are generated under model 1 (no confounding), middle plots (B, E, H) are
generated under model 2 (non-genetic confounding), and right hand plots (C, F, I) are
generated under model 3 (genetic confounding). For the top plots (panels A-C), false
positives on the x-axis are counted using simulations when there is no effect
(βXY = 0), while for the bottom plots (panels D-F), the false positive rate is
calculated by simulating from a model where there is a causal effect from Y to X.
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Fig 7. ROC curves for different methods for detecting an edge from X to Y, under
different generating scenarios that include strong confounding. Left hand plots (A, D,
G) are generated under model 1 (no confounding), middle plots (B, E, H) are
generated under model 2 (non-genetic confounding), and right hand plots (C, F, I) are
generated under model 3 (genetic confounding). For the top plots (panels A-C), false
positives on the x-axis are counted using simulations when there is no effect
(βXY = 0), while for the bottom plots (panels D-F), the false positive rate is
calculated by simulating from a model where there is a causal effect from Y to X.
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Fig 8. Average Bayesian networks for each of the four scenarios (A–D) used for the
simulated binary data. The red numbers indicate the probability of existence of an
edge, and the numbers in brackets indicate the probability of the edge operating in
direction shown, given that it exists. The thickness of the edges indicates their
strength (probability of existence). G is constrained to have no parents.

June 3, 2019 30/45

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/639864doi: bioRxiv preprint 

https://doi.org/10.1101/639864
http://creativecommons.org/licenses/by/4.0/


1

0.99 0.82
Q

W

H

Y

A

0.99 0.76

0.66

Q

W

H

Y

B

1

10.99

0.63

Q

W

H

Y

C

0.84

0.47

0.45(0.73)

0.42

Q

W

H

Y

D

Fig 9. Average Bayesian networks for each of the four scenarios (A–D) used for the
simulated binary data. The red numbers indicate the probability of existence of an
edge, and the numbers in brackets indicate the probability of the edge operating in
direction shown, given that it exists. The thickness of the edges indicates their
strength (probability of existence). G is constrained to have no parents and Y is
constrained to have no children.
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Fig 10. Performance (power and type I error) of different methods under a simulation
model with 12 metabolites, an outcome Y, 150 SNPs affecting the metabolites, 75
other SNPs affecting Y, and 9775 SNPs with no effect. Four metabolites (middle
panels) have a causal effect on Y, four metabolites (right hand panels) have a reverse
causal effect from Y to the metabolite, and four metabolites (left hand panels) have no
effects to Y in any direction. The left-to-right arrows show tests for a causal effect
from the metabolite to Y, and right-to-left arrows show tests from Y to one of the
metabolites. MR: Mendelian randomisation using an allele score as an instrumental
variable for one of the metabolites or Y. LCV: latent causal variable methods where
GCP denotes the genetic causality proportion test. S: SMUT, using SNPs as random
effect variables for one of the metabolites or Y. B1: Bayesian network consisting of one
metabolite, Y and the two corresponding allele score variables. B12: Bayesian network
consisting of all 12 metabolites, Y and all corresponding allele score variables. BMA:
multivariable MR based on Bayesian model averaging (MR-BMA)
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S1 Fig. Power/type I error plots for MR and MR Steiger for data
simulated under model 1.
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S2 Fig. Power/type I error plots for MR and MR Steiger for data
simulated under model 2.
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S3 Fig. Power/type I error plots for MR and MR Steiger for data
simulated under model 3.
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S4 Fig. Power/type I error plots for MR, MR Steiger and BN (BNLearn
algorithm) for data simulated under model 1.
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S5 Fig. Power/type I error plots for MR, MR Steiger and BN (BNLearn
algorithm) for data simulated under model 2.
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S6 Fig. Power/type I error plots for MR, MR Steiger and BN (BNLearn
algorithm) for data simulated under model 3.
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S7 Fig. Power/type I error plots for MR, MR Steiger and BN (deal
algorithm) for data simulated under model 1.
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S8 Fig. Power/type I error plots for MR, MR Steiger and BN (deal
algorithm) for data simulated under model 2.
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S9 Fig. Power/type I error plots for MR, MR Steiger and BN (deal
algorithm) for data simulated under model 3.
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S10 Fig. Box plots of estimated BN arrow probabilities for data
simulated under model 1.
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S11 Fig. Box plots of estimated BN arrow probabilities for data
simulated under model 2.
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S12 Fig. Box plots of estimated BN arrow probabilities for data
simulated under model 3.
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