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Abstract1

In infectious disease epidemiology, clustering cases of infection in space and time is a standard2

method to identify and characterize outbreaks. Clustering cases by genetic similarity is analogous3

to spatial clustering, and may be more effective for pathogens transmitted at a relatively low rate4

by intimate contact. However, the statistical properties of genetic clustering in the context of out-5

break detection are not well characterized and cluster-defining criteria are generally set to arbitrary6

values. We describe a new method to optimize the predictive value of a clustering method by7

optimizing its parameters to maximize the difference in the Akaike information criterion (AIC)8

between individual-weighted and null models of cluster growth. This approach mirrors solutions9

to the modifiable areal unit problem (MAUP): the statistical association between covariates and10

an outcome is contingent on how their spatial distribution is partitioned into units of observation.11

To evaluate our method, we analyzed the distributions of pairwise Tamura-Nei (TN93) genetic12

distances from two published sets of anonymized HIV-1 subtype B pol sequence data stratified13

by collection year. We generated 46 different graphs by varying the pairwise threshold, where an14

edge in a graph indicates that the TN93 distance between the respective cases is below the corre-15

sponding threshold. For each graph, we generated predictions of cluster growth (numbers of new16

cases with edges to clusters of known cases) under two different Poisson regression models: a null17

model in which growth is only proportional to cluster size (i.e., no variation among individuals);18
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and a weighted model where the variation associated with individual-level covariates are summed1

by cluster. Next, we calculated the AIC for each model on the distributions of observed cluster2

growth in two published HIV-1 pol data sets from Seattle, USA (n = 1,653) and Alberta, Canada3

(n = 809). Based on the difference in AICs, we obtained different optimized TN93 thresholds for4

these data sets (0.014 and 0.011, respectively). We show that selection of this threshold parameter5

can substantially limit the utility of genetic clusters for public health, and that the optimal param-6

eter for one population can misdirect prevention efforts in another. This statistical framework can7

potentially be used to optimize any clustering method, and to evaluate it against other methods8

including those that do not use genetic information.9

Introduction10

Spatiotemporal clustering is a fundamental public health methodology for the detection of disease11

outbreaks [1]. The colocalization of cases in space and time implies a common source. For ex-12

ample, an automated space-time clustering method [2] was demonstrated to retrospectively detect13

outbreaks of nosocomial bacterial infection in a US-based hospital, including the outbreaks that14

were detected contemporaneously by the hospital’s pre-existing infection control program [3]. At a15

broader spatial scale, the same clustering method was recently used to identify outbreaks of severe16

acute respiratory infections over a five year period, using case data from a network of hospitals17

in Uganda [4]. Early detection of a cluster represents a potential opportunity for a targeted public18

health response to prevent additional cases. Space-time clustering may be less effective, how-19

ever, for pathogens that can establish a chronic infection with a long asymptomatic period (e.g.,20

Mycobacterium tuberculosis, hepatitis C virus, or human immunodeficiency virus type 1; HIV-1)21

where the precise time and location of a transmission event is usually unknown and difficult to22

reconstruct. Furthermore, pathogens with a low per-act transmission rate present difficulties for23

space-time clustering because a single exposure in a specific location is unlikely to result in trans-24

mission. Under these circumstances, the spread of an epidemic is more likely to be shaped by a25
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network of repeated contacts between individuals, rather than shared venues.1

For many infectious diseases, the molecular evolution of the pathogen is sufficiently rapid that2

genetic differences can accumulate between related infections on a similar time scale as disease3

transmission. Consequently, it can be effective to cluster cases in a high-dimensional genetic space4

in addition to clustering in physical space and time. In these studies, a case of infection is repre-5

sented by a pathogen-derived molecular sequence that maps to some point in genetic space, and6

it may be associated with subject-level metadata such as the diagnosis date or treatment history.7

Clustering infections by their evolutionary relatedness is a popular method to identify and char-8

acterize potential transmission ‘hotspots’. For example, pairs of sequences can be clustered if the9

number of genetic differences between them falls below some threshold. The resulting clusters are10

often visualized as a network or undirected graph, where each vertex represents an individual case11

of infection, and each edge connecting vertices indicate that the sequences of the corresponding12

cases are within a threshold genetic distance of each other. Sampling a group of cases that are13

nearly genetically identical implies that they are related through an unknown number of recent and14

rapid transmission events. A substantial number of genetic clustering studies have focused on the15

molecular epidemiology of HIV-1 [5–8]. Under current global treatment and prevention guidelines16

[9], greater proportions of HIV cases are being diagnosed, and new diagnoses are more frequently17

screened for drug resistance by genetic sequencing prior to initiating antiretroviral treatment. As18

a result, public health organizations are beginning to use genetic clustering methods in ‘near real-19

time’ to identify ongoing HIV-1 outbreaks [10, 11], to reconstruct the risk factors and etiology, and20

to prioritize groups for prevention initiatives such as access to pre-exposure prophylaxis (PrEP)21

[12].22

A significant and often overlooked challenge in the use of genetic clustering to identify po-23

tential outbreaks is that these methods usually require the specification of one or more clustering24

criteria [8, 13]. For instance, HIV-1 studies that employ pairwise genetic clustering tend to use a25

threshold of 1.5% expected nucleotide substitutions per site [6, 14–16], a measure that adjusts for26
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the occurrence of multiple substitutions at the same nucleotide. In contrast, the United States Cen-1

ters for Disease Control and Prevention (US-CDC) currently mandates a stricter pairwise distance2

threshold of 0.5% [17]. In some cases the selected threshold is informed by the expected diver-3

gence between HIV-1 sequences sampled longitudinally from the same patient [18, 19] — however,4

this empirical distribution can vary substantially with the extent of clinical follow-up. Population5

studies from other regions such as Botswana [20] and South Africa [21] have used substantially6

higher distance thresholds (≥4.5%) that vary among HIV-1 subtypes [22, 23]. Simulation-based7

studies [8, 20, 24] have demonstrated that clustering is highly sensitive to the sampled proportion8

of the infected population. Given the significant global disparities in HIV-1 prevalence and access9

to testing and treatment, it is exceedingly unlikely that a meaningful ‘gold standard’ clustering10

criterion can exist.11

Here we propose that the most useful approach to select clustering criteria is to base this de-12

cision on our ability to predict where the next cases will occur. A high, permissive clustering13

threshold tends to result in a single cluster that comprises the majority of known cases. The next14

cases are proportionately more likely to connect to this large cluster, but its size will also average15

out the individual- and group-level attributes that are informative for predicting the next cases. Put16

another way, a single large cluster is not likely to confer a public health benefit as an alternative17

to working with the entire population database. Conversely, setting a low, strict clustering thresh-18

old results in a large number of small clusters. This increases the variation of attributes among19

clusters, resolving greater information, but the association of new cases with clusters also becomes20

increasingly stochastic. This trade-off is analogous to the modifiable areal unit problem (MAUP),21

a concept in spatial statistics first fully conceptualized by Openshaw and Taylor in 1979 [25].22

Areal units are derived from a partition of a geographic range by drawing boundaries that separate23

households or neighbourhoods. The MAUP formally recognizes the inconsistency of statistical24

associations with changing boundaries. For example, aggregating units into larger spatial units,25

such as cities or countries, can prevent an investigator from detecting a strong association between26

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/639997doi: bioRxiv preprint 

https://doi.org/10.1101/639997
http://creativecommons.org/licenses/by/4.0/


water quality and gastrointestinal illness [26]. To address the MAUP in the context of genetic clus-1

tering and public health, we adapt an information criterion-based approach described by Nakaya2

[27] to select an aggregation level for count data, such that distribution of cases in genetic space is3

partitioned in a way that maximizes the information content of clusters for forecasting where the4

next cases will occur.5

Methods6

Data collection and processing7

From the public GenBank database (https://www.ncbi.nlm.nih.gov/genbank), we obtained n = 8098

anonymized HIV-1 pol sequences that were sampled in Northern Alberta, Canada, between 20079

and 2013 [28]; as well as n = 1653 sequences collected in Seattle, USA, between 2000 and 201310

[29]. Each data set was manually screened to remove all sequences corresponding to HIV-1 sub-11

types other than subtype B, and to remove repeated samples from the same individual. Given the12

relatively small number of sequences collected in 2013 for the Seattle dataset (n = 35, Figure 1),13

we excluded this year to maintain a consistent sampling rate. We retrieved the sample collection14

dates for each sequence by querying GenBank with the respective accession numbers and extract-15

ing this information from the XML stream returned from the server using the BioPython module16

[30] in Python. Next, we used an open-source implementation of the Tamura-Nei [31] genetic dis-17

tance in C++ (TN93 version 1.0.6, https://github.com/veg/tn93) for each data-set to compute these18

distances between all pairs of sequences. We set the maximum reporting distance to 0.05 to limit19

the number of pairs written to the comma-separated values (CSV) output file, which excluded an20

additional 20 cases from the Seattle dataset and 6 from Northern Alberta. All other options for the21

TN93 analyses were set to the default values.22
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Defining clusters1

For each data set, we imported the TN93 output from the CSV file into R and generated an undi-2

rected graph G = (V,E) using the igraph package [32]. The set of vertices V represents the indi-3

vidual cases in the data set, each uniquely labeled with an anonymized subject identifier. Every4

edge e(v,u) ∈ E between vertices v and u was weighted with the corresponding TN93 distance5

between their sequences, which we denote by w(v,u). In practice, we store a larger range of dis-6

tances as a densely connected graph makes it more efficient to obtain the spanning subgraph that7

results from filtering the edge weights by some threshold wmax — hence for a given threshold,8

E = {e(v,u) : w(v,u)≤ wmax}. In addition, each vertex v ∈ V carries an attribute t(v), which rep-9

resents the sample collection year of the corresponding sequence. We note that our framework is10

not limited to analyzing collection dates at the level of years and can applied to more precise time11

intervals, e.g., quarters or months — however, years are most frequently the precision at which this12

sampling information is released into the public domain. The subset of sequences with the most13

recent collection year was specified as U = {v ∈V : t(v) = tmax) such that the total number of new14

cases is |U |. In other words, sampling time cuts the graph G into disjoint vertex sets V c and U such15

that V c∪U =V . Later it will be useful to refer to the subset of edges in E that connect a vertex in16

V c and a vertex in U , which we denote as EU = {e(v,u) : e ∈ E,v ∈V c,u ∈U}.17

Clusters were defined as the connected components within the set of vertices representing18

known cases, V c = {v ∈ V : t(v) < tmax}. A clustering method defines a partition on V c into a19

set of clusters {C1,C2, . . . ,Cn} such that Ci∩C j = ∅ for all i 6= j and 1 ≤ i, j ≤ n; and such that20

the union of all clusters recovers the entire set:
⋃n

i=1Ci =V c. Any pair of vertices within the same21

cluster (v,u ∈Ci) are connected by at least one sequence of edges (path), and any pair of vertices22

in different clusters are not connected by any path. Under this definition, a cluster can comprise a23

single known case. Note that this definition does not strictly require the existence of edges, which24

we use to represent genetic similarity, but can be adapted to any clustering method that defines a25
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partition on the database of known cases.1

Modeling growth2

We define total cluster growth R as the number of vertices in U adjacent (connected by edge) to3

any vertex in V c, where R≤ |U |. The number of new cases adjacent to a specific cluster Ci ⊂V c is4

defined as:5

R(Ci) = |{u : u ∈U, v ∈Ci, e(v,u) ∈ EU}| (1)

To resolve the event that a new vertex in U is adjacent to vertices in more than one cluster, we6

reduced the subset of edges between U and its compliment, maintaining only the edges with mini-7

mum weight per vertex in U . If more than one edge to a given vertex u ∈U had exactly the same8

minimum weight, then we selected one edge at random:9

E ′U =
{

e : e(v,u) ∈ EU ,v /∈U,v ∈ argmin1
v w(v,u) ∀u ∈U

}
(2)

where argminx f returns the set of values x that minimize the function f , and the superscript 1 is10

used to indicate that only a single value is being returned.11

We formulated two predictive models to generate estimates of growth for the i-th cluster Ci,12

which we denote by R̂(Ci) and R̂0(Ci), respectively. R̂0 requires less information than R̂ by postu-13

lating that each cluster is expected to grow in proportion to its current size, prior to the addition of14

new cases, as a fraction of the entire population of known cases:15

R̂0(Ci) = exp
(
|Ci|
|V c|

R
)
. (3)

For example, a cluster that comprises half of the known cases is predicted to accumulate half of16

new cases that are adjacent to any cluster. Thus R̂0 does not use any individual-level attributes to17

predict cluster growth — it is a naive model that assumes that the allocation of new cases in R18

(those adjacent to clusters) is not influenced by any characteristics of those clusters other than the19
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‘space’ they occupy. This model assumes that the observed numbers of edges connecting vertices1

in Ci to vertices in U is a Poisson-distributed outcome with mean R̂0.2

R̂ assigns an individual-level weight ρ(v) to every vertex in v ∈Ci, proposing that the growth3

of cluster Ci is proportional to the exponential of the combined weights of the vertices in Ci:4

R̂(Ci) = exp

(
α +β ∑

v∈Ci

ρ(v)

)
(4)

where α and β are quantities to be estimated by regression. We use an exponential function5

because the numbers of new cases are counts that will be modelled as outcomes of a Poisson log-6

linear model. The weight ρ(v) of a given vertex in V c is based on the expected rate of adjacency7

to cases in U for a known case that is ∆t years behind the cases in U . We quantified this expected8

rate of adjacency by the densities of edges between two sets of cases from different time points9

separated by a time lag of ∆t years. Specifically, the edge density for years i and j is calculated10

from the bipartite graph Ki, j between two sets of vertices: Vi = {v ∈ V c : t(v) = i} and Vj = {v ∈11

V c : t(v) = j}. Note that no information about edges to vertices in the most recent time period,12

U , is being used to train our model (Eqn. 4), since we are reserving these cases to evaluate the13

effectiveness of this model. For a given ∆t, there are a total of (tmax− tmin−∆t) different bipartite14

graphs, where tmax is the time point prior to the most recent time. We refer to this subset of bipartite15

graphs as K(∆t) = {Ki, j : j > i, j− i = ∆t}.16

Next, we define the following indicator function for v ∈Vi and u ∈Vj:17

1(v,u) =


1 if e(v,u) ∈ E and v = argmin1

x w(x,u) ∀x ∈Vi

0 otherwise
. (5)

where we remove edges in the bipartite graph until the edge with the minimum weight for each18

given u in Vj remains. Given this indicator function, we calculate the observed edge density for19
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Ki, j = (Vi,Vj) as:1

ρ(Ki, j) = ∑
v∈Vi

∑
u∈V j

1(v,u) (6)

The log likelihood for the observed edge densities for all bipartite graphs in the set K(∆t) is ob-2

tained from the Bernoulli distribution:3

logL(ρ̂|∆t) = ∑
Vi,V j∈K(∆t)

(
∑

v∈Vi

∑
u∈V j

ρ̂(∆t)1(v,u)+(1− ρ̂(∆t))(1−1(v,u))

)
(7)

where ρ̂(∆t) is the expected edge density for a given time lag ∆t. Finally, we fit a binomial4

regression model to observed decay of edge densities with increasing ∆t to estimate ρ̂:5

log
(

ρ̂

1− ρ̂

)
= α +β∆t (8)

where the left hand side of the equation is the log odds of an edge from v to u over a lag ∆t. Our6

model assumes that the number of vertices in U adjacent to vertices in Ci is a Poisson-distributed7

outcome with mean parameter λ = R̂(Ci), which is calculated by combining Equations 4 and 8.8

For the following demonstration, we use the simplest model where the probability that a given9

vertex v is adjacent to a new case is dependent only on the age of that vertex (Eqn. 8). The weight10

of a given vertex is thus ρ = ρ̂ (t(v)). However, Equation 8 can be easily extended to incorporate11

M additional individual-level attributes (e.g., plasma viral load) into a linear predictor of a vertex’s12

adjacency to new cases:13

log
(

ρ̂

1− ρ̂

)
= α +β0 (t(v)− tmax)+β1a1(v)+ . . .+βMaM(v) (9)

where we have replaced the lag ∆t defining bipartite graphs with the vertex-specific age relative to14

the most recent time point, tmax, and am(v) is a function that extracts the m-th attribute from the15

vertex v.16
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Evaluating cluster thresholds1

For both data sets, we segregated all HIV-1 sequences that were sampled in the most recent year2

as new cases comprising the set U . Next, we extracted the observed cluster growth data R(Ci) and3

edge densities ρ at 46 different cluster-defining distance thresholds, ranging from d = 0.005 to4

d = 0.05 in steps of 0.001. We extracted the graph for a given cutoff d by filtering edges in E so5

that w(e)< d. Next, we fit the generalized linear models described by Equations (3) and (8), which6

correspond to R̂0 and R̂ respectively, to the observed growth distribution among clusters R(Ci). The7

resulting Akaike information criterion (AIC) for each model was recorded as a measurement of fit8

[33]. Nakaya [27] describes a “generalized AIC” (GAIC) as the difference in AIC between models;9

applying this framework to our analysis, we obtain the following criterion:10

GAIC = AIC(R̂)−AIC(R̂0)

= 2(k− k0)−2
(
logL(R̂)− logL(R̂0)

)
(10)

where k is the degrees of freedom. Cutoffs with a negative GAIC indicate that the weighted model11

R̂ explains the data more effectively than the naive model R̂0.12

Results13

Study populations14

A total of n = 1,591 and n = 803 HIV-1 sequences were obtained from published studies in Seat-15

tle [29] and Northern Alberta [28], respectively. The distributions of sample collection dates are16

summarized in Figure 1. Although the sampling frame was shorter for Northern Alberta, similar17

numbers of cases were sampled per year at both locations, averaging 122.4 and 114.7 per year for18

Seattle and Northern Alberta, respectively. The most recent years of sampling (2012 and 2013, re-19

spectively) were withheld as the sets of new cases (U) for all subsequent analyses. Coincidentally,20
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the numbers of new cases were the same for each location (|U |= 110).1
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Figure 1: (top) Distribution of sample collection years for the Seattle (blue) and North Alberta (orange)
data sets. Absent bars indicate that no sampling was carried out in the respective years, and does not
reflect an absence of cases. (bottom) Histograms of Tamura-Nei (TN93) genetic distances among pairwise
comparisons of HIV-1 sequences from Seattle and North Alberta. The height of each bin has been rescaled
to reflect the total number of pairwise comparisons, for which the majority were censored from the data. A
magnified section of the histograms is provided as an inset figure to clarify the distributions in the range (0,
0.025).

The truncated distributions of TN93 distances (below a limit of 0.05) were generally similar2

between the two locations (Figure 1). The filtered graphs from Seattle and North excluded 27 and3

6 cases respectively as these cases would have been disconnected singletons even at the highest4

cutoff of 0.05. Although the Northern Alberta data set comprised a smaller number of sequences,5

the lower tail of its TN93 distribution contained relatively higher numbers of pairs than the Seattle6

data set (Figure 1). Similarly, we observed substantially lower frequencies of pairs with high7
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TN93 distances (≥ 0.03) in the Northern Alberta data. Thus, these distributions are significantly1

different (Kolmogorov-Smirnov test, P < 10−4) with a slightly lower mean distance in Northern2

Alberta (0.0414) than Seattle (0.0426).3

Adjacency of cases decays with time lag4

We generated graphs from each HIV-1 data set by computing for every pair of sequences the5

Tamura-Nei (TN93) genetic distance, which adjusts for differences in the mean rates among nu-6

cleotide transversions and the two types of transitions [31]. This approach has been popularized7

by the software HIV-TRACE [34], which is employed by the U.S. Centers for Disease Control and8

Prevention [35]. In the following sections, we will refer to vertices in the graph derived from the9

pairwise genetic distances as cases. Vertices in the most recent year U will be referred to as new10

cases, whereas vertices in the rest of the graph Vc are known cases. Applying a cutoff wmax to11

select edges based on their weights (pairwise distances) yields a different partition of the known12

cases into clusters (connected network components). Two cases are adjacent when they are con-13

nected by an edge. A cluster may comprise a single known case. We expect that the probability14

of an edge between cases v and u should be influenced by the number of years that separate the15

respective sample collection dates (e.g., ∆t). To quantify this effect, we plotted the observed edge16

densities for bipartite graphs with a given lag ∆t as a declining function of ∆t for a distance cutoff17

wmax = 0.05 (Figure 2). Fitting binomial regression models (Equation 8) to each data set obtained18

similar trends, despite the reduced number of bipartite graphs for the Northern Alberta data set19

due to a narrower range of sample collection dates. Specifically, the estimated effect of ∆t on the20

log-odds of a bipartite edge was−0.35 (95% C.I. =−0.38,−0.32) year−1 for the Seattle data, and21

−0.45 (−0.54,−0.37) year−1 for Northern Alberta. The coefficient of determination for the re-22

spective models was R2 = 0.48 and 0.28. Given that the observed edge densities were low (< 2%)23

for the range of distance cutoffs assessed here, the predicted trend could be well approximated by24

an exponential decay function, i.e., Poisson approximation to the binomial distribution. Lowering25
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the cutoff wmax reduced the observed bipartite edge densities as fewer edge weights passed the1

threshold. Nevertheless, the negative association between ∆t and the log-odds of bipartite edges2

was robust to varying the cutoff (Supplementary Figure S1). This analysis supports the use of the3

difference in sample collection dates, or ‘case recency’ (∆t), as an individual-level predictor of a4

new case joining a cluster of known cases.5
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Figure 2: Decay in bipartite edge density with increasing time lag. Each point represents a bipartite graph
at a given time lag (difference in years between time points, x-axis). We added random noise to the time
lag associated with each point to make it easier to distinguish overlapping points. The y-axis represents the
log-transformed bipartite edge density, i.e., the frequency of edges between cases in different time points
out of all possible edges (Equation 6). A × symbol is used to indicate the approximate position of an empty
bipartite graph in the Seattle data set with a time lag of 5 years. Trend lines represent the predicted edge
densities from the binomial regression described by Equation 8.

Trade-off between case coverage and cluster information6

Figure 3 illustrates the effect of relaxing the cutoff wmax on the number of new cases in U that7

are adjacent to known cases in V c, which we denote as R. When R approaches the total number8

of new cases, |U |, we say that the clusters have a high case coverage. As expected, decreasing9
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the cutoff reduced R as a progressively greater number of edges between v ∈ V c and u ∈U were1

excluded by the clustering criterion w(v,u)≤ wmax. The rate of decline in R with decreasing wmax2

was visibly faster for the Seattle data set than Northern Alberta (Figure 3), which was consistent3

with the greater proportion of short pairwise distances in the latter data set (Figure 1). These4

trends illustrate one of the expected disadvantages of applying a more stringent cutoff to a pairwise5

clustering analysis, as it limits the ability of the investigator to predict new cases.6
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Figure 3: Distribution of new cases in among clusters as a function of distance cutoff. The solid lines
represent the total number (R) of new cases in U adjacent to clusters of known cases in V c. The points
correspond to the number of clusters with edges to new cases, which we refer to as ‘active’ clusters.

In addition, Figure 3 summarizes how the number of clusters with at least one edge to U7

declines towards 1 with an increasing distance cutoff. We refer to any cluster Ci that meets this8

criterion (R(Ci) > 0) as an active cluster. At the upper limit of wmax = 0.05, all new cases in9

U were connected to a single giant cluster of known cases. This outcome does not represent10

actionable information for public health because the giant cluster is indistinguishable from the11

entire population of known cases. Put another way, relaxing the cutoff to increase case coverage12
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comes at the cost of lost predictive power. Decreasing the distance cutoff causes this giant cluster1

to be broken up into smaller clusters of which a subset have edges to new cases, such that the2

number of active clusters increases. As the cutoff continues to decline, however, the number of3

active clusters starts to decline again — despite their continued break-up into smaller clusters —4

because shorter cutoffs limit the adjacency of new cases to clusters. In other words, R sets an upper5

limit to the number of active clusters; these numbers can only be equal if each new case is uniquely6

adjacent to its own cluster, as we observed for the Seattle data set for cutoffs below wmax = 0.0077

(Figure 3).8

Obtaining GAIC9

The results in the preceding sections imply that there exists an intermediate distance cutoff that10

optimizes the trade-off between case coverage and the number of active clusters, both quantities11

having a significant impact on the information content of clusters for public health. We propose to12

use our ability to predict where the next cases will occur as the framework for evaluating distance13

cutoffs that define different partitions of the known case population into clusters. Specifically, we14

adapted the generalized Akaike information criterion (GAIC), which was developed by Nakaka15

[27] to select the granularity of districts in Tokyo, Japan, that best explained variation in death rates16

among elderly males in relation to socioeconomic and demographic factors. Our implementation17

of the GAIC is a comparison between two Poisson regression models, where the outcomes are18

the numbers of new cases adjacent to clusters, R(Ci). In the first model, we assume that the19

expected number of new cases adjacent to the i-th cluster, R̂0(Ci), is Poisson distributed with a rate20

proportional to the size of that cluster relative to the entire population of known cases. In other21

words, we would expect a large cluster to be adjacent to more new cases than a small cluster simply22

because it is large. In the second model, R̂(Ci) is Poisson distributed with a rate proportional to23

the total weight of known cases in the i-th cluster, where each weight is calculated from a linear24

combination of individual attributes including the sample collection date, e.g., ∆t.25

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/639997doi: bioRxiv preprint 

https://doi.org/10.1101/639997
http://creativecommons.org/licenses/by/4.0/


0.005 0.015 0.025 0.035

−
40

−
30

−
20

−
10

0
10

TN93 distance cutoff

G
en

er
al

iz
ed

 A
IC

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●

0.014

0.011

● Seattle
N.Alberta

Figure 4: The GAIC relative to cuttoff d. This is calculated as the difference in AIC between R̄(c) fit to
R(c) minus R̄0(c) fit to R(c). The statistics from Gna are shown in Yellow and those taken from Gst are
shown in blue. The highlighted minimums, where R̄(c) most out preforms R̄0(c) in cluster by cluster growth
prediction are shown by the dashed line. These minimums are found at cutoffs d = 0.011 and d = 0.014.

Figure 4 summarizes the distributions of GAIC for varying distance cutoffs for the Seattle1

and Northern Alberta data sets. We observed that GAIC tended to be near zero for relaxed cut-2

offs (wmax ≥ 0.03), which indicated that the ability of the weighted model, which incorporated3

individual-level information, to predict new cases was indistinguishable from the naive model.4

At these high cutoffs, the majority of known cases tended to become grouped into a single large5

cluster, thereby homogenizing any individual-level variation that could be used by the weighted6

model to predict the distribution of new cases. The GAIC values tended to decline monotoni-7

cally with decreasing cutoffs, which split the known cases into progressively smaller clusters, until8

they reached the minimum values at wmax = 0.014 for Seattle and wmax = 0.011 for Northern Al-9

berta. These minima identified the optimal distance cutoffs for the respective data sets where the10

weighted model was significantly better at predicting new cases. For cutoffs below these optimal11

values, we observed that the GAIC increased to positive values indicating that the weighted model12
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was inferior to the naive model. Hence, lowering the cutoff wmax to these levels resulted in the1

dissolution of clusters into large numbers of singletons where our ability to predict new cases was2

overwhelmed by individual-level variation in ∆t. In other words, the distribution of new cases3

among the small clusters defined by a low cutoff becomes more stochastic.4

Seattle Northern Alberta

2

1

1

3

Figure 5: Visualizations of the graphs of the Seattle and Northern Alberta data obtained by the respective
GAIC-optimized cutoffs. Vertices that corresponded to new cases were coloured in a darker shade, and the
width of each vertex was scaled to the sample collection year with more recent cases drawn at a larger size.
The vertices with zero degrees (singletons) were not drawn for clarity; the numbers of singletons were 1191
(Seattle) and 384 (N. Alberta), of which 68 and 42 were new cases respectively. Specific clusters discussed
in the text were manually outlined and labeled with their rank according to size. The graph layouts were
rendered using the implementation of the Kamada-Kawai [36] algorithm in Graphviz [37].

The graphs for these optimal cutoffs are summarized in Figure 5. In the Seattle graph, the5

largest cluster (1) comprising 35 known cases was not adjacent to any of the new cases. The sample6

collection years associated with this cluster range from 2000 to 2011 with a mean of 2006.0. In7

contrast, the second largest cluster (2) comprised 16 cases of which 6 are new, and the sampling8

years of known cases range from 2007 to 2011 with a mean of 2009.6. Similarly, the largest9

cluster in the Northern Alberta graph (1) comprised 27 cases of which only 1 was new, with sample10

collection years ranging from 2007 to 2013 with a mean of 2009.3. In the same graph the third11
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largest cluster (3) of 10 known cases, of which 5 were collected in 2012, gained 12 new cases1

in 2013. These simple examples illustrate the effect of optimizing the clustering threshold on the2

covariation of new case counts and the recency of known cases among clusters. On the other hand,3

only about half of new cases were adjacent to clusters of known cases in either graph (67.3% for4

Seattle, 41.6% for Northern Alberta) given the optimized cutoffs.5

Discussion6

Our results demonstrate that an apparently small difference in pairwise genetic distances — for7

instance, between 0.5% and 1.5% — can make the difference between accurate forecasting of new8

cases among clusters and becoming misled by stochastic noise. Specifically, both cutoffs cited9

above are routinely used as customary settings in pairwise genetic distance clustering studies of10

the same HIV-1 subtype in the same country [16, 17, 29]. To investigate the sensitivity of clus-11

tering thresholds, we have examined two published data sets of anonymized HIV-1 subtype B pol12

sequences that were collected in different regions of North America within similar time frames.13

Both cutoffs are located in the left tails of the respective empirical distributions of pairwise dis-14

tances, with no clear demarcation that might motivate the selection a priori of one cutoff over15

another (Figure 1). However, our information-based criterion reveals a stark difference between16

these cutoffs when we evaluate the ability of genetic clusters to ‘forecast’ the occurrence of new17

cases (Figure 4). This discordance is a result of a tradeoff between the coverage and predictive18

value of spatial information that is encapsulated by the modifiable areal unit problem (MAUP). As19

we relax the clustering threshold in our example, instances of cluster growth become more fre-20

quent such that aggregate effects (viz., case recency) can be distinguished against the background21

of stochastic effects. At the same time, there is declining variation in growth rates among clus-22

ters, making it more difficult to detect associations between growth and the variation in covariates23

among clusters.24

Unlike most instances of the MAUP that arise in spatial epidemiology, our outcome variable25
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(the number of new cases per genetic cluster) is directly dependent on the same parameters that1

reshape the partition of the spatial distribution of covarates into units. This dual dependency results2

in an asymptotically increasing model likelihood with increasing distance thresholds, plateauing at3

the point where all known cases were assigned to the same giant cluster, such that any new cases4

are effectively guaranteed to be adjacent to this cluster. We addressed this unique problem by5

formulating a null model R0, where the predicted growth of a cluster was directly proportional to6

its relative size in the number of known cases. Hence, R0 provided a useful baseline that controlled7

for the proportionate effect of the largest cluster with increasing cutoffs, thereby enabling us to8

focus on the predictive value of variation in covariates among clusters.9

We selected the simplest clustering method (pairwise TN93 distance clustering [15]) to demon-10

strate our new framework for evaluating clusters, based on Nakaya’s generalized Akaike infor-11

mation criterion (GAIC) [27]. Despite the simplicity of pairwise clustering, it has been widely12

adopted in health jurisdictions around the world, including the U.S. Centers for Disease Control13

and Prevention [35], in part due to the growing popularity of the HIV-TRACE software package14

[34]. However, we emphasize that our framework can be used to evaluate any clustering method15

on the merits of its ability to forecast new cases. Put another way, any clustering criterion that16

changes the degree of connectivity can be optimized through this method. For example, if we re-17

quire some minimum bootstrap support value to define clusters as subtrees extracted from the total18

phylogenetic tree [38], then this bootstrap support threshold can represent a second dimension to19

locate the minimal GAIC in combination with a distance threshold. Additionally, our framework20

enables us to evaluate clustering methods that do not use any genetic information. Thus we pro-21

pose that an informative assessment on the potential value of genetic clustering for public health22

would be to compare the GAIC of the genetic clustering method against the GAIC obtained from23

the prioritization of groups by experts in public health, e.g., medical health officers. However, the24

specialized and confidential information comprisign the latter case is unlikely to be found in the25

public domain.26
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Similarly, we can evaluate any linear combination of predictor variables, such as viral load or1

risk group, because our framework is based on a Poisson regression model. For the purpose of2

demonstrating the framework, we used only sample collection dates to derive a predictor variable3

(case recency). These dates in units of years are most frequently available as sample metadata4

in association with published genetic sequences. We had a strong a priori expectation for an5

association between new case adjacency and known case recency that we subsequently confirmed6

from these data (Figure 2). On the other hand, we are also aware that samples may be collected7

well after the start of a new infection, due to the long asymptomatic period of HIV-1 infection8

and social barriers to HIV testing [39]. Although dates of HIV diagnosis or estimated dates of9

infection, e.g., the midpoint between the last HIV seronegative and first seropositive visit dates,10

will inevitably be closer to the actual date of infection, sample collection dates are substantially11

more readily available in the public domain. Furthermore, we recognize that more precise dates of12

sample collection would likely confer greater prediction accuracy. The granularity of time in the13

context of genetic cluster analysis represents another extension of MAUP, known as the modifiable14

temporal unit problem [40]. While reducing the length of time intervals may produce more timely15

predictions, e.g., new cases in the next three months instead of the next year, the accuracy of16

prediction will erode with progressively shorter intervals.17

Another caveat is that the expected probability of a specific edge between known and new18

cases is very small. Consequently, our framework requires a substantial number of new cases to19

parameterize models of the variation in edge densities among clusters and, ultimately, to discrim-20

inate between the null and weighted models. The results that we obtained with the smaller of21

the two data sets (N. Alberta) implies that averaging about 100 sampled cases per year over a 622

year period is adequate for the relatively simple models evaluated here, although this was almost23

certainly influenced by the relatively higher proportion of pairwise distances below 0.03 (Figure24

1). Note that the number of cases sampled in a given year does not correspond to the annual in-25

cidence. In summary, we were able to infer the optimal cutoffs as distinct minima in the GAICs26
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between the weighted and baseline models, despite using only the most rudimentary clustering1

method and a single covariate. This implies that employing more complex clustering methods2

(e.g., [38, 41, 42]) and more extensive individual- and group-level covariates (e.g., [7, 18, 43–45])3

can identify increasingly lower minima, i.e., more effective predictive models of cluster growth,4

provided adequate data. A model selection procedure for optimizing the combination of covariates5

in the context of predicting cluster growth was recently described by Billock and colleagues [6],6

for instance, for pairwise TN93 clusters at a prespecified cutoff of 1.5%.7

Our method is not specific to HIV-1, although the proliferation of clustering methods in HIV8

molecular epidemiology — driven by the abundance of genetic sequence data and the relatively9

rapid rate of evolution and low transmission rate of the virus — does make this approach par-10

ticularly applicable to HIV-1. Similar pairwise distance clustering methods, for instance, have11

been used for Mycobacterium tuberculosis [46] and hepatitis C virus [47] to infer epidemiological12

characteristics from molecular sequence variation. In these cases, it may be necessary to rescale13

time-frame for cluster growth or the step size/range of clustering thresholds to locate the minimum14

GAIC. Genetic clustering is used increasingly for near real-time monitoring of clinical populations15

for the purpose of guiding public health activities [5, 6, 10, 35]. Because of this, it has become16

very important which tools we use for phylodynamic analysis and how we use them. Inadequately17

calibrated clustering methods may result in outbreak false-positives, diverting limited public health18

resources away from subpopulations where the immediate need for prevention and treatment ser-19

vices was greatest. Improving the predictive potential of clustering techniques will be an important20

part of optimizing the public health response to HIV, as increased normalization and access to HIV21

testing [48], proper data anonymization and network security practices [49], and faster and more22

cost-effective resistance genotyping continue to lower barriers to detecting outbreaks in shorter23

time frames.24
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[2] Kulldorff M, Heffernan R, Hartman J, Assunçao R, Mostashari F. A space–time permutation4

scan statistic for disease outbreak detection. PLoS medicine. 2005;2(3):e59.5

[3] Huang SS, Yokoe DS, Stelling J, Placzek H, Kulldorff M, Kleinman K, et al. Automated6

detection of infectious disease outbreaks in hospitals: a retrospective cohort study. PLoS7

medicine. 2010;7(2):e1000238.8

[4] Cummings MJ, Tokarz R, Bakamutumaho B, Kayiwa J, Byaruhanga T, Owor N, et al. Preci-9

sion surveillance for viral respiratory pathogens: virome capture sequencing for the detection10

and genomic characterization of severe acute respiratory infection in Uganda. Clinical Infec-11

tious Diseases. 2018;68(7):1118–1125.12

[5] Rose R, Lamers SL, Dollar JJ, Grabowski MK, Hodcroft EB, Ragonnet-Cronin M, et al.13

Identifying transmission clusters with Cluster Picker and HIV-TRACE. AIDS research and14

human retroviruses. 2017;33(3):211–218.15

[6] Billock RM, Powers KA, Pasquale DK, Samoff E, Mobley VL, Miller WC, et al. Prediction16

of HIV Transmission Cluster Growth With Statewide Surveillance Data. Jaids Journal of17

Acquired Immune Deficiency Syndromes. 2019;80(2):152–159.18

[7] Ragonnet-Cronin M, Jackson C, Bradley-Stewart A, Aitken C, McAuley A, Palmateer19

N, et al. Recent and Rapid Transmission of HIV Among People Who Inject Drugs in20

Scotland Revealed Through Phylogenetic Analysis. The Journal of infectious diseases.21

2018;217(12):1875–1882.22

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/639997doi: bioRxiv preprint 

https://doi.org/10.1101/639997
http://creativecommons.org/licenses/by/4.0/


[8] Poon AF. Impacts and shortcomings of genetic clustering methods for infectious disease1

outbreaks. Virus evolution. 2016;2(2):vew031.2

[9] Levi J, Raymond A, Pozniak A, Vernazza P, Kohler P, Hill A. Can the UNAIDS 90-90-903

target be achieved? A systematic analysis of national HIV treatment cascades. BMJ global4

health. 2016;1(2):e000010.5

[10] Poon AF, Gustafson R, Daly P, Zerr L, Demlow SE, Wong J, et al. Near real-time monitoring6

of HIV transmission hotspots from routine HIV genotyping: an implementation case study.7

The lancet HIV. 2016;3(5):e231–e238.8

[11] Gonsalves GS, Crawford FW. Dynamics of the HIV outbreak and response in Scott County,9

IN, USA, 2011–15: a modelling study. The Lancet HIV. 2018;5(10):e569–e577.10

[12] Volz EM, Le Vu S, Ratmann O, Tostevin A, Dunn D, Orkin C, et al. Molecular epidemiology11

of HIV-1 subtype B reveals heterogeneous transmission risk: Implications for intervention12

and control. The Journal of infectious diseases. 2018;217(10):1522–1529.13

[13] Hassan AS, Pybus OG, Sanders EJ, Albert J, Esbjörnsson J. Defining HIV-1 transmission14

clusters based on sequence data. AIDS (London, England). 2017;31(9):1211.15

[14] Little SJ, Pond SLK, Anderson CM, Young JA, Wertheim JO, Mehta SR, et al. Using HIV16

networks to inform real time prevention interventions. PloS one. 2014;9(6):e98443.17

[15] Aldous JL, Pond SK, Poon A, Jain S, Qin H, Kahn JS, et al. Characterizing HIV transmission18

networks across the United States. Clinical Infectious Diseases. 2012;55(8):1135–1143.19

[16] Oster AM, Wertheim JO, Hernandez AL, Ocfemia MCB, Saduvala N, Hall HI. Using molec-20

ular HIV surveillance data to understand transmission between subpopulations in the United21

States. Journal of acquired immune deficiency syndromes (1999). 2015;70(4):444.22

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/639997doi: bioRxiv preprint 

https://doi.org/10.1101/639997
http://creativecommons.org/licenses/by/4.0/


[17] National Center fo HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Detecting1

and responding to HIV transmission clusters: a guide for health departments; 2018.2

https://www.cdc.gov/hiv/pdf/funding/announcements/ps18-1802/CDC-HIV-PS18-1802-3

AttachmentE-Detecting-Investigating-and-Responding-to-HIV-Transmission-Clusters.pdf.4

[18] Poon AF, Joy JB, Woods CK, Shurgold S, Colley G, Brumme CJ, et al. The impact of clinical,5

demographic and risk factors on rates of HIV transmission: a population-based phylogenetic6

analysis in British Columbia, Canada. The Journal of infectious diseases. 2014;211(6):926–7

935.8

[19] Wertheim JO, Pond SLK, Forgione LA, Mehta SR, Murrell B, Shah S, et al. So-9

cial and genetic networks of HIV-1 transmission in New York City. PLoS pathogens.10

2017;13(1):e1006000.11

[20] Novitsky V, Moyo S, Lei Q, DeGruttola V, Essex M. Impact of sampling density on the extent12

of HIV clustering. AIDS research and human retroviruses. 2014;30(12):1226–1235.13
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Figure S1: Decline of bipartite edge density with increasing time lag for wmax = 0.005. Unlike Figure 2,
the y-axis (bipartite edge density) is not log-transformed because of a substantial number of zero densities
in the Seattle data set at this cutoff. The estimated effects of lag (∆t) on the log-odds of bipartite edges were
−0.63 (95% C.I.−0.89,−0.42) and −0.25 (−0.46,−0.05) for Seattle and Northern Alberta, respectively.
The respective coefficients of determination (R2) were 0.37 and 0.34. In sum, lowering the distance cutoff
wmax reduced the observed edge densities but consistently maintained a negative association between the
log-odds and ∆t.
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