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ABSTRACT

AIM: A phylogenetically diverse array of fungi live within healthy leaf tissue of 
dicotyledonous plants. Many studies have examined these endophytes within a 
single plant species and/or at small spatial scales, but landscape-scale variables 
that determine their community composition are not well understood, either across
geographic space, across climatic conditions, or in the context of host plant 
phylogeny. Here, we evaluate the contributions of these variables to endophyte 
community composition using our survey of foliar endophytic fungi in native 
Hawaiian dicots sampled across the Hawaiian archipelago. 

LOCATION: Hawaiʻi.

METHODS: The Hawaiian archipelago offers a uniquely tractable system to study 
biogeography of foliar endophytic fungi, because the islands harbor a wide array of
climatic conditions, and native plant species are often found across wide 
elevational and climactic ranges. We used Illumina technology to sequence fungal 
ITS1 amplicons in order to characterize foliar endophyte communities in the leaves
of 896 plants across 5 islands and 80 host plant genera. Using Generalized 
Dissimilarity Modeling (GDM) we tested the effect of landscape-scale variables on 
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observed differences in foliar endophyte communities. Bipartite network analysis 
was used to examine the extent to which each island harbored specialized or 
cosmopolitan foliar endophytes. 

RESULTS: Communities of foliar endophytic fungi in the Hawaiian archipelago are 
structured most strongly by evapotranspiration, elevation, vegetation/habitat type, 
and by the phylogeny of host plants. The five islands we sampled each harbored 
significantly specialized endophyte communities as well. 

MAIN CONCLUSIONS: Factors that structure foliar endophyte communities at 
small geographic and narrow host phylogenetic scales are broadly generalizable to
the larger scales we studied here, although not universally. Evapotranspiration, a 
variable with resolution 250 m2, was the most robust predictor of endophyte 
community dissimilarity in our study, although it had not previously been 
considered an important determinant of FEF communities.

KEYWORDS: Fungi, Endophytes, Dicots, Pezizomycotina, High-throughput 
sequencing, Island Biogeography

INTRODUCTION

Less than two out of every thousand fungal species thought to exist on Earth have 
been described (Blackwell, 2011). Of those species awaiting discovery, a large 
percentage are presumed to live cryptic lifestyles in association with plant or 
animal hosts (Hawksworth & Rossman, 1997; Blackwell, 2011). Foliar endophytic 
fungi (FEF), defined here as all fungi living within leaf tissue but not causing any 
outward signs of disease (sensu (Stone et al., 2000)) are effectively invisible and 
represent a “hotspot” of undescribed fungal diversity (Arnold & Lutzoni, 2007; 
Porras-Alfaro & Bayman, 2011). Most commonly, tropical FEF are nested 
throughout the non-lichen forming classes of the subphylum Pezizomycotina
(Blackwell et al., 2006; Arnold et al., 2009; Rodriguez et al., 2009), but due to their
cryptic lifestyles and high species richness, many questions remain about which 
factors determine how FEF are distributed throughout nature. 

Although all available evidence suggests that most eudicot FEF are horizontally 
transmitted and not inherited via seed (Bayman et al., 1998), it is unclear which 
factors structure FEF community composition, and how those factors differ in their
relative importance. Previous studies that have examined FEF communities in this 
ecological and biogeographic context have noted several different drivers of FEF 
community composition and biogeography. Temperature (Zimmerman & Vitousek, 
2012; Coince et al., 2014), geographic distance (U’Ren et al., 2012), elevation and 
rainfall (Zimmerman & Vitousek, 2012), vegetation density/urbanization
(Jumpponen & Jones, 2009, 2010), and host plant specificity (Unterseher et al., 
2012; Massimo et al., 2015; Vincent et al., 2016) have all been identified as 
putatively important variables for FEF community composition. This diversity of 
results arises from individual studies examining a narrow range of hypotheses for 
the drivers of FEF community composition, or studying those hypotheses within a 
narrow host phylogenetic framework.
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In fact, the bulk of FEF research is represented by studies focusing on a specific 
host plant (Jumpponen & Jones, 2010; Zimmerman & Vitousek, 2012; Mejía et al., 
2014; Saucedo-García et al., 2014; Oono et al., 2015; Polonio et al., 2015; Felber et
al., 2016; González-Teuber, 2016; Kato et al., 2017). Studies that have surveyed 
FEF or other leaf-associated fungi across multiple plant species have found 
significant host effects (Unterseher et al., 2012; Kembel & Mueller, 2014; Massimo
et al., 2015; Huang et al., 2016; U’Ren & Arnold, 2016; Vincent et al., 2016), 
suggesting that host identity likely interacts with the abiotic environment to 
structure FEF community composition. Furthermore, many previous studies used 
culture-dependent methods to characterize FEF communities, which may not 
account for the large proportion of microorganisms (fungi included) that are 
difficult or impossible to isolate on artificial media. 

Here, we use the results of previous FEF studies to inform our hypotheses 
regarding the spatial, climactic, and host phylogenetic drivers of FEF community 
composition in native Hawaiian plants. Specifically, we test the hypotheses that 
elevation, rainfall, geographic distance, and host plant phylogeny are the strongest
predictors of FEF community composition of native plants across the Hawaiian 
archipelago (Figure 1). We include more potential explanatory variables in our 
analysis as well, including evapotranspiration (Lewis et al., 1997; Kivlin et al., 
2011) and geographic distance (Higgins et al., 2014): variables shown to be 
important for other non-foliar fungal endophytes. Unlike previous studies of FEF 
biogeography that have focused on narrow geographic and host phylogenetic 
scales, our study spans 80 genera of host plants, as well as a large and ecologically
diverse geographic area (Hawaiʻi). We used Illumina sequencing of the fungal ITS1
region (White et al., 1990) to characterize FEF communities of native plants across
the Hawaiian archipelago, in order to test our hypotheses about the effect of host 
plant phylogeny on FEF, the effect of climate on FEF communities, and whether 
there are significant geospatial patterns in FEF community structure.

The Hawaiian archipelago is an appropriate setting in which to investigate how 
geography structures FEF community composition, because a large body of theory 
exists describing how biodiversity can be distributed across islands (MacArthur & 
Wilson, 1967; Hubbell, 2001), such as those studied here (Figure 1). If FEF 
community composition is the result of dispersal limitation either between islands 
or simply over large geographic distances, geographically proximate FEF 
communities should be compositionally similar, while geographically distant 
communities should be compositionally distinct (Nekola & White, 1999).  
Additionally, the relatively young geological age and isolation of the islands results 
in a small but mostly endemic native flora, and many of these species encompass 
unusually wide niches and elevational distributions (Raich et al., 1997; Wagner, 
1999). This, combined with a phylogeny of the native plants studied, enables us to 
analyze the effect host plant phylogenetic dissimilarity has on FEF community 
composition while accounting for the effects of other predictor variables using 
Generalized Dissimilarity Modeling (GDM).

Although geographic distance was a very weak (but significant) variable in our 
GDM analysis, we found that each of the five Hawaiian islands we sampled 
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harbored significantly specific (i.e. non-cosmopolitan) fungi, commensurate with 
the high local and regional diversity of FEF. Furthermore, we found that 
evapotranspiration, elevation, and NDVI (normalized difference vegetation index) 
were significant contributors to FEF community structure at the landscape scale 
(across the Hawaiian archipelago), although phylogenetic relationships among host
plants were important as well.

MATERIALS AND METHODS

Sample Collection

General sampling locations were selected to maximize habitat, phylogenetic, and 
spatial diversity. We selected locations to prioritize access, a reasonable 
permitting process, and the known presence of ten or more native plant species. 
Access was the most limiting factor in comparatively fewer sampling locations on 
Molokai and Maui Islands. We chose not to collect plants that are federally listed 
as threatened or endangered. At each location, the first occurrence of an 
apparently healthy, naturally recruited individual was selected for sampling. Only 
native plants were selected this way. We limited our sampling to single individuals,
because we did not wish to confound our data with uneven species density and 
resulting spatial heterogeneity among samples. Mature, sun leaves were collected 
such that when combined, they covered a surface area roughly equivalent to two 
adult-sized hands. Life form and stature differed markedly across our sampled 
plants, so it was difficult to precisely standardize collection location on plants. 
When possible leaves from trees and shrubs were collected at eye level and from at
least four aspects of the tree canopy.  We focused on dicots because they are easily
identifiable, accessible, and have horizontally transmitted FEF (compared to many 
vertically transmitted FEF in some monocots). Although not all host plant genera 
were collected at every sample location, the three most common genera we 
collected (Metrosideros, n=119; Leptecophylla, n=89; and Vaccinium, n=147) 
were each collected across elevations ranging from sea level to over 2000 meters 
above sea level.  The location of each plant was recorded with a GPS and plants 
were positively identified in the field and/or vouchered for subsequent 
identification (vouchers deposited at Joseph F. Rock Herbarium at the University of
Hawaii, Manoa; HAW). Leaves were refrigerated until subsequent processing 
(within 72 hours of collection). A total of 1099 samples were collected in this way, 
but not all were used in the analyses presented here (see results section).

We surface sterilized leaves to exclude fungi present on leaf surfaces. After rinsing
in water, forty leaf discs were extracted per individual host by punching leaves 
with a sterile standard paper single hole punch (approximately 0.5 cm diameter). 
For plants with very small leaves, entire leaves were used such that the area of 
those leaves was the same as the area of leaf discs. Leaf discs (or aforementioned 
collections of small leaves) were then placed into loose-leaf tea bags that were 
subsequently stapled shut, submerged in 1% NaOCl for 2 minutes, then 70% EtOH 
for 2 minutes, followed by two rinses with sterile water for 2 minutes each. Rinse 
water was included in extraction controls to verify sterility of surface water. 

DNA Isolation
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Ten leaf discs per DNA extraction were placed in MP Biomedical Lysing Matrix A 
tubes (MP Biomedical, Santa Ana, CA, USA) containing DNA isolation solutions 
from the MoBio PowerPlant Pro DNA Isolation kit (Solution PD1, Solution PD2, 
Phenolic Separation Solution, and RNase A Solution; MO Bio, Carlsbad, CA, USA). 
Leaf discs were homogenized using a Mini-Beadbeater 24 (BioSpec Inc. OK) at 
3,000 oscillations per min for 2 minutes. Lysate was centrifuged at 13,000 RPM for
2 minutes and transferred to individual wells of a MoBio PowerPlant Pro DNA 96-
well Isolation kit for subsequent extraction following the manufacturer’s protocol.

PCR Amplification and Illumina Library Preparation

We amplified the ITS1 region of the ribosomal cistron using fungal specific primers
ITS1f and ITS2, along with Illumina adaptors and Golay barcodes incorporating a 
dual indexing approach, using previously published thermal cycling parameters
(Smith & Peay, 2014). PCRs were carried out in 25 μl reactions using the KAPA3G 
Plant PCR kit (KAPA Biosystems, Wilmington, MA, USA), 9ul of DNA extraction 
(concentration not measured) and 0.2 μM each of the forward and reverse primers.
Negative PCR and extraction controls were included. PCR products were purified 
and normalized using just-a-plate 96 PCR Purification and Normalization Kit 
(Charm Biotech, San Diego, California, USA). Normalized PCR products were 
pooled and concentrated using a streptavidin magnetic bead solution. Pooled PCR 
products were sequenced on five separate reactions in order of processing 
completion, using the 2 x 300 paired-end (PE) sequencing protocol on an Illumina 
MiSeq sequencing platform (Illumina Inc., Dan Diego, CA, USA). We did not 
include controls for sequencing run variation, and we acknowledge this as a 
limitation of our study. Negative control samples were discarded due to extremely 
low read count. 

DNA Sequence data processing and bioinformatics

QIIME (Caporaso et al., 2010) was used to demultiplex raw DNA sequence data 
into individual fastq files for each sample. Although paired-end sequencing was 
used, only the R1 read (corresponding to primer ITS1f) was used for downstream 
analysis, since sequencing quality of reverse reads was generally poor. VSEARCH
(Rognes et al., 2016) was used to discard reads with an average quality score 
below 25 (illumina Q+33 format), then ITSx (Bengtsson-Palme et al., 2013) was 
used to extract the ITS1 region from quality-filtered files. 

To cluster ITS1 sequences using the unoise3 algorithm (Edgar, 2016), sequences 
were first de-replicated at 100% identity using VSEARCH (Rognes et al., 2016), 
then zOTU centroid sequences were picked and chimeric sequences were removed
using unoise3 (Edgar, 2016). Then, all sequences were mapped onto zOTU seeds to
create a zOTU table (species x sample contingency table) using VSEARCH. zOTU 
stands for “zero-radius operational taxonomic unit” (Edgar, 2016). Unlike de novo 
OTUs clustered at user-determined identity cutoffs like 0.97 or 0.95, zOTUs are 
exact sequence variants (ESVs), which are better able to detect novel diversity 
while simultaneously filtering out artificial diversity caused by sequencing and PCR
error (Callahan et al., 2017). 
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Taxonomy was assigned to each zOTU using the UNITE database (v 7)(Nilsson, 
2011) and QIIME’s assign_taxonomy.py script (Caporaso et al., 2010) with the 
BLAST method using the default maximum e-value of 0.001 (Altschul et al., 1990). 
zOTUs within the Pezizomycotina (Blackwell et al., 2006) were retained in the 
zOTU table to the exclusion of all others, because this group of fungi is known to 
be largely made up of Class 3 endophytes (Rodriguez et al., 2009), which have 
documented life histories of horizontal transmission, asymptomatic residence 
within leaf tissue, and post-senescent sporulation (Blackwell et al., 2006; Arnold et 
al., 2009). Other FEF may exhibit these features as well, although less universally, 
and it is not our view that other FEF are ecologically unimportant. Furthermore, 
Pezizomycotina were chosen for analysis because they were disproportionately 
represented within our data set: 90% of our samples were over 50% composed of 
Pezizomycotina, and 50% of our samples were over 90% composed of 
Pezizomycotina. The zOTU table was then rarefied (i.e. randomly downsampled) to 
1500 sequences per sample (Figure S1), discarding samples with fewer than 1500 
sequences or samples for which host plants could not be satisfactorily identified.

GhostTree (Fouquier et al., 2016) was used to construct a phylogenetic tree for the
remaining Pezizomycotina phylotypes. Briefly, GhostTree allows phylogenetic trees
to be made from ITS1 sequence data, which are often un-alignable across families. 
This is done using a backbone tree created with the 18S rRNA gene, and then ITS1
sequences are used to refine the tree at a phylogenetic scale where those 
sequences can be meaningfully aligned (e.g. genus level). When used in an analysis
of real and simulated ITS1 data, the GhostTree+UniFrac approach resulted in 
higher amounts of variance explained than non-phylogenetic metrics (Fouquier et 
al., 2016), and this approach was also successfully used to study differences in 
fungal community composition in the human infant microbiome (Ward et al., 2018).
A new GhostTree was made using the SILVA database (v 128) for the 18S 
backbone, and the UNITE database (v 7). Tips of the GhostTree were renamed with
zOTU identifiers where zOTUs were assigned taxonomy to a UNITE entry in the 
GhostTree. In cases where multiple zOTUs were assigned to the same UNITE 
entry, a polytomy was created to fit those zOTUs into the tree. This approach may 
exclude novel taxa that are not present in the UNITE reference database, and this 
is a limitation of all studies using such a database, including this one.

The tree was used with weighted UniFrac (Lozupone & Knight, 2005)(hereafter 
referred to as “UniFrac”) to construct a beta-diversity matrix for the samples. 
UniFrac was used because it is not sensitive to “spurious” extra OTUs contributed 
by slight intragenomic variation among tandem repeats. Even if an individual 
fungus contains several zOTUs, each will only contribute a negligible amount of 
branch length to a sample, versus non-phylogenetic metrics (e.g. Bray-Curtis), 
which would consider those zOTUs as different as any other pair. Because UniFrac 
community dissimilarity considers the shared phylogenetic branch-lengths 
between two communities, it is robust to the case where a zOTUs is only found 
within one sample, and is similarly robust to the case where samples do not share 
any zOTUs, which can be problematic for other community dissimilarity metrics. 
This is important for our analysis of FEF communities, because many previous 
studies have shown that FEF are “hyperdiverse” even at local scales (e.g. within 
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one host or within one hundred meters) (Jumpponen & Jones, 2009, 2010; 
Rodriguez et al., 2009; Zimmerman & Vitousek, 2012). We suspected that this 
large amount of diversity would result in many pairs of samples that shared few or 
zero zOTUs, which would result in an inflation of 1-values (maximum dissimilarity) 
when using non-phylogenetic beta-diversity metrics such as Bray-Curtis or Jaccard 
community dissimilarity. Indeed, this same issue has been discussed by previous 
users of GDM as a saturation of maximal dissimilarities, and was solved by using 
phylogenetic dissimilarty metrics (Rosauer et al., 2014). We confirmed that this 
was indeed the case, and that UniFrac distance values were nicely distributed but 
Bray-Curtis dissimilarities were severely 1-inflated (Figure S2). For this reason, we
used the UniFrac beta-diversity matrix for the remainder of our analysis. The 
methods described above were additionally used to create a second UniFrac 
distance matrix for all FEF, not just Pezizomycotina.

Spatiotemporal data

Using sample geographic coordinates and collection dates, environmental and 
climatic data for each sample were extracted from GIS layers using the R packages
raster (Hijmans et al., 2014) and rgdal (Pebesma et al., 2012). Data were extracted
from rasters generated for the same month that samples were collected (except for
elevational data). Table 1 shows the sources of each GIS layer. Many explanatory 
variables were obtained from the Rainfall of Hawaiʻi and Evapotranspiration of 
Hawaiʻi websites (Giambelluca et al., 2013, 2014), and elevational data were 
obtained using the USGS EarthExplorer online tool (http://earthexplorer.usgs.gov),
courtesy of NASA EOSDIS Land Processes Distributed Active Archive Center and 
the United States Geological Survey's Earth Resources Observation and Science 
Center. These explanatory variables were chosen either because previous studies 
of FEF had identified them as important (air temperature, elevation, rainfall), or 
because they were easily obtained (slope, aspect), or because they were easily 
available and made intuitive sense in the context of fungi that live within leaves 
(solar radiation, transpiration, evapotranspiration, leaf area index, NDVI). Slope 
and aspect of each sampling location were calculated from elevation raster data 
using the terrain function in the raster package (Hijmans et al., 2014). Data for 
aspect (the direction a sampling location faces) were converted into a distance 
matrix using the smallest arc-difference between any two given aspects. This was 
done because Euclidean distance is unsuitable for a measurement like aspect, 
where 355° is closer to 1° than it is to 340°. All variables are mean monthly values.
NDVI (normalized difference vegetation index), is an index calculated from the 
amount of infra-red light reflected by plants, which is normalized using multiple 
wavelengths of visible light. This allows for discrimination between habitat types 
that are differentially vegetated. Similarly, leaf area index is a measure of surface 
area of leaves (one-sided) per unit area of ground, and while it does not 
discriminate between different types of vegetation as does NDVI, unlike NDVI it 
measures the density of leaf surface area (habitat for FEF).

Host plant phylogeny

A distance matrix of host plant phylogenetic distances was created using the 
angiosperm phylogeny of Qian and Jin (2016). This distance matrix was made 
because the modeling approach we use here (GDM, below) can accommodate 
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distance matrices as explanatory variables, allowing for a phylogenetic distance 
matrix of hosts to be used instead of a simplified data structure such as a principal 
components vector or an array of taxon identities. For each comparison between 
two samples, pair-wise host plant phylogenetic distance was calculated as the 
mean cophenetic (branch-length) distance between members of the plant genera 
that were sampled. In cases where host plant genera were not included in the 
phylogeny, the genus was substituted for the most closely-related genus that was 
present. Four genera were substituted in this way out of 80 total genera: Labordia 
→ Logania, Touchardia → Urtica, Waltheria → Hermannia, Nothocestrum → 
Withania. 

GDM analysis

Generalized dissimilarity modeling (GDM)(Ferrier et al., 2007) was used to model 
FEF beta diversity based on climatic factors (Table 1), geographic distance, and 
host plant phylogeny. GDM is a form of non-linear matrix regression that is well-
suited to statistical questions involving dissimilarity matrices (e.g. our beta-
diversity matrix, host plant cophenetic distance matrix, geographic distance 
matrix, and aspect arc-difference matrix). Unlike pair-wise Mantel tests or 
PERMANOVA/ADONIS, which make use of similar data (Oksanen et al., 2016), 
GDM can quantify the relative importance of environmental and geographic 
variables on community dissimilarity, even when the functional relationship 
between community dissimilarity and the environment is nonlinear (Fitzpatrick et 
al., 2013; Warren et al., 2014). Furthermore, GDM is effective because it models 
community dissimilarity associated with a given predictor variable while holding 
all other predictor variables constant (Fitzpatrick et al., 2013; Landesman et al., 
2014). For example, this enables GDM to model the effect of elevation while 
accounting for the effect of host plant phylogenetic distance. 

We used backward elimination as implemented in the GDM package (Ferrier et al.,
2007) to build a model, and then to simplify the model by removing minimally 
predictive variables. We began this process with the full model including all 
explanatory variables mentioned above except for air temperature, which was 
excluded because it was highly correlated with elevation (r = 0.99). Geographic 
distance between samples, host plant phylogenetic distance, aspect arc-difference 
matrix, and UniFrac beta-diversity matrix were included as matrices in the GDM; 
all other variables were supplied as column vectors. GDM then tested each 
variable within the model for significance using a permutation test. During this 
iterative process, the variable with the highest P-value was eliminated, and then 
the model was recalculated. This process was repeated until all remaining 
variables were statistically significant (P < 0.05). Leaf area index, transpiration, 
slope, wet canopy evaporation, and aspect were eliminated this way.

The GDM modeling procedure described above was also carried out using 
Pezizomycotina community distance matrices created using Bray-Curtis 
dissimilarity for both zOTUs and OTUs clustered at 95% sequence similarity using 
vsearch (Rognes et al., 2016), to verify that the severe 1-inflation observed in those
distance matrices resulted in poor model fitting. Additionally, this procedure was 
carried out using the UniFrac distance matrix generated for all FEF. 
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Island FEF specificity analysis

Bipartite network analysis was used to test the extent to which each island (Figure 
1) harbored specific FEF. The d' (“d prime”) statistic was calculated for each island
using the zOTU table using the Bipartite package in R (Dormann et al., 2008). d’ is 
a measure of network specialization that ranges from 0 to 1, where 0 is perfect 
cosmopolitanism (all species are evenly shared among islands) and 1 is perfect 
specialization (each species is specific to only one island). d’ is calculated using a 
contingency matrix where each row is a unique lower-level group (island) and each
column is a unique higher-level group (zOTU), but in our table each island contains
multiple samples, so the number of observations per island is not consistent. To 
remedy this, we calculated d’ by aggregating all samples from the same island into 
one large sample (column sums), rarefied this aggregated table using the same 
depth that samples were rarefied to above (1500 observations), then calculated d’ 
values. Two null models were used to ensure that structural biases in our data 
were not responsible for the observed patterns of specificity. The Vázquez null 
model is a fixed-connectance null model for bipartite networks (Vázquez et al., 
2007), which is implemented as the vaznull function of the R package bipartite
(Dormann et al., 2008). Vázquez was run on the aggregated table, and then a null 
d’ was calculated using the result. A second null model (“island null”) was created 
by randomly shuffling the identities of samples before they were aggregated by 
island, so that aggregated samples were mixtures of multiple islands, and then a 
null d’ was calculated using the result. This procedure of aggregating, calculating 
an empirical d’, calculating a Vázquez null d’, and calculating an island null d’ was 
repeated 1000 times in order to obtain bootstrapped distributions of empirical, 
Vázquez null, and island null d’ values for each island. Statistical significance for d’
values for each island was tested using Welch’s unequal variance t-test to compare
empirical and island null d’ values. This test was 2-tailed, since d’ could be 
significantly lower than the null distribution indicating cosmopolitanism, or 
significantly higher indicating specificity. A similar procedure was applied to host 
plant genera in place of fungal zOTUs. Since host is only observed once per 
sample, only the Vázquez null model was used and d’  was not bootstrapped. This 
was done in order to test the extent to which our selection of host plants was 
significantly specialized to islands.

RESULTS

Sample sites and variables

Samples were collected across a wide range of climatic conditions (Figure 2), 
which also reflect the distributions of those conditions for Hawaiʻi. 

Sequence data

Our data set comprised 896 samples that passed quality-filtering and ITS1 
extraction, consisting of 7482 zOTUs. After non Pezizomycotina (sensu (Blackwell 
et al., 2006)) zOTUs were discarded, samples were rarefied to 1500 sequences per 
sample, resulting in 5239 zOTUs across 720 samples. Of those samples, 399 were 
from Hawaiʻi, 80 from Kaua’i, 51 from Maui, 67 from Molokaʻi, and 123 from 
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Oʻahu. Mean richness (number of zOTUs observed) per sample was 30.8 with a 
standard deviation of 21.5. 

GDM results

In the final GDM, evapotranspiration and NDVI explained the most compositional 
dissimilarity in FEF communities, as given by their GDM coefficient (the maximum 
height of their splines)(Ferrier et al., 2007; Fitzpatrick et al., 2013), which were 
0.0991 and 0.1042, respectively (Figure 3). This can be interpreted as 
evapotranspiration explaining 10% of the observed difference in FEF communities 
when all other variables in the model are held constant. Elevation had a coefficient
of 0.0813, host plant phylogenetic distance had a coefficient of 0.0644, and Julian 
date had a coefficient of 0.0238 (Figure 3). All other statistically significant 
variables had coefficients less than 0.020: cloud frequency = 0.0175, rainfall = 
0.0174, relative humidity = 0.0173, solar radiation = 0.0171, geographic distance 
= 0.0021. In contrast to the GDM fit using the UniFrac distance matrix (Figure 3), 
GDM run with Bray-Curtis dissimilarity matrices (zOTU and 95% OTUs) fit poorly 
as a result of severe 1-inflation of distances (Figures S2 and S3). Even so, both 
UniFrac and Bray-Curtis GDM analyses found statistically significant effects of 
geographic distance, host plant phylogeny, NDVI, evapotranspiration, and 
elevation. Evapotranspiration was not a significant variable in the GDM analysis of 
all FEF (instead of only Pezizomycotina above), although NDVI (0.1129), host plant
phylogenetic distance (0.0660), elevation (0.0540) and Julian date (0.0311) had 
similar GDM coefficients to the Pezizomycotina model (Figure S4).

Bipartite network analysis

Each of the 5 islands we sampled showed a statistically significant (P < 0.001, 
Welch’s unequal variance t-test) pattern of FEF specialization (Figure 4), since the 
d’ values for each island were higher than those generated using our null model 
(null d’ values centered around d’=0.4 for each island). Specialization in this case 
means that each island harbors more zOTUs that are associated with that island 
than would be expected by chance. We also found that our selection of host plant 
genera was significantly specialized to island as well (Figure S5, Table S1), 
however host-island d’  values were not significantly related to zOTU-island d’  
values (linear regression, P = 0.45), which we interpret to mean that FEF island 
specificity is not explained by island-biased plant sampling. 

DISCUSSION

The most striking pattern we found in our analysis of FEF communities in native 
Hawaiian plants was that evapotranspiration, a variable with spatial resolution of 
250 m2 (Table 1), is a meaningful variable for the community composition of 
microscopic fungi living within plant leaves. Evapotranspiration was the second-
most important variable in our analysis in terms of FEF community composition 
(Figure 3), even more so than elevation, which was measured at a much finer 
spatial resolution (Table 1). In our GDM model, when all other explanatory 
variables were held constant, evapotranspiration explained 10% of differences in 
FEF community structure. This result is both novel and surprising, since we 
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expected that temperature, elevation, and rainfall would be the most important 
factors structuring FEF community composition as has been found in previous 
studies (Zimmerman & Vitousek, 2012; Coince et al., 2014) whereas 
evapotranspiration has not been previously considered as an important variable for
FEF. This result may also partly due to our focus on Pezizomycotina, because 
evapotranspiration was not a significant variable in our analysis when all FEF were
considered (Figure S4). While elevation (tightly correlated with temperature), host 
plant phylogeny, and Julian date were significant explanatory variables in our GDM
analyses of Pezizomycotina and of all FEF, each of their effects were smaller than 
that of evapotranspiration for Pezizomycotina (Figure 3).

Very few studies measure fungal community response to evapotranspiration, and 
to our knowledge none yet have included FEF. In a grass system spanning 15 
European countries, the response of endophytic fungi to a transpiration gradient 
was substantial (Lewis et al., 1997), although in that system the endophytes are 
vertically transmitted, unlike the horizontal transmission that occurs in the dicots 
we sampled here. The endophytic fungus Acremonium spp. was significantly more 
abundant when evapotranspiration was high, suggesting that an interaction 
between evapotranspiration and fungal community composition is possible. 
Furthermore, in Theobroma cacao, addition of native FEF can almost double the 
rate of water loss from leaves during maximum stomatal closure (Arnold & 
Engelbrecht, 2007), suggesting that there is a mechanistic basis for the interaction
between FEF and transpiration as well. Kivlin et al. (Kivlin et al., 2011) conducted 
a global-scale meta-analysis of arbuscular mycorrhizal fungal (AMF) community 
composition, across multiple host plants, and found a weak but statistically 
significant relationship between evapotranspiration and AMF beta diversity (R2 = 
0.022, PERMANOVA). However, even the most robust explanatory variable in that 
study had a small effect size, too (Latitude, R2 = 0.030).

Evapotranspiration could also drive FEF community structure by changing the leaf 
interior habitat, and thereby select for different FEF communities at high vs. low 
evapotranspiration. Indeed, evapotranspiration is strongly related to the moisture 
content of leaves (Lambers et al., 2008). Evapotranspiration encompasses both 
plant transpiration and the evaporation of water from soil and other surfaces, and 
both soil water content and stomatal conductance affect leaf interior moisture
(Tardieu et al., 1996; Lambers et al., 2008). In light of previous studies suggesting 
a link between fungal endophytes and evapotranspiration (Lewis et al., 1997; 
Arnold & Engelbrecht, 2007; Kivlin et al., 2011), our finding that 
evapotranspiration is a significant predictor of differences between FEF 
communities makes sense, although the mechanisms by which evapotranspiration 
affects or is affected by FEF are still not clear. 

The other significant drivers of FEF community composition (Figure 3) were mostly
expected, particularly elevation which explained 8% of FEF community 
dissimilarity when all other variables in our analysis were held constant. This is 
similar to a result reported by Zimmerman and Vitousek (2012), who used 
PerMANOVA to test the effects of rainfall, elevation, and substrate age on FEF 
beta-diversity patterns in Metrosideros polymorpha (O’hia) trees. They found that 
elevation explained roughly 17% of compositional dissimilarity between FEF 
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communities, varying slightly depending on which dissimilarity metric was used. 
Since that study also took place in Hawaiʻi, and the area sampled overlaps partially
with the area of Hawaiʻi island that we sampled (Figure 1), this result is not in 
disagreement with previous work. However, Zimmerman and Vitousek (2012) 
found a large effect of rainfall, which was much smaller (but still significant) in our
data set.  It may be that rainfall effects M. polymorpha FEF communities more 
strongly than those of other native Hawaiian plants, since our study encompasses 
80 genera compared to the single species sampled by Zimmerman and Vitousek 
(2012). Rainfall can be a significant driver of FEF community structure in grasses
(Giauque & Hawkes, 2013), but in a larger continental-scale analysis of cultured 
FEF isolates, rainfall was not a strong predictor of FEF diversity (U’Ren et al., 
2012).

Unlike elevation, rainfall, and evapotranspiration, which have each been used to 
model FEF community dissimilarity by only a handful of studies, patterns of host 
association in FEF communities have been thoroughly documented (Unterseher et 
al., 2012; Kembel & Mueller, 2014; Massimo et al., 2015; Huang et al., 2016; 
Vincent et al., 2016; Kato et al., 2017). Thus, it is not surprising that phylogenetic 
difference among host plants was a statistically significant predictor of FEF 
community dissimilarity in our analysis (Figure 3). Unlike most previous studies 
that found host associations of FEF, we used the phylogeny of host plants as an 
explanatory variable in place of their identity, meaning that under our hypothesis 
that FEF communities are structured by host phylogenetic difference, more 
phylogenetically similar plants are expected to harbor similar FEF communities, 
and conversely, phylogenetically distant plants are expected to harbor more 
different FEF communities. Although we observed a significant relationship 
between host phylogenetic structure and FEF community dissimilarity in our data, 
our results could either mean that FEF, host plants, or both exhibit a degree of 
niche conservatism (Wiens et al., 2010). For example, FEF community preference 
may be phylogenetically conserved among closely related plant species, or perhaps
host preference is conserved among closely related FEF. In our analysis, host plant
phylogeny may have been a more robust predictor of FEF community dissimilarity 
if our host plants had been classified to species level instead of genus level, but 
this would have made the use of an existing phylogeny (Qian & Jin, 2016) 
impossible, although future studies may sequence host DNA to construct a de novo
phylogeny. Nevertheless, previous studies of broad-scale host association for foliar 
fungal epiphytes have shown that host plant association occurs at the order or 
family level (Kembel & Mueller, 2014). Thus, our observation of a significant 
relationship between host plant phylogenetic distance and FEF community 
dissimilarity is not surprising, even with only genus-level resolution for the host 
phylogeny, and our hypothesis of that FEF community composition is related to 
host-plant phylogeny is supported. 

NDVI (normalized difference vegetation index) was the most robust predictor of 
FEF community dissimilarity in our data set (although essentially tied with 
evapotranspiration), suggesting that areas that are differentially vegetated harbor 
different communities of FEF. This difference may be related to the total percent 
land cover of vegetation, which is a component of NDVI (Purevdorj et al., 1998), or 
related to the type of plant cover, i.e. different plant community compositions
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(Lunetta et al., 2006), which is also addressed by NDVI. Indeed, FEF communities 
have been shown to potentially respond to both land cover and habitat type in the 
host plant Quercus macrocarpa (Jumpponen & Jones, 2009, 2010). The pixel size 
for the NDVI data we used was 250 m2 (Table 1), meaning that the value at any 
given location is an aggregate value for a large plant community. Thus, the 10% of 
FEF community dissimilarity that was significantly explained by NDVI in our 
analysis is related to the density and composition of plant communities, which 
been suggested by others studies as well (Kato et al., 2017). 

We also hypothesized that FEF communities across the five islands we sampled 
(Figure 1) would exhibit strong geospatial patterns, but the results of our GDM 
analysis do not strongly support this idea except for a large effect of elevation, 
discussed above. Although geographic distance was a significant term in the 
model, it explained only a tiny percentage of FEF community dissimilarity. 
However, we also used a bipartite network analysis to investigate the extent to 
which each island had specialized Pezizomycotina zOTUs, and this analysis 
revealed that each island harbors a significant share of zOTUs that are island-
specific (Figure 4). Distinct zOTUs are not phylogenetically weighted by similarity 
within the bipartite analysis like they are in the GDM, and this may explain why the
bipartite analysis detected significant specificity of Pezizomycotina zOTUs to 
islands while geographic distance was a significant but very weak term in the GDM
model. Furthermore, specificity of a zOTU to an island does not necessarily cause a
biogeographic pattern where adjacent islands harbor similar zOTUs, which is 
essentially the pattern tested in the GDM with geographic distance. 

Since our beta-diversity analysis revealed a significant effect of host on 
Pezizomycotina community composition, it may have been that instead of FEF 
being island-specific, host plants were instead island-specific within the context of 
our experiment. In other words, our experimental design could have introduced  
FEF specificity by sampling host plant specificity. A bipartite analysis of host-island
specificity (Figure S5) indicated that in our experimental design, hosts are indeed 
specific to islands. However, we expected that if host-island specificity bias within 
our experimental design was driving the zOTU-island specificity pattern we 
observed, the two would strongly correlate. There was no significant relationship 
between host-island specificity and zOTU-island specificity, and host-island d’ 
values were much lower than those observed for zOTUs. So while part of the zOTU
specificity we observed may be due to bias in our sampling design, there is likely a 
significant pattern of zOTU island specificity as well. Nonetheless, this result is 
expected, given the generally high diversity of FEF in other systems (Jumpponen &
Jones, 2009; Rodriguez et al., 2009; Zimmerman & Vitousek, 2012). This island 
specialization is yet another result showing that FEF are distributed across space 
at the landscape scale (across the Hawaiian archipelago), with each island likely 
harboring many FEF that are significantly specialized to it. 

In summary, our analysis highlights that the various factors contributing to 
Hawaiian FEF community structure do so at the landscape scale. Ours is also the 
first study of FEF to analyze these important plant symbionts across both a large 
geographic scale (Figure 1) and across a large host phylogenetic scale (80 plant 
genera), while using high-throughput sequencing to thoroughly inventory FEF 
community composition. We tested leading hypotheses about the effects of climate,
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geographic distance, and host identity using this system, and for the most part, 
found them to be strong predictors of differences in FEF communities between 
samples – even when the measurements were taken at relatively coarse resolution 
(Table 1). We found that elevation (Zimmerman & Vitousek, 2012), host plant 
phylogenetic difference (Unterseher et al., 2012; Kembel & Mueller, 2014; 
Massimo et al., 2015; Huang et al., 2016; Vincent et al., 2016), spatial (U’Ren et 
al., 2012), and habitat type (Jumpponen & Jones, 2009, 2010; Kato et al., 2017) 
hypotheses all held true to varying extents in our analysis (Figure 3). We found 
limited (but significant) support for the hypothesis that rainfall structures FEF 
communities (U’Ren et al., 2012; Zimmerman & Vitousek, 2012), and we also 
found that evapotranspiration, which had not been previously considered as an 
important variable, was a significant predictor of difference in FEF communities 
across the Hawaiian archipelago. 

TABLES

Table 1: Sources for GIS data.

Data type Units
Pixel 
size

Source Source URL

Rainfall
mm*y
-1

250 
m2

Rainfall atlas of 
Hawaiʻi

rainfall.geography.hawaii.
edu

Evapotranspira
tion

mm*y
-1

250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Leaf area index index
250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Wet Canopy 
Evaporation

mm*y
-1

250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Transpiration
mm*y
-1

250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Solar radiation W/m2 250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Relative 
humidity

%
250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Air 
temperature

°C
250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Cloud 
frequency

ratio
250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu

Elevation m
10.3 
m2

National elevation 
dataset

lta.cr.usgs.gov/NED

Slope
Degr
ees

10.3 
m2

Calculated from 
elevation

N/A (calculated from 
elevation)

Aspect
Degr
ees

10.3 
m2

Calculated from 
elevation

N/A (calculated from 
elevation)

NDVI index
250 
m2

Evapotranspiration
of Hawaiʻi

evapotranspiration.geogra
phy.hawaii.edu
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FIGURES

Figure 1: Map of sample locations across the Hawaiian Archipelago. Samples were 
collected from the 5 major islands in the Hawaiian archipelago: Hawaiʻi, Maui, 
Molokaʻi, Oʻahu, and Kauaʻi. Sampling was most dense on Hawaiʻi and on Oʻahu 
islands, where accessibility was easiest. Our sampling strategy was to use 
elevational transects where possible, in order to capture elevational and climatic 
variation. Elevations in figure legend are meters above sea level. This is visible in 
the transects on Hawaiʻi, Molokaʻi, Kauaʻi, and Oʻahu, which run orthogonally to 
the topographic lines (white). Transects are less pronounced on Maui because of 
limited accessibility. 
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Figure 2: Ranges and distributions of explanatory variables. In this figure, each 
variable’s distribution across 722 samples is shown as a smoothed density curve 
between its range (numbers to left and right of curves, height of curve is relative 
frequency of observation). Units for range values are shown in Table 1. Each 
variable included in our analysis covered a wide range of environmental 
heterogeneity. 
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Figure 3: Model fit and coefficients for GDM model of FEF community 
dissimilarity. The observed community dissimilarity (UniFrac distance) between 
pairwise samples exhibited a linear but noisy relationship with the community 
dissimilarity predicted by the GDM model (top), which roughly corresponded to a 
1:1 line (dashed line). In the bottom plot, GDM i-splines are shown for statistically 
significant variables that explained over 2% of community dissimilarity. Spline 
height is the amount of cumulative community dissimilarity explained by its 
predictor variable, and the spline’s slope corresponds to the rate of change in 
compositional dissimilarity over the range of pairwise dissimilarities within the 
variable (Ferrier et al., 2007; Landesman et al., 2014). NDVI and 
Evapotranspiration were the strongest predictor variables in our analysis (green 
and blue), although most of the explanatory power of evapotranspiration was at the
lower 40% of its range. Elevation (red) significantly explained FEF community 
dissimilarity across the entire range of elevation (see Figure 2). Host plant 
phylogenetic distance (purple) was a significant driver of community dissimilarity 
across a deep phylogenetic breadth, and the significance of julian date (brown) 
indicates as small but important temporal trend that is strongest at short temporal 
scales (less than a year). Other significant variables in this analysis were cloud 
frequency, rainfall, relative humidity, solar radiation, and geographic distance, but 
they all explained very little community dissimilarity and overlapped to too large a 
degree to show in the figure.
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Figure 4: FEF specialization of each island. d’ is a measure of how unique or 
cosmopolitan are the zOTUs found on an island.  In this violin plot, distributions 
shown in as filled violins with black borders are bootstrapped empirical d’ values 
for each island. Unfilled distributions with a solid gray border are from our island 
null model, where the island datum of each sample was randomly permuted before 
samples were aggregated and d’ was calculated. Unfilled distributions with black 
dashed borders are from the Vázquez null model for bipartite networks (Vázquez et
al., 2007), which is a fixed-connectance null model. Welch’s unequal variance t-
tests show that each island’s FEF community is significantly specialized as 
compared to the island null, meaning that FEF zOTUs are more specific to their 
island of origin than expected by chance. 
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