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Abstract

Oxygen heterogeneity in solid tumours is recognised as a limiting factor for
therapeutic efficacy. Vessel normalisation strategies, aimed at rescuing abnormal
tumour vascular phenotypes and alleviating hypoxia, have the potential to improve
tumour responses to treatments such as radiotherapy and chemotherapy. However,
understanding how pathological blood vessel networks and oxygen transport are
related remains limited. In this paper, we propose a novel source of oxygen het-
erogeneity in tumour tissue associated with the abnormal transport of red blood
cells. We calculate average vessel lengths L̄ and diameters d̄ from tumour allografts
of three cancer cell lines and observe a substantial reduction in the ratio λ = L̄/d̄
compared to physiological conditions. Mathematical modelling reveals that small
values of the ratio λ (i.e. λ < 6) can bias haematocrit distribution in tumour vas-
cular networks and drive heterogeneous oxygenation of tumour tissue. Finally, we
show an increase in the value of λ in tumour vascular networks following treatment
with the anti-angiogenic cancer agent DC101. Based on our findings, we propose
a mechanism for oxygen normalisation associated with an increase in λ following
treatment with anti-angiogenic drugs.

1 Introduction

Tissue oxygenation plays a crucial role in the growth and response to treatment of cancer.
Indeed, well-oxygenated tumour regions respond to radiotherapy better than hypoxic or
oxygen-deficient regions, by a factor of up to three [1, 2]. Further, the increased rates
of proteomic and genomic modifications and clonal selection associated with anoxia (i.e.,
total oxygen depletion), endow tumours with more aggressive and metastatic phenotypes
[3, 4]. Oxygen heterogeneity in solid tumours is commonly attributed to their abnormal
vasculature [5, 6]. Vessel normalisation strategies aimed at reducing tumour hypoxia [7]
have been shown to improve survival in e.g. glioblastoma patients undergoing chemother-
apy and/or radiotherapy [8].

The link between abnormal vascularisation and hypoxia is arguably multifactorial,
including nonuniform vessel distribution, vessel non-perfusion, and issues with pressure
gradients leading to slow flow or even its reversal. However, the dynamics of oxygen
transport within whole tumour vascular networks have received only limited attention in
the literature, e.g. [9, 10, 11]. Oxygen is transported through the vasculature by binding
to haemoglobin in red blood cells (RBCs) [12]. Haematocrit, or the volume fraction of
RBCs in whole blood, does not distribute uniformly at vessel bifurcations (i.e. branching
points where three vessels meet) [13, 14]. At a bifurcation with one afferent and two
efferent branches, it is typically assumed that the efferent branch with the highest flow
rate will have the highest haematocrit [14, 15] due to, among other features, plasma-
skimming caused by the presence of an RBC-depleted layer or cell free layer (CFL) [16].
Several theoretical models have been proposed to describe this effect e.g. [15, 17, 18].
Tumour vasculature is characterised by abnormal branching patterns, reduced average
vessel lengths, and increased formation of arterio-venous shunts (see [19] for a review).
While these changes can impact haematocrit splitting (HS), and tumour oxygenation,
they have received little attention in the literature.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/640060doi: bioRxiv preprint 

https://doi.org/10.1101/640060
http://creativecommons.org/licenses/by/4.0/


In this paper, we propose a novel source of oxygen heterogeneity in tumour tissue as-
sociated with the abnormal transport of RBCs. When we extract average vessel lengths
L̄ and diameters d̄ from tumour allografts of three cancer cell lines we observe a substan-
tial reduction in λ = L̄/d̄, an accepted parameter governing CFL dynamics, compared
to physiological conditions. Detailed numerical simulations describing the transport of
RBCs in plasma reveal: a) asymmetrical CFL width disruption following a bifurcation,
and b) that the average measured λ value in tumour allografts is too small for the CFL to
recover full symmetry between consecutive branching points leading to uneven haemat-
ocrit split in the downstream branching point. Further, the resulting bias in haematocrit
distribution propagates and amplifies across multiple branching points. We argue that
this memory effect can explain observations of haemoconcentration/haemodilution in tu-
mour vasculature [9] and well perfused vessels that are hypoxic [10].

Based on the RBC simulations, we propose a new haematocrit splitting rule that
accounts for CFL disruption due to pathologically small λ values. We integrate this
rule into existing models of tumour blood flow and oxygen transport [20] and observe a
haematocrit memory effect in densely branched vessel networks. As a consequence, the
predicted tissue oxygenation is highly heterogeneous and differs markedly from predic-
tions generated using rules for haematocrit splitting under physiological conditions (e.g.
[21, 22, 23, 5, 24]). Finally, we demonstrate the clinical relevance of our findings by
showing an increase in the average λ value of tumour vascular networks following treat-
ment with the DC101 anti-angiogenic cancer agent. Based on our results, we postulate
the existence of a tumour oxygen normalisation mechanism associated with an increase
in the λ value after treatment with anti-angiogenic drugs. Future studies should eluci-
date its relative importance compared to established mechanisms of normalisation (e.g.
permeability reduction, vessel decompression [25]).

2 Results

2.1 Average distance between vessel branch points is shorter in
solid tumours than in healthy tissue

We implemented a protocol for in vivo imaging of tumour vasculature [26] and exploited
our recently published methods for vessel segmentation [27, 28] and three-dimensional
(3D) vascular network reconstruction to characterise the morphology of tumour vascula-
ture (see Methods section for more details). Briefly, tumour allografts of three murine can-
cer cell lines (i.e. MC38, colorectal carcinoma; B16F10, melanoma; and LLC, Lewis lung
carcinoma) were implanted in mice, controlled for size, and imaged through an abdomi-
nal window chamber using a multi-photon microscope over multiple days. The vascular
networks in the 3D image stacks were segmented and the associated network skeletons
and vessel diameters computed [27, 28]. Figure 1(a)-(b) shows the two-dimensional (2D)
maximum projection of an example dataset along with a 2D projection of its segmentation
and a close-in overlaying segmentation and skeletonisation. Vessel lengths (L) and di-
ameters (d) in the networks followed a right-skewed distribution resembling a log-normal
distribution (Figure 1(c)-(e)). No correlation was found between the variables (Pearson’s
r2 < 0.04 for all samples analysed, Figure 1(c)-(e), Supplementary Tables S4–S5).
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(a) Multiphoton maximum intensity projection from MC38 dataset: 
perfusion (red), endothelial cells (cyan), tumour cells (green)

(b) Vascular network segmentation (red) and skeletonization (green)

(c) MC38 dataset: vessel length vs diameter

(d) B16F10 dataset: vessel length vs diameter

(e) LLC dataset: vessel length vs diameter

Figure 1: (a) Maximum intensity projection of multiphoton image stack of a tumour
vessel network obtained via an abdominal imaging window in mouse. Red - perfusion,
Cyan - endothelial cells, Green - GFP tumor cells. Scale bar: 1 mm. (b) The stack
is subsequently segmented and skeletonised and distributions of vessel diameters and
lengths are calculated. Mouse MC38-5 in Table 1. Scatter plots of vessel lengths versus
diameters for different cell lines studied: (c) MC38 (Mouse 3 in Table 1), (d) B16F10
(Mouse 1 in Table 1), (e) LLC (Mouse 1 in Table 1).

Table 1 summarises last-day statistics for all the experiments and averages per cell line.
In the example MC38 dataset from Figure 1(a), average vessel length (L̄) and diameter
(d̄) were 143 µm and 45.5 µm, respectively We observe how the group average vessel
length is 128.6 µm, 125.9 µm, 108.8 µm for MC38, B16F10, and LLC, respectively. The
average diameters are 33 µm, 36.5 µm, 35.7 µm, respectively, which is within the range
previously described for tumour vasculature [29]. In addition, the length-to-diameter
ratios (λ) are 4.0, 3.4, 3.0, respectively, which is substantially smaller than typical λ values
reported under physiological conditions in a variety of tissues (Supplementary Table S1)
and representative of the high branching density encountered in tumour vasculature [19].

2.2 Plasma skimming in tumour-like vasculature is biased by
history effects arising from cell free layer dynamics

Our finding of reduced inter branching point distance in tumour tissue motivated us
to investigate a potential causal relationship between the reduction in L and λ and
the profoundly abnormal tumour haemodynamics and mass transport patterns described
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Table 1: Mean branch lengths (L̄), mean vessel diameters (d̄), and length-to-diameter

ratio (λ = L̄
d̄

=
∑
Li∑
di

) measured over all the imaged vessels in tumour allografts from
three murine cancer cell lines. See Supplementary Tables S4–S5 for correlation between
variables.

Cell line MC38
Mouse 1 2 3 4 5 6 Av.
L̄, µm 123.9 129.9 143 112.4 132.1 130.0 128.6
d̄, µm 29.3 33.0 45.5 23.9 28.9 37.5 33.0
λ = L̄/d̄ 4.2 3.9 3.1 4.7 4.6 3.4 4.0

Cell line B16F10 LLC
Mouse 1 2 3 Av. 1
L̄, µm 123.2 123.5 131.0 125.9 108.8
d̄, µm 33.9 34.1 41.6 36.5 35.7
λ = L̄/d̄ 3.6 3.6 3.1 3.4 3.0

in the literature [30]. Of particular interest is establishing whether haemorheological
phenomena may contribute to tumour heterogeneity and hypoxia.

The presence of an RBC-depleted region adjacent to the vessel walls (i.e. the cell free
layer (CFL)) is a key contributor to plasma skimming (PS) [14, 15, 16]. Previous studies
have shown CFL disruption after microvascular bifurcations and found that the length
required for CFL recovery, lr, is in the region of 10 vessel diameters (d) for d < 40µm
[15], 8 − 15d for d ∈ [20, 24]µm [31], and 25d for d ∈ [10, 100]µm [32]. These values are
substantially higher than the average λ values given in Table 1, λ < lr, and therefore we
expect that, on average, CFL symmetry will not recover between the branching points in
the networks under study.

Motivated by these findings, we exploited recent advances in blood flow simulation
methods by our group and others [33, 34, 35, 36] to investigate the link between CFL
dynamics and PS in a tumour-inspired 3D microvascular network. Our intention is to
understand the extent to which CFL disruption effects arising at a bifurcation affect
haematocrit splitting in downstream bifurcations for small inter-bifurcation distances
relevant to tumour vasculature (see Methods section for further details). Briefly, we define
a set of networks of 3D cylindrical channels of constant radius, consisting of one main
channel with an inlet and an outlet and two side branches, which define two consecutive
bifurcations (Supplementary Figure S1). We consider inter-bifurcation distances of four
and 25 channel diameters based on our tumour vascular network analysis and the largest
of the CFL recovery distances reviewed earlier. We position the two side branches on the
same side of the main channel or on opposite sides. A computational model of liquid-filled
deformable particles (discocytes approximating the shape of an RBC) suspended in an
ambient fluid is used to simulate blood flow in the networks, with RBCs inserted at the
network inlet and removed at the outlets (see Materials and Methods and Supplementary
Information for a summary of the simulation parameters). Flow rates at the network
inlet and outlets are configured such that at each bifurcation flow is split evenly. We
perform blood flow simulations (3 runs in each network, with random perturbations in
the RBC insertion procedure) and, after the initial transient required to fully populate
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the network with RBCs, we quantify haematocrit by an RBC-counting procedure.
Figure 2a–2b and Table 2 show how haematocrit split is close to even at bifurcation

1 for all geometries studied, as would be predicted by existing theoretical models of HS.
However, different degrees of haematocrit splitting occur at bifurcation 2. In the double-
t geometry, we observe haemodilution in branch 3 and haemoconcentration in branch 4
(16.8% vs 23%, p < 0.001, Figure 2b), which we will refer to as the unfavourable and
favourable branches. These effects are not statistically significant in the same branches
in the extended double-t geometry (19.1% vs 19.4%, p = 0.3, Figure 2a). The haemo-
concentration/haemodilution effect is present in the cross geometry but the branches
experiencing it are interchanged (22.1% vs 17.1%, p < 0.001, Figure 2c). In contrast
with these results, existing HS theoretical models would predict even haematocrit split-
ting at bifurcation 2, regardless of the inter-bifurcation distance, due to the prescribed
symmetrical flow and geometry conditions.

On closer inspection, the dynamics of the CFL show how, after bifurcation 1, CFL
width is initially negligible and rapidly increases on the side of channel 1 leading to
the favourable branch (θ = 0, Figure 2f). Conversely, CFL width increases after the
bifurcation and follows a downward trend in the opposite side (θ = π, Figure 2f). An
inter-bifurcation distance of four diameters is too short for the CFL width to equalise on
both sides (Figures 2f). In contrast, CFL width has time to become symmetric on both
sides for an inter-bifurcation distance of 25 diameters (Figure 2g).

Taken together, these results show how CFL asymmetry can cause uneven haematocrit
split in bifurcation 2 (Figure 2e) irrespective of branching side, i.e. cross vs double-
t geometry. Our results are consistent with the findings by Pries et al., describing how
asymmetry of the haematocrit profile in the feeding vessel of a bifurcation has a significant
influence on RBC distribution in the daughter vessels [15]. In addition, we provide
quantitative evidence of how CFL asymmetry may be the main contributing factor.

Interestingly, we observe small but statistically significant asymmetries in the haemat-
ocrit split in bifurcation 1 in the extended double-t geometry (19.2% vs 20.8%, p < 0.001,
Figure 2a) and cross geometry (19.7% vs 20.4%, p = 0.035, Figure 2c), which consistently
favour the side branch. We attribute this secondary effect to an asymmetrical streamline
split in the chosen geometry as investigated in [37].

We note that the effects described above depend on the angle between the planes
containing the two consecutive bifurcations. Our data suggest that for angles of π

2
radian

the asymmetric haematocrit split effects will not be observed since the CFL width at π
2

and 3π
2

remains mostly symmetric (Supplementary Figure S2).

2.3 Haematocrit history effects lead to highly heterogeneous
oxygen distributions in solid tumours

Existing theoretical models of haematocrit splitting (HS) [38, 18, 39] do not capture the
haemoconcentration/haemodilution effects in the previous section. We hypothesise that
this is because they neglect CFL disruption at bifurcations and its impact on subsequent
bifurcations. We propose a new HS model which accounts for CFL dynamics and show
that it predicts history effects in dense networks (see Materials and Methods section
for details and Supplementary Information for a description of its validation). The new
model is significantly less computationally intensive to solve than the RBC simulations
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(a) Extended double-t
geometry (see Suppl. Fig.

S1a)

(b) Double-t geometry (see
Suppl. Fig. S1b)

(c) Cross geometry (see
Suppl. Fig. S1c)

(d) Simulated RBCs in domain. (e) Illustration of CFL dynamics and plasma
skimming.

(f) CFL branch 1 (double-t geometry) (g) CFL branch 1 (extended double-t
geometry)

Figure 2: Haematocrit at different geometry branches (see Supplementary Figure S1 for
geometry schematics): (a) extended double-t geometry, (b) double-t geometry, (c) cross
geometry. Example simulation in the double-t geometry: (d) vessel network is rendered
semi-transparent in grey, RBC membranes are rendered in red suspended in transparent
blood plasma. (e) Schematic describing the impact of CFL dynamics on haematocrit
split. CFL width in opposite sides of channel 1: (f) double-t geometry, (g) extended
double-t geometry.
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Table 2: Haematocrit calculated at the different branches of each bifurcation for the
extended double-t (EDT) geometry, double-t (DT) geometry, and cross (X) geometry (see
Supplementary Figure S1 for geometry schematics). Values are given as mean (standard
error) over an ensemble of three simulations with random perturbations in the RBC
insertion procedure while the haematocrit at the inlet is held constant.

Bifurcation 1
Branch 0 Branch 1 Branch 2

EDT 20.06(0.03) 19.23(0.14) 20.8(0.1)
DT 20.08(0.06) 19.96(0.19) 20.26(0.05)
X 20.06(0.02) 19.67(0.09) 20.35(0.2)

Bifurcation 2
Branch 1 Branch 3 Branch 4

EDT 19.23(0.14) 19.05(0.22) 19.4(0.23)
DT 19.96(0.19) 16.83(0.24) 23.04(0.46)
X 19.67(0.09) 22.12(0.26) 17.09(0.13)

(see Materials and Methods for details).
We use Murray’s law [40] and our experimentally measured values of λ to design a

synthetic vessel network comprising consecutive double-t/cross bifurcations (see Supple-
mentary Figure S4a and Materials and Methods for details). Most notably, at all bifur-
cations the flow split and the radii of the daughter vessels are equal, a scenario where
existing HS models would predict homogeneous haematocrit throughout the network.
We simulate network blood flow using a Poiseuille flow approximation with a HS model
originally proposed by Pries et al. [15, 38] (without memory effects) and our new model
(accounting for memory effects). As for the RBC simulations, differences in haematocrit
between daughter branches emerge after two bifurcations (Supplementary Figure S4c),
and are amplified with increasing vessel generation number (Supplementary Figure S4d).

Our model predicts the emergence of a compensatory mechanism in daughter branches.
Increased flow resistance in the branch experiencing haemoconcentration leads to partial
re-routing of flow in the other branch (Supplementary Figure S4b). This, in turn, at-
tenuates the haemoconcentration/haemodilution effects previously described due to HS
dependence on flow ratios.

We now consider how this memory effect in the haematocrit distribution may affect
oxygen distribution in the tissue being perfused by the synthetic network. Following [20]
(see Materials and Methods for a description of the coupled model), the haematocrit dis-
tribution in the network acts as a distributed source term in a reaction-diffusion equation
for tissue oxygen. We define sink terms so that oxygen is consumed at a constant rate
everywhere within the tissue. The equation is solved numerically and oxygen distribu-
tions generated using two HS models (with and without memory effects, Supplementary
Figures S5a–S5b) are compared for a range of λ values. We focus on the central portion
of the network (Figures 3a–3b) where the tissue is densely vascularised. The results pre-
sented in Figure 3c and Supplementary Figure S6 show that for larger values of λ the
differences in the oxygen distribution in the tissue for the two HS models are not sta-
tistically significant (e.g. with λ = 10, p = 0.14). However, as λ decreases, statistically
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significant differences appear (e.g. with λ = 4, p < 0.001). Without memory effects, the
oxygen distributions become narrower as λ decreases; with memory effects, the oxygen
distributions are increasingly wider for λ < 10 (see Supplementary Figure S6c) leading
to higher dispersion in the distributions for small λ. This is indicative of much more
heterogeneous tissue oxygenation.

In the current study, we do not consider other sources of heterogeneity such as
anisotropic transport and heterogeneous consumption of oxygen or other morphologi-
cal abnormalities in the vascular networks. We hypothesise that their interaction with
the haematocrit history effects reported here will further accentuate tissue oxygen het-
erogeneity.

2.4 Vascular normalisation therapies increase λ ratio in tumours

Our findings of reduced λ ratio in tumour vasculature and associated predictions of in-
creased oxygen heterogeneity led us to investigate whether existing vascular normalisation
therapies modulate this parameter. Previous reports (Supplementary Table S2) have ex-
tensively demonstrated in multiple animal models that anti-angiogenic treatment leads
to reduction in tumour vessel diameters. In those studies that analyse vessel length and
diameter post-treatment, vessel length either remains unchanged or decreases to a lesser
extent than vessel diameter. These findings indicate an increase in λ ratio post-treatment.
Furthermore, Kamoun et al. also reported a reduction in tumour haemoconcentration
post-treatement [41], which suggests an in vivo link between an increase in λ, haematocrit
normalisation and oxygen transport homogenisation.

We validated these results in our animal model by calculating the λ ratio following
DC101 treatment (see Materials and Methods for details). Our results indicate that
in the first two days post-treatment λ increases significantly and then starts to decrease
matching the control trend (Figure 4, Supplementary Table S3). This change is explained
by a linear increase in vessel length immediately after treatment (absent in the control
group), which is compensated after two days by an increase at a higher rate in vessel
diameter (comparable to the control group) (Supplementary Figure S7).

3 Discussion

Hypoxia compromises the response of many tumours to treatments such as radiotherapy,
chemotherapy and immunotherapy. Dominant causative factors for hypoxia associated
with the structure and function of the tumour vasculature include tortuosity, immature
blood vessels that are prone to collapse, and inadequate flow regulation. Motivated by
morphological analyses of vascular networks from different tumour types and detailed
computer simulations of RBC transport through synthetic networks, we have proposed a
new, rheological mechanism for tumour hypoxia.

We analysed vascular networks from murine MC38, B16F10, and LLC tumour al-
lografts. For each vessel segment within each network, we calculated a novel metric λ
which is the ratio of its length and diameter. Average λ values for the three tumour cell
lines were similar in magnitude (λ̄ ∈ [3, 4.2]) and several fold smaller than values from a
range of healthy tissues (λ̄ ∈ [9.5, 70]). Detailed numerical simulations of RBC transport
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(a) λ = 4, model without
memory effects

(b) λ = 4, model with memory
effects

4 6 8 10
λ

5.0e+03
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) Model without memory effects

Model with memory effects

(c) Tissue oxygen concentration distributions for varying λ

Figure 3: For λ = 4.0, the model with memory effects yields more pronounced oxygen
heterogeneity (i.e. more dispersed oxygen distribution) in (a) and (b) (spatial scales are
in microns). Violin plots in (c) show oxygen distributions for varying λ and the two
HS models under consideration. Heterogeneity increases with λ for the model without
memory effects as expected, but the model with memory effects predicts increased het-
erogeneity for very low λ. The horizontal lines in oxygen distributions in (c) represent
25, 50 and 75% percentiles.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2019. ; https://doi.org/10.1101/640060doi: bioRxiv preprint 

https://doi.org/10.1101/640060
http://creativecommons.org/licenses/by/4.0/
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0.8
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1.0

1.1

1.2
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l/
l 0
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** ** **

Figure 4: λ ratio in MC38 tumours over time following DC101 treatment compared with
control (n=5). DC101 raw data is given in Supplementary Table S3. ** p < 0.01.

in plasma confirmed previous reports of transient alterations in the CFL downstream of
network bifurcations (e.g. asymmetries in the cross-sectional haematocrit profile follow-
ing a bifurcation [42, 43] and the temporal dynamics governing its axisymmetry recovery
[32]). Further, for the λ values measured in our tumours and the capillary number
considered in our simulations, the CFL did not become symmetric between consecutive
branching points. This bias is amplified across branching points and drives haemocon-
centration/haemodilution at the network level. Based on these findings, we developed a
new rule for haematocrit splitting at vessel bifurcations that accounts for CFL disrup-
tion due to abnormally short vessel segments and validated it against our fully resolved
RBC simulations. We then used our existing oxygen transport model [20] to demonstrate
that this haematocrit memory effect can generate heterogeneous oxygen distributions in
tissues perfused by highly branched vascular networks and that the network metric λ
controls the extent of this heterogeneity. Finally, we reported an increase in the average
λ value of tumour vascular networks following treatment with the DC101 anti-angiogenic
cancer agent.

The implications of our findings are multiple. We have introduced a simple metric
to characterise tumour vasculature based on the mean length-to-diameter ratio of vessel
segments (λ), and demonstrated how it controls oxygen heterogeneity in a synthetic,
densely vascularised, tissue model. Our findings, of structurally induced haemodilution in
vascular networks with low λ values, provide a mechanistic explanation for experimental
observations of haemodilution in tumour vascular networks [9], the existence of well-
perfused vessels that are hypoxic [10], and a possible explanation for the presence of
cycling hypoxia in tumour microenvironment [44]. We conclude that vessel perfusion
is a poor surrogate for oxygenation in tissue perfused by vascular networks with low λ
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values. Further, predictions of tissue oxygenation based on diffusion-dominated oxygen
transport (e.g. [21, 22, 23, 5, 24]) may be inaccurate if they neglect heterogeneity in the
haematocrit distribution of the vessel network.

Finally, anti-angiogenic drugs have been shown to generate transient periods of height-
ened homogeneous tissue oxygenation, due to improved restructuring and reduced perme-
ability of tumour vessels [45]. This phenomenon, termed ‘vascular normalisation’ [6], can
correct the deficient transport capabilities of tumour vasculature, homogenise drug and
oxygen coverage, and, thereby, improve radiotherapy and chemotherapy effectiveness [2].
Based on our findings, we postulate the existence of a new oxygen normalisation mecha-
nism associated with an increase in the average λ value of tumour vascular networks post
treatment with anti-angiogenic drugs. Our results demonstrate how such morphological
changes would lead to a less heterogeneous haematocrit distribution and more uniform
intratumoural oxygenation. Further experimental work, quantifying haematocrit network
dynamics before and after anti-angiogenic treatment, is needed to test this hypothesis
and elucidate its importance in comparison with established mechanisms of normalisation
(e.g. permeability reduction, vessel decompression [25]). If confirmed, this finding would
provide a theoretical foundation for the development of therapeutic approaches for the
normalisation of tumour oxygenation involving the administration of vascular targeting
agents that normalise λ and, therefore, homogenise haematocrit and tissue oxygenation.
Possible mechanisms to be targeted would include, among others, the promotion of post-
angiogenic vascular remodelling [46, 47, 48], in particular vessel pruning and diameter
control.

In summary, tissue oxygenation is central to cancer therapy. Understanding what
controls tumour tissue oxygen concentration and transport is key to improving the effi-
cacy of cancer treatments based on new and existing methods. Unravelling the causal
relationship between vessel network structure and tissue oxygenation will pave the way
for new therapies.

4 Materials and Methods

4.1 Tumour allograft model and abdominal imaging window
protocol

We used an abdominal window chamber model in mice, which allowed for intravital
imaging of the tumors [26]. The abdominal window chamber was surgically implanted in
transgenic mice on C57Bl/6 background that had expression of red fluorescent protein
tdTomato only in endothelial cells. The murine colon adenocarcinoma - MC38, murine
melanoma - B16F10, and murine Lewis Lung Carcinoma – LLC tumors with expression
of green fluorescent protein (GFP) in the cytoplasm were induced by injecting 5 µl of
dense cell suspension in a 50/50 mixture of saline and matrigel (Corning, NY, USA). For
DC101 treatment, mice bearing MC38 tumors were treated with anti-mouse VEGFR2
antibody (clone DC101, 500 µg/dose, 27 mg/kg, BioXCell) injected intraperitoneally on
the first and fourth day of imaging. Prior to imaging we intravenously injected 100 µl of
Qtracker 705 Vascular Labels (Thermo Fisher Scientific, MA, USA) which is a blood-pool
based labelling agent, thus allowing us to determine whether vessels were perfused or not.
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Isoflurane inhalation anesthesia was used throughout the imaging, mice were kept on a
heated stage and in a heated chamber and their breathing rate was monitored. Tumor
images were acquired with Zeiss LSM 880 microscope (Carl Zeiss AG), connected to a Mai-
Tai tunable laser (Newport Spectra Physics). We used an excitation wavelength of 940 nm
and the emitted light was collected with Gallium Arsenide Phosphide (GaAsP) detectors
through a 524–546 nm bandpass filter for GFP and a 562.5–587.5 nm bandpass filter
for tdTomato and with a multi-alkali PMT detector through a 670–760 bandpass filter
for Qtracker 705. A 20x water immersion objective with NA of 1.0 was used to acquire
a Zstacks-TileScan with dimensions of 512x512 pixels in x and y, and approximately 70
planes in z. Voxel size was 5 µm in the z direction and 0.83 µm x 0.83 µm in the x-y plane.
Each tumor was covered by approximately 100 tiles. The morphological characteristics
of tumor vasculature were obtained from the acquired images as previously described
[27, 28]. All animal studies were performed in accordance with the Animals Scientific
Procedures Act of 1986 (UK) and Committee on the Ethics of Animal Experiments of
the University of Oxford.

4.2 RBC simulations in synthetic capillary networks

We define a set of networks of cylindrical channels of diameter d. An inlet channel
of length 25d (channel 0) bifurcates into two channels of length δ and 25d at π and
π/2 radians clockwise, respectively (channels 1 and 2). Channel 1 bifurcates into two
channels of length 25d at π and α radians clockwise, respectively (channels 3 and 4).
We consider the following configurations (Supplementary Figure S1): double-t geometry
(δ = 4d, α = π/2), cross geometry (δ = 4d, α = 3π/2), and extended double-t geometry
(δ = 25d, α = π/2).

A model of liquid-filled elastic membranes (discocytes of 8 µm diameter approximating
the shape of an RBC) suspended in an ambient fluid is used to simulate blood flow in the
networks. We use the fluid structure interaction (FSI) algorithm previously presented
and validated by Krüger et al. [49], which is based on coupling the lattice Boltzmann
method (LBM), finite element method (FEM), and immerse boundary method (IBM).
The discocyte membranes are discretised into 500 triangles, which imposes a voxel size of
0.8µm on the regular grid used in the LBM simulation. The mechanical properties of the
membrane are defined to achieve a capillary number (i.e. the ratio of viscous fluid stress
acting on the membrane and a characteristic elastic membrane stress) of 0.1 in channel
0. The coupled algorithm is implemented in the HemeLB blood flow simulation software
[50, 51] (http://ccs.chem.ucl.ac.uk/hemelb). Simulations ran on up to 456 cores of
the ARCHER supercomputer taking 11–32 hours. See Supplementary Information for
full details.

A constant flow rate of Q0 = v̄inletπd
2/4 and a procedure for RBC insertion with

tube haematocrit Hinlet is imposed at the network inlet. The outlet flow rates are set to
Q2 = Q0/2 and Q3,4 = Q0/4 to ensure an equal flow split at each bifurcation. RBCs are
removed from the computational domain when they reach the end of any outlet channel.
Supplementary Table S6 summarises the key parameters in the model. We performed
blood flow simulations (3 runs in each network, with random perturbations in the RBC
insertion procedure) and, after the initial transient required to fully populate the network
with RBCs, we quantified haematocrit by an RBC-counting procedure.
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4.3 Hybrid model for tissue oxygen perfusion that accounts for
history effects in vascular networks

We first explain how our vascular networks are designed. Then, we describe how blood
flow and haematocrit are determined. Next, we introduce the HS models and explain
how CFL memory effects are incorporated and the resulting flow problem solved. We
conclude by describing how the resulting haematocrit distribution is used to calculate
oxygen perfusion in the surrounding tissue. The basic steps of our method are summarised
in the flow chart in Supplementary Figure S3.

4.3.1 Synthetic network design

Our networks have one inlet vessel (with imposed blood pressure and haematocrit; we call
this generation 0), which splits into two daughter vessels (generation 1), which then split
into two daughter vessels (generation 2), and so on until a prescribed (finite) number of
generations is reached. This defines a sequence of consecutive double-t/cross bifurcations.
Thereafter, the vessels converge symmetrically in pairs until a single outlet vessel is
obtained (with imposed blood pressure). At every bifurcation, the diameters of the
two daughter vessels are assumed to be equal and determined by appealing to Murray’s
law [40]. Using the same vessel diameters in all simulations, we vary vessel lengths, so
that for all vessels in the network, the lengths equal the product of λ (which is fixed for
a given network) and the vessel diameter. We focus on λ-values in the range measured in
our tumours. We choose a synthetic network so that only λ-related effects (and not other
morphological network characteristics) contribute to haemoconcentration/haemodilution.
In future work, we will investigate the combined effect on tissue oxygenation of the HS
model with memory effects and other tumour vascular characteristics.

4.3.2 Blood flow and haematocrit splitting

Network flow problem. Tissue oxygenation depends on the haematocrit distribution
in the vessel network perfusing the tissue. The haematocrit distribution depends on the
blood flow rates. These rates are determined by analogy with Ohm’s law for electric
circuits, with the resistance to flow depending on the local haematocrit via the Fahraeus-
Lindquist effect (for details, see Supplementary Information and [52]). The flow rates
and haematocrit are coupled. We impose conservation of RBCs at all network nodes1. A
HS rule must then be imposed at all diverging bifurcations.

HS model without memory effects. The empirical HS model proposed by Pries
et al. [53] states that the volume fraction of RBCs entering a particular branch FQE

depends on the fraction of the total blood flow entering that branch FQB as follows:

logit(FQE) = A+B logit

(
FQB −X0

1− 2X0

)
, (1)

1
∑
i

Q̃iHi = 0, where we sum over all vessels i meeting at a given node with haematocrit Hi and

signed flow rates Q̃i (of magnitude Qi).
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where logit(x) = ln (x/(1− x)), B serves to as a fitting parameter for the nonlinear
relationship between FQE and FQB, and A introduces asymmetry between the daughter
branches (note that for an equal flow split FQB = 0.5, A 6= 0 yields uneven splitting
of haematocrit). Finally, X0 is the minimum flow fraction needed for RBCs to enter a
particular branch (for lower flow fractions, no RBCs will enter)2; the term (1 − 2X0)
reflects the fact that the CFL exists in both daughter vessels (see Supplementary Figure
S8a).

HS model with memory effects. We account for the effects of CFL disruption and
recovery by modifying the parameters A and X0 (as already observed in [15]). For
simplicity, and in the absence of suitable data, we assume that the parameter B is the
same in both daughter branches. If X0,f (Af ) and X0,u (Au) denote the values of X0

(A) in the favourable and unfavourable daughter branches (see Figure 2e), then our new
model of HS can be written as:

logit(FQE,f ) = Af +B logit

(
FQB,f −X0,f

1−X0,u −X0,f

)
, (2)

where subscripts f and u relate to favourable and unfavourable branches, respectively
(see Supplementary Figure S8a for a graphical depiction). It is possible to rewrite (2) in
terms of the suspension flow rates Q ≡ QB and haematocrit levels Hof the favourable f ,
unfavourable u, and parent P vessels as (for details see Supplementary Information):

Hf

Hu

= eAf ×
(
Qf −X0,fQP

Qu −X0,uQP

)B
× Qu

Qf

. (3)

This formulation of our HS model facilitates comparison with other HS models [17, 18, 39].
Functional forms for Af , X0,f and X0,u are based on our RBC simulation results and the
existing literature (see Supplementary Information). We use an iterative scheme (as
in [18]) to determine the flow rates and haematocrit in a given network.

4.3.3 Calculating the tissue oxygen distribution

We embed the vessel network in a rectangular tissue domain. A steady state reaction-
diffusion equation models the tissue oxygen distribution, with source terms at vessel
network locations proportional to the haematocrit there, and sink terms proportional
to the local oxygen concentration modelling oxygen consumption by the tissue. This
equation is solved numerically using Microvessel Chaste (see [20] and Supplementary
Information for details). In order to highlight the influence of HS on tissue oxygen, we
focus on the central 25% of the domain which is well-perfused and ignore the avascular
corner regions (see Supplementary Figures S5a and S5b)
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A Supplementary information

The Supplementary Information is organised as follows. First, we provide experimental
evidence which supports the findings that vessel lengths and diameters are uncorrelated in
tumour environments. Next, we describe the fluid structure interaction (FSI) algorithm
used for the red blood cell (RBC) simulations and the method used to calculate the width
of the cell free layer (CFL). Next, we present our hybrid model of tissue perfusion and
introduce our new haematocrtic splitting (HS) model. Finally, we comment on the higher
mean oxygen values predicted by our oxygen perfusion model for small λ values.

A.1 Vessel lengths and diameters in tumour microvasculature
are uncorrelated

In Supplementary Tables S4 and S5 we list Pearson’s r-values quantifying the correlation
between vessel lengths, L, and diameters, d,

ρL,d =
cov(L, d)

σLσd
, (S.1)

where cov(i, j) is the covariance of two variables and σi is the standard deviation of
variable i, for the three tumour cell lines used in our experiments. Results are presented
for each mouse and each scan. Day 0 was chosen as the day when the tumour vascular
network appeared to be fully formed. This typically occurred approximately 8 days after
tumour induction, when the tumour size was approximately 4mm in diameter. We note
also that the duration of the observation period is cell-line specific; some tumours grew
faster than others and, as a result, soon started pushing on the window, and in such cases
the animal had to be culled as per licence limitations. The Pearson’s r-values are too low
to conclude that a correlation exists between L and d in the tumour vascular networks
studied.

A.2 Red blood cell suspension model

The lattice Boltzmann method (LBM) numerically approximates the solution of the
Navier-Stokes equations for a weakly compressible Newtonian fluid discretised on a reg-
ular lattice. We employ the D3Q19 lattice, the Bhatnagar–Gross–Krook collision opera-
tor extended with the Guo forcing scheme [54], the Bouzidi-Firdaouss-Lallemand (BFL)
implementation of the no-slip boundary condition at the walls [55], and the Ladd imple-
mentation of the velocity boundary condition for open boundaries [56]. These methods
have been extensively used and analysed in the literature (see [57, 58] for a detailed
description).

The RBC membrane is modelled as a hyperelastic, isotropic and homogeneous mate-
rial, following the model described in [33]. The total membrane energy W is defined by
W = W S + WB + WA + W V , where the superscripts denote energy contributions due
to strain, bending, area and volume. We employ the surface strain energy density wS
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proposed by Skalak et al. [59]:

wS =
κs
12

(
I2

1 + 2I1 − 2I2

)
+
κα
12
I2

2 , (S.2)

I1 = λ2
1 + λ2

2 − 2 , (S.3)

I2 = λ2
1λ

2
2 − 1 , (S.4)

where κs and κα are the shear and dilation moduli, λ1, λ2 are the local principal in-plane
stretch ratios (see [49] for calculation procedure), and W S =

∫
dA wS. The shape of the

discocyte membrane is approximated by a number Nf of flat triangular faces, and W S is
numerically calculated based on a finite element method (FEM) approach as

W S =

Nf∑
j=1

A
(0)
j wsj , (S.5)

where A
(0)
j is the undeformed area of face j. The bending energy of the RBC membrane

is numerically calculated as

WB =
√

3κB
∑
〈i,j〉

(
θi,j − θ(0)

i,j

)2

, (S.6)

where κB is the bending modulus, θi,j is the angle between the normals of two neigh-

bouring faces i and j, and θ
(0)
i,j is the same angle for the undeformed membrane. Finally,

we penalise deviations of the total membrane surface area and volume by defining two
additional energy contributions:

WA =
κA
2

(
A− A(0)

)2

A(0)
, (S.7)

W V =
κV
2

(
V − V (0)

)2

V (0)
, (S.8)

where κA, κV are the surface area and volume moduli, A and A(0) are the current and
undeformed membrane surface areas, and similarly with V . The principle of virtual work
yields the force acting on each membrane vertex i at position ~xi through

~Fi = −∂W ({~xi})
∂~xi

. (S.9)

The immersed boundary method [60] is used to couple the fluid and membrane dy-
namics. The fluid velocity is interpolated at the positions ~xi of the RBC mesh vertices,
and a forward-Euler scheme is used to advect the vertices to satisfy the no-slip condition.
The vertex forces ~Fi are spread to the lattice where they are used as input to the forcing
term in the LBM, which ensures local momentum exchange between the membrane and
the fluid. See [33] for a detailed numerical analysis of the algorithm.

The RBC model contains five parameters (κs, κα, κB, κA, and κV ). While κs and κB
are known from experiments (see review in [61]), the exact values of the three remaining
parameters are chosen to ensure that local area, total surface area and volume drift are
constrained within a few percent and simulations are stable (see analysis is [33, 49]).
Table S7 summarises all the parameters in the model.
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A.3 CFL width calculation

To calculate the CFL width in channel 1 of the domains in Supplementary Figure S1, let
us consider a vessel cross-section of diameter d at distance l downstream from the first
bifurcation in the network. The RBC density, φ(r, θ, l, t), is 1 if there is a RBC at time t
occupying the point with radial coordinate r and angular coordinate θ of the cross-section
and 0 otherwise. The average RBC density flux Φ(l) going through the cross-section is

Φ(l) =
1

N

N∑
i=1

∫ 2π

0

dθ

∫ d/2

0

rdrφ(r, θ, l, ti)v(r, θ, l, ti) · n ,

where v is the fluid velocity, n is the cross-section normal vector and N is the number of
simulation time steps in the average (0.5 s of real time simulation sampled every 0.0215
s, N = 23, in our case).

We define χ = 0.01 as the average fraction of RBC density flux crossing the CFL. Now
we are able to numerically determine the local CFL width W (l, θ): consider a 2D-cone
centered and contained in the cross-section with orientation θ and size ∆θ = π/2. The
width W (l, θ) is the distance such that

χ =
4

ΦN

N∑
i=1

∫ θ+∆θ/2

θ−∆θ/2

dθ′
∫ d/2

d/2−W
rdrφ(r, θ′, l, ti)v(r, θ′, l, ti) · n .

Since we are only interested in the spatial evolution of the CFL, the specific value of χ
used in the definition is arbitrary. The choice of χ will change the width of the CFL after
symmetry recovery, but it will not affect the local characterisation of the CFL spatial
evolution after a bifurcation. For example, for any value of χ, the CFL recovery distance
can be calculated as the shortest distance l for which the CFL width W do not depend
on coordinate θ.

A.4 Hybrid model of oxygen transport in vascularised tissue

A.4.1 Choice of vessel diameters and branching angles in vascular networks

In the branched networks used, we fix the diameter of the inlet vessel so that dinlet = 100
µm. The diameters of the two daughter vessels (dα and dβ) are assumed to be equal and
determined from the diameter of the parent vessel (dP ) via Murray’s law [40] so that:

d3
P = d3

α + d3
β ≡ 2d3

α,

in which case

dα =
dP

2
1
3

.

Since the network is symmetric about its central axis, vessels on the converging side have
the same diameters as those of the same generation on the diverging side (see Supple-
mentary Figure S4a). For all simulations the networks have 6 generations of vessels. The
length L of a vessel segment in a given network is related to its diameter d via L = λd,
where the positive constant λ is network-specific.
For complete specification of the network geometry, in two-dimensional cartesian geome-
try, it remains to embed the network in a spatial domain. This is achieved by specifying
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either the branching angles, or (equivalently) the lengths of the projections of the vessels
on the y axis. Denoting by Lvert1 the length of the projection of a vessel of generation 1,
the lengths of the projections of vessels of generation i > 1 are given by Lverti = 1

2
Lverti−1 .

As a result, the vertical size of the domain will not exceed 4Lvert1 for any number of
generations. Finally, we require Lvert1 < L1 = length of vessels of generation 1. In our
simulations, we fix Lvert1 = 0.9L1 to ensure adequate spatial extent in the y− direction.

A.4.2 Poiseuille’s law and the Fahraeus-Lindquist effect

We simulate flow in the branched networks by following the approach of Pries et al. [53].
For blood vessels of length L and diameter d, we assume Poiseuille’s law

Q =
π

128

∆pd4

Lµ
, (S.10)

where Q is the vessel flow rate, ∆p is the pressure drop along the vessel and µ is the
viscosity of blood [52]. Following [62] we assume that the blood viscosity depends on
vessel diameter and haematocrit via the empirical relationship:

µ = µp

[
1 + (µ45 − 1)

(1−H)C − 1

(1− 0.45)C − 1

(
d

d− 1.1

)2 ][
d

d− 1.1

]2

,

where µp is the plasma viscosity, H is the vessel haematocrit,

µ45 = 6e−0.085d + 3.2− 2.44e−0.06d0.645

and

C =
(
0.8 + e−0.075d

)(
−1 +

1

1 + 10−11d12

)
+

1

1 + 10−11d12
.

Introducing signed flow rates Q̃i for the sake of brevity, we impose conservation of blood
and haematocrit at each network bifurcation, so that∑

i

Q̃i = 0, (S.11)

and ∑
i

Q̃iHi = 0. (S.12)

In (S.11) and (S.12) we sum over the three vessels that meet at that bifurcation. At
diverging bifurcations, we impose a HS rule: we use (1) from the main text when CFL
memory effects are neglected and (2) from the main text when they are included. Denot-
ing by NB the number of network bifurcations and NV the number of vessels, we have NB

unknown pressures P , NV unknown flow rates Q and NV −1 unknown haematocrit levels
(the inlet haematocrit being prescribed) - altogether NB + 2NV − 1 unknowns. At the
same time, we impose Poiseuille’s law ((S.10)) for every vessel (NV times), conservation
of blood ((S.11)) and haematocrit ((S.12)) at every bifurcation node (NB times), and an
HS rule at all diverging bifurcations (NB/2 times), yielding a total of NV + 5NB/2 alge-
braic equations. Since every bifurcation connects 3 vessels, we have NV = (3NB + 2)/2,
where every vessel is counted twice, except for the inlet and outlet vessels (+2 in the
numerator). From this, it follows that the number of equations (NV + 5NB/2) equals the
number of unknowns (NB + 2NV − 1).
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A.4.3 Oxygen distribution in tissue

In this section, we determine the oxygen concentration c in the tissue. Following [20],
we assume that the dominant processes governing its distribution are delivery from the
vessel network (via one-way coupling with (S.12) and the haematocrit models (1) or (2),
i.e. c depends on Hl but not vice versa), diffusive transport through the tissue, and
consumption by cells in the tissue. We focus on the long time behaviour and, therefore,
adopt a quasi-steady state approximation [63]

D∇2c︸ ︷︷ ︸
diffusive transport
through the tissue

+ πdlγ

(
βref
Href

Hl − c
)
δnetwork︸ ︷︷ ︸

delivery from the
blood vessels

− κc︸︷︷︸
consumption by

the tissue

= 0 . (S.13)

In (S.13), the positive constants D, γ and κ represent the diffusion coefficient for oxygen
in the tissue, the vessel permeability to oxygen, and the rate at which it is consumed
by cells in the tissue. The vessel network is represented by a collection of Dirac point
sources δnetwork where

δnetwork(x) =

{
1 if vessel is located at x
0 otherwise

and for any x satisfying δnetwork(x) = 1, dl and Hl are the diameter and haematocrit
of the vessel at that location (where the latter has been calculated as described in the
previous section). The constant βref represents the oxygen concentration of a reference
vessel containing haematocrit Href (here we fix Href = 0.45, the inlet haematocrit) and
we suppose that the oxygen concentration of a vessel with haematocrit Hl is βrefHl/Href .
In (S.13) we assume that the oxygen is supplied by vessels to the tissue at a rate which is
proportional to their circumference πdl, the vessel permeability γ, and βrefHl/Href − c.
Finally, we have βref = cstpprefαeff , where cstp denotes an ideal gas concentration at
standard temperature and pressure, pref denotes the reference partial pressure at the
inlet vessel, and αeff denotes the volumetric oxygen solubility [64]. A summary of the
parameter values used to solve (S.13) is presented in Supplementary Table S8.

A.5 Derivation of, and justification for, the HS model with CFL
memory

A.5.1 Parameter dependencies in HS model without memory from [38]

The dependencies of the parameters A, B and X0 (see (1) from the main text) on the
diameters of the parent and daughter vessels (dP , dα and dβ, respectively), and the
discharge haematocrit HP in the parent vessel were first introduced in [53] and later
adjusted in [38] to achieve a better approximation under extreme combinations of dα, dβ,
dP and HP . We will use the functional forms from [38], which read

A = −13.29
[(
d2
α/d

2
β − 1

)
/
(
d2
α/d

2
β + 1

)](
1−HP

)
/dP , (S.14)
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B = 1 + 6.98

(
1−HP

dP

)
(S.15)

and
X0 = 0.964(1−HP )/dP . (S.16)

These functional forms assume that dP is dimensionless and given by dP = d̂P
1µm

, where

d̂P is the dimensional diameter. We maintain this convention throughout this section.

A.5.2 HS model with memory

Simplifying assumptions. Before we explain how we extend the model from [38] to
incorporate memory effects, we comment on its main simplifying assumptions. At present,
our model does not include any information on local flow rate (apart from information
about the distance to the previous bifurcation); a more realistic model for the CFL recov-
ery should include such information. Furthermore, the current model is two-dimensional.
These simplifying assumptions could easily be relaxed in future work. For instance, in
three dimensions, one needs to account for the angle defined by the planes containing
the current and previous bifurcation in the model. Therefore, the model presented here
should be viewed as a first attempt to account for the effects of CFL disruption in HS.

Rewriting of the model. In this section, we rewrite the HS model with memory effects
((2) from the main text) in terms of haematocrit levels H and flow rates Q experienced
by the vessels belonging to a given bifurcation ((3) from the main text). The definitions
of FQE,f and FQB,f can be written as:

FQE,f =
QfHf

QPHP

, FQB,f =
Qf

QP

.

Substituting these expressions into (2) from the main text gives:

logit

(
QfHf

QPHP

)
= Af +B logit

(
Qf/QP −X0,f

1−X0,u −X0,f

)
.

Recalling that logit(x) = ln (x/(1− x)), we have

ln

(
QfHf

QPHP −QfHf

)
= Af +B ln

(
Qf −X0,fQP

QP −Qf −X0,uQP

)
.

Appealing to conservation of blood (overall)

QP = Qf +Qu

and RBCs (in particular)
QPHP = QfHf +QuHu (S.17)

at diverging bifurcations, we arrive at

ln

(
QfHf

QuHu

)
= Af +B ln

(
Qf −X0,fQP

Qu −X0,uQP

)
.
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This equation can also be written as

ln

(
Hf

Hu

)
= Af +B ln

(
Qf −X0,fQP

Qu −X0,uQP

)
− ln

(
Qf

Qu

)
,

which yields
Hf

Hu

= eAf ×
(
Qf −X0,fQP

Qu −X0,uQP

)B
× Qu

Qf

.

Choice of parameter values and CFL recovery function. Here we introduce the
functional forms for Af , X0,f and X0,u, using empirical data to justify our choices. Guided
by the dependence of A on the network branching history described in [15] (see Figure 7
therein), we propose

Af = A+ Ashiftf(l; dP ), (S.18)

where A is given in (S.14), the positive constant Ashift corresponds to the maximum
CFL disruption effect, and the function f(l; dP ) describes how the recovery of the CFL
depends on the distance l to the previous bifurcation and the diameter dP of the parent
vessel3.
For parameter A, we only have access to the scattered data with respect to the regressor
from [53] (as opposed to the regressor from [38]), which reads

A = −6.96 ln

(
dα
dβ

)
/dP . (S.19)

Using the extreme values of A in these data (see Supplementary Figure S8c), we estimate
Ashift = 0.5. Note that in branching networks with every pair of daughter vessels having
equal radii, both [53] and [38] yield A = 0. Thus, for our networks, the choice of A does
not affect Af at all (see (S.18)).

For simplicity, we model the CFL recovery using an exponential function

f(l; dP ) = e
− l

ωdP , (S.20)

where ω controls the temporal dynamics of CFL recovery. From [32], we note that the
CFL width is (approximately) 90% recovered at a distance l90 = 10dP from the previous
bifurcation (see also Figure 2g). Accordingly, we choose ω so that

0.1 = e−
10
ω =⇒ ω =

10

ln (10)
≈ 4.

Guided by the dependence of X0,f on flow history described in [15], we propose

X0,f = X0 (1− f(l; dP )) . (S.21)

Assuming, as a first approximation, that X0,f +X0,u is constant and independent of the
distance to the previous bifurcation (see Figure 2g), we define

X0,u = X0 (1 + f(l; dP )) . (S.22)

3Consistency of the model requires that Au = A−Ashiftf(l; dP ).
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A.5.3 Validation of the HS model with memory

We validate the HS model with memory by comparing its predictions with results from
the RBC simulations in the double-t geometry. We assume that all vessels have the same
diameter (d = 33 µm), and that the flow rate splits evenly at both bifurcations. If we
assume further that the CFL is fully established at the network inlet vessel, Hinlet = 20%,
then (1) from the main text supplies H1 = H2 = Hinlet = 20%. We use conservation of
RBCs ((S.17)) and the new HS model ((3)) from the main text to estimate haematocrit
values in the unfavourable and favourable daughter branches after the second bifurcation
(channels 3 and 4, respectively) for varying inter-bifurcation distances δ. The results are
summarised in Supplementary Table S9. For δ = 4d, the new HS model predicts haema-
tocrits within 5% of the values calculated from RBC simulations. Given the uncertainty
in determining discharge haematocrit in the RBC simulations and given that the new
model neglects effects due to asymmetric streamline splitting [37], we conclude that our
new model provides a good, leading-order approximation to the effects of CFL disruption
on HS.

Finally, we compare the CFL evolution dynamics calculated from the RBC simulations
(for θ = 0 and θ = π) with those predicted from the proposed evolution of X0,f and X0,u

((S.21) and (S.22)). In the absence of a known functional form relating the CFL width
W and the minimum flow fraction X0, we define

X0,f/u =
Wf/u

dP
. (S.23)

(S.23) is based on the diagram in Supplementary Figure S8a and the assumptions of a
cross-sectionally uniform velocity profile within a one-dimensional vessel cross-section.
Combining (S.16), (S.23), (S.21) and (S.22), we conclude

Wf/u = dPX0,f/u = dPX0 (1∓ f(l, dP )) = 0.964× (1−HP )
(

1∓ e−
l

4×dP

)
. (S.24)

We remark that for a well-established CFL (i.e. l → ∞), (S.24) predicts (noting that
channel 1 serves as the parent vessel for the second bifurcation and estimating HP =
0.2 from Supplementary Table S6) a CFL width of about 0.77 µm, whereas our RBC
simulation predicts a value of approximately 1.8 µm (see Supplementary Figure S8b).
We postulate that this discrepancy is caused by our oversimplification of the relationship
between the CFL width and the minimum flow fraction ((S.23)). Nevertheless, we can
adjust (S.24) so that it is consistent with the established CFL width of 1.8 µm by writing

Wf/u = 1.8×
(

1∓ e−
l

4×dP

)
. (S.25)

In this case the CFL evolution (for θ = 0 and θ = π) follows a trend similar to that
observed in our RBC simulations (Supplementary Figure S8b). In particular, our as-
sumption that l90 = 10dP is in good agreement with our simulation results (see dashed
line in Supplementary Figure S8b).

A.6 Explanation of higher mean oxygen values for small λ

We observed that CFL disruption effects increase the mean oxygen concentration in the
chosen network (Supplementary Figure S6). Here, we provide an explanation of this
phenomenon.
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We define
∆αH = Hα −HP , ∆βH = Hβ −HP , (S.26)

where P is the parent branch and α and β are the daughter branches of any diverging
bifurcation. Conservation of blood and RBCs at this bifurcation then yields

Qα +Qβ = QP (S.27)

Qα (HP + ∆αH) +Qβ (HP + ∆βH) = QPHP . (S.28)

Combining (S.28) and (S.27) supplies

Qα

Qβ

= −∆βH

∆αH
. (S.29)

We deduce that, at diverging bifurcations, the haematocrit level in the daughter branch
with higher flow rate deviates less (in absolute value) from the haematocrit in the parent
vessel than the branch with lower flow rate.

We note further that all paths connecting the inlet and outlet vessels in the direction
of blood flow in a given network are topologically and geometrically equivalent. There-
fore, heterogeneity in haematocrit splitting arises solely from CFL disruption effects. If
haematocrit is elevated in one of the daughter branches, its impedance will increase, and,
as a result, it will receive a lower flow rate.

Combining these two effects, we see that, in the chosen networks, haemoconcentra-
tion in any daughter branch is more significant than haemodilution in its sibling. As a
consequence, and given that the strength of the oxygen source term in (S.13) is a linear
function of H, we observe higher mean oxygen levels when the effects of CFL disruption
are taken into account (especially for small λ). Future work will investigate this effect by
making source term a function of RBC mass flux (i.e. QH) or relaxing the assumption
that the RBCs have infinite oxygen carrying capacity.
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B Supplementary tables/figures

Supplementary figures and tables supporting the main manuscript text and supplemen-
tary information:

• Supplementary Tables S1–S9.

• Supplementary Figures S1–S8
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Table S1: Average vessel lengths and diameters reported in a variety of tissues under
physiological conditions.

Animal (tissue) Vessel type L̄(µm) d̄(µm) λ = L̄/d̄ Reference

Wistar Kyoto Rat
(mesentery)

Arteriole 337.0 13.2 25.5 [65, 66]
Capillary 424.0 8.7 48.7 [65, 66]

Venule 334.0 20.6 16.2 [65, 66]

Myotis Bat (wing)
Arteriole 206.0 7.0 29.4 [67]
Capillary 74.0 3.7 20.0 [68]

Venule 200.0 21.0 9.5 [68]
Cat (sartorius
muscle)

Arteriole 96.0 7.4 13.0 [69]
Venule 68.0 6.8 10.0 [70]

Golden Hamster
(retractor muscle)

Arteriole 101.2 5.7 17.8 [71]
Venule 57.7 3.6 16.0 [71]

Human Capillary 350.0 5.0 70.0 [72]

(a) Extended double-t
geometry

(b) Double-t geometry (c) Cross geometry

Figure S1: Computational domains considered showing the numbering of the different
channels in the network: (a) extended double-t geometry, (b) double-t geometry, (c) cross
geometry.

Figure S2: CFL channel 1 double-t geometry perpendicular to bifurcation planes.
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Start:
input λ

(2 ≤ λ ≤ 20)

Generate synthetic
vessel network

Solve haematocrit
and flow problems
using HS model
without memory

Solve haematocrit
and flow problems
using HS model
with memory

Embed vessel
network into
tissue domain

Define spatial
domain and

discretise it using
a regular grid

Solve reaction-
diffusion equation

to determine
tissue oxygen
distribution

Compare output
from the two
HS models

End

Vessel network: blood flow and haematocrit

Tissue oxygenation

Figure S3: Flow chart summarising the main components of our hybrid model for tissue
oxygen perfusion, as implemented within Microvessel Chaste (see [20]).

Table S3: λ values measured in MC38 tumours following DC101 treatment over time.

Day Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5
0 4.532 4.065 4.141 4.122 4.054
1 5.301 4.098 4.336 4.432 3.878
2 6.222 4.429 4.396 5 4.756
3 5.382 4.465 3.89 5.353 5.068
4 4.395 4.418 3.273 6.342 4.237
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(a) A typical forking vessel network (b) Vessel flow rates (in m3/s)

(c) Distribution of haematocrit across vessel
network (model with memory effects)

0 1 2 3 4 5
Generation

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
H
a
e
m
a
to
cr
it

(d) Propagation of memory effects

Figure S4: (a) A typical symmetric forking network with 6 generations of vessels. (b) Flow
rates almost halve between consecutive vessel generations. However, small differences in
flow rates between daughter vessels arise due to non-uniform haematocrit splitting (HS),
as can be observed in the inset (note that the range of the colour bar has been adjusted to
represent only the selected vessels). (c) Differences in the predicted haematocrit levels of
daughter vessels (within a single vessel generation) become more pronounced as the gener-
ation number increases. (d) For the new HS model, the haematocrit distribution becomes
more disperse as the number of bifurcations included in the network increases (the red
horizontal line represents the predicted haematocrit when memory effects are neglected
and haematocrit is distributed uniformly across the network). Each circle corresponds to
a single vessel and different colours correspond to different vessel generations.
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(a) λ = 4, model without memory effects (b) λ = 4, model with memory effects

Figure S5: For λ = 4.0, the model with memory effects yields more pronounced oxygen
heterogeneity (i.e. more dispersed oxygen distribution) in the region of interest bounded
by red rectangles in (a) and (b) (note that the spatial scales are in microns).

Table S4: Timecourse of Pearson’s r-values calculated for different mice at different days
of measurement implanted with the MC38 cell line. Day 0 corresponds to the day of the
first measurement, when the tumour reached a specified size (4mm in diameter; see the
main text). The corresponding values of L̄, d̄ and λ are reported in the main text (see
Table 1). The missing datum for tumour 3 on Day 3 is due to the laser on the microscope
failing during imaging.

Day 1 2 3 4 5 6
0 0.05 -0.06 -0.07 0.10 -0.13 0.00
1 0.03 -0.05 -0.07 -0.07 -0.13 -0.00
2 -0.08 -0.07 -0.06 -0.17 -0.19 0.02
3 -0.09 -0.09 - -0.14 -0.13 -0.02
4 -0.14 -0.11 -0.08 -0.17 -0.12 -0.07
5 - -0.09 - - -0.07 -0.11
6 - -0.04 - - - -
7 - -0.08 - - - -

Table S5: Timecourse of Pearson’s r-values for mice implanted with the B16F10 and
LLC cell lines. Day 0 corresponds to the day of the first measurement, when the tumour
reached a specified size (4mm in diameter; see the main text). The corresponding values
of L̄, d̄ and λ are reported in the main text (see Table 1).

B16F10 LLC
Day 1 2 3

0 -0.08 -0.08 -0.06 0.03
1 -0.05 -0.06 -0.09 0.02
2 -0.05 -0.12 -0.06 -
3 -0.03 -0.11 -0.06 -
4 - - -0.06 -
5 - - -0.05 -
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(b) Mean oxygen concentration as a function of λ
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(c) Standard deviation (oxygen) as a function of λ

Figure S6: Summary statistics illustrating how for a vessel network with 6 generations its
λ value and the HS model affect tissue oxygenation. (a) Boxplots showing how the tissue
oxygen distribution changes as λ varies for the two different HS rules. (b) Mean oxygen
concentration increases as λ decreases (and the vessel density increases). (c) Standard
deviation in the tissue oxygen concentration increases with λ when memory effects are
neglected ((1) from the main text). When memory effects are considered ((2) from the
main text), the standard deviation increases for small λ values. The mean and standard
deviation for the two models converge for large λ values. Model parameter values as per
Supplementary Table S8.
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Figure S7: Vessel length and diameter in MC38 tumours over time following DC101
treatment compared with control (n=5).

Table S6: Parameters in RBC simulations in synthetic capillary networks

Parameter Description Value Reference
d Cylindrical channel

diameter
33 µm Current study

L′ Inlet/outlet channel
length

25d [32]

δ Distance between
branching points

4d, 25d [32], current study

v̄inlet Inlet mean velocity 600 µm/s [9]
Hinlet Inlet discharge

haematocrit
20% [9]
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Table S7: Parameters used in RBC simulation algorithm. The number of faces is chosen in
such a way that the average edge length of a triangular element matches the grid spacing
of the fluid lattice. The value of the capillary number is representative of typical flows in
the microcirculation. The adopted value of the Föppl-von Kármán number matches the
intrinsic property of healthy RBC membranes. The remaining moduli are chosen in such
a way that the local area, total surface area and volume of the RBCs are constrained
within a few percent while simulations remain numerically stable.

Parameter Description Value Unit Comment
Nf Number of faces 500 - See mesh convergence analysis

in [33]
rRBC RBC diameter 8 µm 6.2–8.2 µm physiological

range
η Plasma viscosity 1 mPa s Approximated by water
Ca Capillary number 0.1 - Ca = ηγ̇rRBC

κs
, γ̇ = v̄inlet

d
(see

Suppl. Table S6, [32])

Γ Föppl-von Kármán no. 400 - Γ = κsrRBC
2

κB

κα Dilation modulus 0.5 - Strong volume and area con-
servation

κA Surface area modulus 1 - Strong volume and area con-
servation

κV Volume modulus 1 - Strong volume and area con-
servation

Table S8: Parameters used to simulate tissue oxygen.

Parameter Description Value Unit Reference
D Diffusivity 0.00145 cm2 min−1 [77]
κ Consumption rate 13.0 min−1 [77]
γ Vessel permeability 6.0 cm min−1 [77]
cstp Ideal gas concentration 1

0.0224
mol m−3 [78]

pref Reference partial pressure 20 mmHg [77]
αeff Volumetric solubility 3.1× 10−5 mmHg−1 [64]
Hinlet Inlet haematocrit 0.45 - [79]
dinlet Diameter of inlet vessel 100 µm Estimated from [52]
Ashift Maximum CFL disruption

effect
0.5 - Estimated here

ω Temporal dynamics of CFL
recovery

4 - Estimated here

µp Plasma viscosity 10−3 Poiseuille Similar to [77]
pin Inlet pressure 3.32× 103 Pa Similar to [77]
pout Outlet pressure 2.09× 103 Pa Similar to [77]
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Figure S8: (a) A schematic diagram presenting the geometric intuition behind (blood)
flow and haematocrit separation illustrate why two distinct minimum-flow fractions are
needed to characterise the favourable and the unfavourable branches: ‖AB‖ = X0,u,
‖DE‖ = X0,f , ‖AC‖ = FQB,u and ‖CE‖ = FQB,f . Blood flow separation at the two
consecutive bifurcations is shown in dotted green, streamlines are sketched with yellow
curved arrows, and the CFL recovery on the favourable (unfavourable) side of the parent
vessel after the first bifurcation is sketched in red (blue). Whenever FQB,f < X0,f

(FQB,u < X0,u), the favourable (unfavourable) branch only draws blood from the CFL
and it thus receives pure plasma. (b) Model of CFL recovery as described by (S.25) shows
similar trends to and is in satisfactory agreement with the CFL width data from RBC
simulations in Figure 2g (given the simplifying assumptions). The established CFL width
of 1.8 µm chosen by inspection for this particular dataset. (c) Dispersion of values for A
(reproduced using Figure 6 from [15]) is used with the regression from [53] to estimate
the value of Ashift ≈ 0.5 in (S.18), based on deviation from the regression. We assume
the CFL disruption to be the primarily cause of this deviation, and thus its maximum
(absolute) value should correspond to l = 0 in (S.20) (i.e. f = 1 in (S.18)).
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Table S9: Haematocrits predicted by the model with CFL memory effects

Distance Hinlet Hu Hf

δ = 4d 20.0 17.7 22.3
δ = 11d 20.0 19.6 20.4
δ = 18d 20.0 19.9 20.1
δ = 25d 20.0 20.0 20.0
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