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Abstract 
Human social behaviour is complex, and the biological and neural mechanisms underpinning it remain 

debated1,2. A particularly interesting social phenomenon is our ability and tendency to fall into 

synchrony with other humans3,4. Our ability to coordinate actions and goals relies on the ability to 

distinguish between and integrate self and other, which when impaired can lead to devastating 

consequences. Interpersonal synchronization has been a widely used framework for studying action 

coordination and self-other integration, showing that in simple interactions, such as joint finger 

tapping, complex interpersonal dynamics emerge. Here we propose a computational model of self-

other integration via within- and between-person action-perception links, implemented as a simple 

Kuramoto model with four oscillators. The model abstracts each member of a dyad as a unit consisting 

of two connected oscillators, representing intrinsic processes of perception and action. By fitting this 

model to data from two separate experiments we show that interpersonal synchronization strategies 

rely on the relationship between within- and between-unit coupling. Specifically, mutual adaptation 

exhibits a higher between-unit coupling than within-unit coupling; leading-following requires that the 

follower unit has a low within-unit coupling; and leading-leading occurs when two units jointly exhibit 

a low between-unit coupling. These findings are consistent with the theory of interpersonal 

synchronization emerging through self-other integration mediated by processes of action-perception 

coupling4. Hence, our results show that chaotic human behaviour occurring on a millisecond scale can 

be modelled using coupled oscillators. 

Background 
When two people perform a simple task together, such as walking together or applauding a successful 

performance, they tend towards synchronization5,6. This emergence of synchrony is also found in 

many other natural phenomena3, such as the collective flashings of fireflies7, or the pacemaker cells 

in the heart8. For this reason, the mathematical framework of coupled oscillators provides an 

approach for understanding the conditions and parameters necessary for synchrony to emerge9,10. 

However, in many cases of human interaction, synchronization is not simply emergent, but rather a 

goal or a prerequisite of the task. A particularly prominent example of this is rhythmic joint action, as 

found in musical performance. Here, multiple people coordinate their movements and adapt to each 

other on a millisecond basis. In this sense, human interpersonal synchronization presents as a more 

complex system. Experiments using joint finger tapping paradigms (illustrated in figure 1a and 1b) 

shows that this type of synchronization relies on different synchronization strategies, such as mutual 

adaptation and leading-following4,11-13. Common for these is that they cannot be differentiated by 

looking just at measures of synchronization, as different strategies may exhibit the same 

synchronization level. Instead, differences between synchronization strategies can be detected when 
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a lagged cross-correlation is calculated between the resultant time-series, as illustrated in figure 1C 

and 1D11.  

 

 

Figure 1 – In A) a joint finger tapping paradigm is illustrated. Two persons (dyad members) tap an isochronous rhythm 
together. Their auditory feedback is shown in matrix form in B). C) Time series representing the intertap interval (ITI), a 
measure of the time between successive taps, of each dyad member. Colours indicate dyad member. When these time series 
are cross-correlated at lag -1, lag 0, and lag +1, a pattern such as illustrated in D) emerges. Here, the pattern would indicate 
a mutual adaptation synchronization strategy.  

 

The most commonly found strategy is the one of mutual adaptation, which occurs when both 

members in an interacting dyad simultaneously and constantly adapt to each other on a per-action 

basis4,14. This results in positive correlations at lag -1 and lag +1, and a negative correlation at lag 0, as 

the members are mutually correlated with the previous tap of the other. Another well-documented 

synchronization strategy is the leading-following strategy, where one of the dyad members exhibits 

less adaptability than the other and hence becomes a leader. This shows as a positive correlation at 

either lag +1 or lag -1, depending on which member is leading. While both these strategies have been 

reported in multiple studies, recently a third strategy called leading-leading was found5,11,12,15. In the 

leading-leading strategy both members resist adaptation and rather taps along without much regard 
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to the performance of their tapping partner. This results in a pattern with low correlation coefficients 

across all lags. While there have been attempts at modelling such behaviour with coupled oscillators 

the existing models have not captured the mechanisms underlying these distinct synchronization 

strategies5,16-19. 

One explanation for the emergence of these different strategies may lie in the increased complexity 

compared to physical systems such as coupled pendulums. In humans, the coupling is mediated by 

perceptual links, such as visual or auditory information, as opposed to the physical coupling found in 

many other systems4. Unsurprisingly, if no such link is present (for instance if no perception of the 

other’s movement is possible) experiments show that synchronization does not occur20. Hence, 

interpersonal synchronization necessitates two separate processes, wherein one process is perceiving 

the stimuli to be synchronized to, and another process is in charge of producing the actions leading to 

synchronization. The last couple of decades of research points towards these two processes, action 

and perception, being intrinsically coupled in terms of processing in the human brain21. In joint finger 

tapping such action-perception coupling can occur when one dyad member perceives the auditory 

feedback from the other member as belonging to its own tapping, hence blurring the lines between 

self and other. It is this type of coupling that has been hypothesized to underlie the mutual adaptation 

synchronization strategy observed in previous studies4. On the other hand, if one dyad member 

chooses to ignore feedback from the other dyad member and instead solely monitors their own model 

of the task, this will force the other dyad member to take over the coordination task, and thus create 

a leading-following relationship. By necessity, this then requires the leading dyad member to decouple 

their motor actions from their auditory perception of the other. 

Here we test the hypothesis that synchronization strategies emerge as a function of action-perception 

coupling strength. Specifically, we test if the rhythmic joint finger tapping tasks commonly used in the 

field of joint action can be modelled using a coupled oscillator model, and if empirically encountered 

synchronization strategies are systematically linked to differing coupling strengths in the model. In the 

first part, we examine the behaviour of a four-oscillator Kuramoto model to determine if it is able to 

reach and maintain synchronization within the short amount of time as is seen in joint finger tapping 

experiments, while at the same time producing distinct synchronization strategies. In the second part 

we use empirical data to validate the model, and determine how coupling parameters are linked to 

specific synchronization strategies. 
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Model of interacting dyads 
Our model aims at representing the dynamics of interacting dyads performing joint finger tapping in 

a reduced form, retaining only the necessary features to capture the fundamental principles 

underlying the complex synchronization strategies observed in joint finger tapping. Each person is 

considered a unit, with two internal oscillators serving as proxies for perception and action (see Figure 

2A). These two within-unit oscillators are bidirectionally linked through the internal coupling term i 

representing the intrinsic coupling found between auditory and motor processes in the brain. The two 

units are coupled so that the action oscillator in one unit is unidirectionally linked to the perception 

oscillator in the other unit, through the external coupling term e. This coupling term represents the 

extrinsic flow of information between the two interacting units. The model is based on the Kuramoto 

model of coupled oscillators, with the exception that the connection strength between each pair of 

oscillators n and p is defined by the coupling matrix 𝐾𝑛𝑝 (Figure 2B), as defined by the following 

equation: 

𝜃𝑛 = 𝜔𝑛 +∑𝐾𝑛𝑝 sin(𝜃𝑝 − 𝑛) + 𝜍

4

𝑝=1

, 𝑛 = 1, . . ,4 (1) 

where 𝜃𝑛 is the phase of each oscillator n, 𝜔𝑛 is its fundamental frequency, and 𝜍 is added Gaussian 

noise (see full details in the extended Methods section). 

To examine the behaviour of the model we first determine the coupling strength producing maximum 

synchronization, by globally varying the four coupling terms equally (for further details see the 

methods section). This allowed us to determine the range of coupling strengths for which the model 

switches from exhibiting unsynchronized to fully synchronized behaviour. Following this, we sampled 

the model at a selection of coupling strength combinations, and calculated cross-correlation lag 

patterns of the output from each unit’s action oscillator (ω2 and ω3 in Figure 2A). These lag patterns 

where thereafter clustered to identify significantly different lag patterns.  
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Figure 2 – Overview of the model. In A we see the four-oscillator model, with the oscillators represented as circles within the 
two units. The coupling terms are showed as arrowed lines. In B the coupling matrix is shown, and two out of 13 significantly 
different lag patterns produce by the model is shown in C.  

 

Results 
Simulations showed that the model reached a maximum synchronous state at a general coupling 

weight of 15.5, as measured with the synchronization index22. This index is calculated based on the 

variance of relative phase between two signals, and is a unitless number ranging from 0 to 1, with 1 

indicating full synchronization. Subsequently, we ran further simulations for a range of selected 

coupling weights (see methods) below this critical range to determine if the model was able to 

produce distinct synchronization strategies. We found that the model exhibited a rich and varied 

sample of lag patterns, with 13 of these patterns being different at α<0.001. Multiple clusters 

produced by the model have patterns with resemblances to a leading-following strategy (see Cluster 

3 in figure 2C) and one cluster exhibits features of a mutual adaptation strategy (see Cluster 7 in figure 
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2C). Hence, we found that a model with four coupled oscillators and four coupling terms are able to 

produce an array of differing synchronization strategies.  

To verify if this behaviour was dependent on each unit having two oscillators, we tested an even more 

reduced model containing only one oscillator per unit. This reduced model failed at producing lag 

patterns consistent with empirical data, by showing a large positive lag 0 component at all coupling 

strength combinations (see methods). 

Model validation on empirical data 
To validate our model, we tested it on empirical data from two separate joint finger tapping studies. 

Dataset 1 was acquired from a 2018 study by Heggli et. al15, and dataset 2 was acquired from a 2010 

study by Konvalinka et. al11. Both datasets were collected in compliance with local and national 

research ethics standards.  

In dataset 1, musicians were paired and asked to tap one of two rhythms together while bidirectionally 

coupled. Both rhythms had an ITI of 500 ms, corresponding to a beat-per-minute (bpm) of 120. A 

cluster-analysis of the cross-correlated lags identified three subgroups of participants. One subgroup 

used the leading-leading strategy, and the two remaining subgroups exhibited patterns of mutual 

adaptation at two different pattern strengths.  

In dataset 2, pairs of non-musicians tapped together in differing auditory coupling conditions: 1) 

uncoupled, with no auditory feedback from the other dyad member, 2) unidirectional coupling so that 

dyad member 1 hears their own tapping sound and member 2 hears member 1’s tapping, and 

mirrored so that member 2 hears its own tapping and member 1 hears member 2’s tapping, and 3) 

bidirectional coupling wherein dyad member 1 only hears the taps of dyad member 2 and vice versa. 

In addition, the tapping was performed at different tempi (96 bpm, 120 bpm, and 150 bpm). Here, a 

leading-following was found in the unidirectional condition, and mutual adaptation in the bidirectional 

condition. For the purposes of model validation, we chose only the 120-bpm tempo from this dataset, 

and only the conditions wherein the dyad members interacted (unidirectional coupling, and 

bidirectional coupling). Together, these two datasets contain three distinct synchronization strategies, 

in six independent groups.  

We performed a two-step consecutive parameter search to determine which coupling weights best fit 

the data. For dataset 1 we used the three subgroups found in the empirical data, and for dataset 2 we 

used data from three different coupling conditions (bidirectional coupling, unidirectional coupling 1 

with dyad member 1 being the leader, and unidirectional coupling 2 with dyad member 2 being the 

leader). We optimized our search on the numerical distance between the averaged cross-correlated 
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lags in the empirical data and the data produced by our model. Once the best fit was found, we 

calculated the mean Bhattacharyya coefficient between the empirical and simulated data23.  

Results 

Our parameter search provided a good fit for all subgroups found in the empirical data (see Figure 3). 

We found that the three empirically encountered synchronization strategies, as reproduced by our 

model, are characterized by the weighting of between- and within-unit couplings. Mutual adaptation, 

the most common synchronization strategy, relies on a high between-unit coupling strength and a 

correspondingly low within-unit coupling strength. Leading-following, in our case the unidirectionally 

forced type of leading-following, relies on the leader unit having a balanced coupling strength on both 

the within- and between-unit coupling term. However, the follower unit exhibits a much stronger 

between-unit coupling strength than its within-unit coupling. The remaining strategy, leading-leading, 

presents as both units having a strong within-unit coupling strength, and a low between-unit coupling 

strength. Overall, the mean Bhattacharyya coefficient were over 0.9 in all cases except for one 

instance of the mutual adaptation strategy found in in dataset 2 (see table 1). 
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Figure 3 – Overview of the main results. In the first row, synchronization patterns from the empirical data are shown. Leading-
leading (1) corresponds to a subgroup from dataset 1. Leading-following (2) and (3) are from the two unidirectional conditions 
in dataset 2. From the mutual adaptation group (4) is the bidirectional condition from dataset 2, whereas (5) and 6) are the 
two remaining subgroups from dataset 1. The dark blue lag patterns show the empirical data. The light blue lag patterns 
show the synchronization strategy patterns produced by the model at the given coupling weights listed in table 1. The patterns 
are plotted as the mean value, with error bars indicating the standard error of the mean. Note that the y-axis is not identical 
in all the plots, as the strength of the pattern varies in the empirical data. 
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Overview of best coupling weights Unit 1 Unit 2  

Coupling term i1 e1 i2 e2 

Bhattacharyya coefficient 

(mean) 

1. Dataset 1 - Leading-leading 6.5 1.5 7.8 1.3 .97 

2. Dataset 2 - Leading-following (1) 1.7 5.5 4.1 5.5 .91 

3. Dataset 2 - Leading-following (2) 4.1 5.7 1.7 4.5 .91 

4. Dataset 2 - Mutual adaptation (1) 2.5 6.3 2.3 5.1 .73 

5. Dataset 1 - Mutual adaptation (2) 2.5 4 2.3 8 .94 

6. Dataset 1 - Mutual adaptation (3) 1 5 1.3 3.3 .98 

Table 1 – Overview of the best coupling weights found for each group. The numbering of the groups corresponds to the 
labelling used in Figure 3. The Bhattacharyya coefficient listed here is the mean coefficient between the three lags. For details, 
see methods section. 

 

Discussion 
Our results show that complex human behaviour can be described by a reduced model consisting of 

four oscillators and four coupling terms. While there have been multiple previous attempts at 

modelling interpersonal synchronization using either an information-processing or a dynamical 

systems approach, our work is the first to reproduce all three empirically-observed synchronization 

strategies5,16-19. We find that these strategies rely on the balance of within- and between-unit coupling 

strengths in our model, and are placed at different points in the parameter space of the model. Mutual 

adaptation is found when the interacting units symmetrically downregulate their within-unit coupling 

strength with a corresponding increase in the between-unit coupling strength. Leading-leading is 

found on the opposite side of this symmetric axis, with both units exhibiting a higher within-unit 

coupling strength than the between-unit coupling strength. We found that the leading-following 

synchronization strategy requires two asymmetric units, with the follower unit having a strong 

between-unit coupling and leading unit a balanced between- and within-unit coupling. If we consider 

the unit’s oscillators to represent processes of auditory perception and motor action our findings are 

consistent with theories positing that synchronization strategies emerge as functions of action-

perception coupling4. 

Given these results, mutual adaptation in bidirectionally coupled joint finger tapping can be seen as a 

form of self-other merging, whereby two interacting people collectively attribute the auditory 

feedback stemming from their tapping partner as intrinsically linked to their own tapping actions. This 

results in an interaction wherein both dyads continuously and reciprocally adapt their tapping to each 

other on a tap-to-tap basis. In this sense, the dyad members can be considered to actively and 
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collectively work towards minimizing the difference between their action and the related auditory 

feedback, resulting in a strong interpersonal action-perception coupling. This leads to the dynamics of 

the oscillators being predominantly governed by the information flow between the units, as expected 

in mutual adaptation. In the leading-leading strategy, this relationship is reversed. 

The most likely behavioural explanation of leading-leading is that the dyad members both decouple 

the self-other loop, and instead focus on their own representation of the task15. Accordingly, our best 

fit for this strategy shows that both units exhibit a strong within-unit coupling, and a weak between-

unit coupling. Hence, information flowing between the two units does not, to a noticeable degree, 

impact the behaviour of the individual unit. A key factor in understanding the emergence of this 

synchronization strategy is that in the behavioural experiment is that the two participants are in fact 

strongly coupled to the same external metronome at the start of the task. In our model, this is 

reflected in the starting frequency of the oscillators, and given a strong enough within-unit coupling 

this frequency is preserved to the point where synchronization occur without the need for a strong 

between-unit coupling to modulate any deviance in the starting frequency. Hence, given two 

participants with sufficient skill it is possible to exhibit synchronization, predominantly as an artefact 

of their beat-keeping skills. However, the small, but non-zero, between-unit coupling may then 

function as an error-detection threshold, such that if one participant should strongly deviate the other 

may still choose to follow. 

For the leading-following strategy wherein the leader hears themselves and the follower only hears 

the leader, the model converges on the leading unit having a balanced weight on its within- and 

between-unit coupling. The follower unit exhibits a stronger self-other (between-unit) coupling than 

its within-unit coupling. To achieve synchrony, the follower needs to consistently monitor the auditory 

feedback coming from the leader, while the leader is decoupled from the follower. It is interesting 

that the model here converges to a balanced within- and between-unit coupling in the leading unit. 

One likely explanation for this comes from the characteristics of the participants in dataset 2, which 

were all non-musicians. This is evident in the increased noisiness of their tapping, and we reflected 

this in the simulations by having an increased noise level as compared to the simulations for dataset 

1 (see methods). Having a balanced within-unit coupling may then act as a sort of self-correcting 

behaviour, ensuring that the contribution from noise in the individual oscillator is kept from increasing 

to heavily. It should also be noted that the leading-following behaviour seen here is experimentally 

forced due to the unidirectional auditory coupling between the participants. Previous research has 

shown that the leading-following strategy can also occur in cases of bidirectional auditory coupling, 

and that leaders can be distinguished from followers by increased frontal alpha suppression measured 

with EEG13. This finding has been interpreted to indicate an increase in cognitive load for leaders in 
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bidirectionally coupled leading-following, due to the need for separating the auditory information 

from the followers from their own tapping actions. In this case, it may be that unidirectional leading-

following differs from bidirectional leading-following, and it remains a possibility that our model would 

choose differing coupling weights for this strategy dependent on the participant’s auditory feedback. 

The weakest point in our model appears to be the lag 0 component in the mutual adaptation strategy, 

as is evident from the low measure of fit found in the bidirectional condition in dataset 2. A likely 

explanation for this is that our model is continuously coupled, and is therefore able to adjust also 

when there would be no information present in a real-world setting, such as between taps. A solution 

for this would be to couple the two units intermittently, so that the coupling only exists when one unit 

produces an output. In addition, due to limitations in the perceptual threshold, we would suggest 

including a filtering method wherein such information would only be passed between the units if it 

exceeds a pre-defined tolerance region, akin to mechanisms of predictive coding24. For future work 

we would therefore suggest that incorporating time varying coupling weights could prove beneficial 

towards modelling human behaviour with coupled oscillators. 

As we have discussed above, all three synchronization strategies can be interpreted as emerging from 

different combinations and strengths of within- and between-person action-perception links. A likely 

explanation for how and why such action-perception links emerge can be found in mechanisms of self-

other integration. There is ample evidence that the human brain processes perceived and performed 

actions using overlapping networks (for a review see Keysers and Gazzola 2009)25. For instance, 

observing an action can produce activity in motor areas of the brain, and observing someone else 

being touched can lead to activity in somatosensory regions in the brain26. Hence, there needs to be 

a mechanism that distinguishes between actions related to the self, and to others, commonly referred 

to as self-other representation. This refers to the process of categorizing whether a percept belongs 

to self- or other-produced actions. One way of considering action-perception coupling would then be 

that it occurs as the result of minimizing the distance between self- and other-representations. In 

other words, in tapping tasks such as those used in this work, action-perception coupling may stem 

from participants categorizing the auditory feedback they hear as related to their own tapping actions, 

instead of belong to their tapping partner. This view of action-perception coupling finds support in the 

brain’s tendency towards minimizing computing costs, as formalized by Friston’s work on the free 

energy principle4,27-29. Here, the brain is considered to constantly strive for energy optimized 

representations of its environment. In joint finger tapping, minimizing the difference in self-other 

representation decreases the need for maintaining a cognitive model of the tapping partner’s 

behaviour. However, while this would mean that mutual adaptation is a strong attractor state, it is not 
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the only stable synchronization strategy in interpersonal synchronization as both leading-following 

and leading-leading have been shown to emerge in cases of bidirectional coupling.  

As with any computational model of a complex real-world process, our model can only approximate 

the processes involved. When considering the neural underpinnings of interpersonal synchronization, 

our model does not make any strict assumption. Rather, the structure of the model may be interpreted 

to represent action-perception coupling, as part of the more complex processes of self-other 

representation. Likely, these processes are all involved in interpersonal synchronization and in the 

selection of synchronization strategies. As rhythmic interpersonal synchronization requires auditory 

perception, and motor action, we expect brain regions and networks linked to such to be involved. It 

is also likely that regions and networks linked to social cognition is involved. For instance, our data 

includes a case of bidirectional coupling resulting in two distinctly different synchronization strategies, 

mutual adaptation and leading-leading. Previous research has also shown the existence of leading-

leading in cases of bidirectional auditory coupling13. Hence, there needs to be a neural structure or 

network involved in the selection of synchronization strategy, that is independent of auditory 

coupling. A likely candidate here is the temporoparietal junction (TPJ). This region, located where the 

temporal and parietal lobes meet, has been shown to act as a network node between the thalamus 

and the limbic system, as well as with sensory systems30. In particular, the right TPJ are involved in 

segregating self-produced actions from actions produced by others, as is shown in lesion studies and 

in studies using transcranial magnetic stimulation31,32. We would therefore hypothesize that the 

involvement of the TPJ, either as a separate region or as part of a distributed network, is a key factor 

in the emergence of synchronization strategies. An interpretation of our model is then that the two 

oscillators represents an interplay between auditory and motor regions mediated by the TPJ, as shown 

in figure 4. Here, the between-brain couplings rely on the auditory perception of the motor actions 

produced by the other. We hypothesize that synchronization strategies may be distinguished in 

electrophysiological recordings by activity in such a network. For instance, mutual adaptation likely 

requires neural synchronization between representation of self- and other, as mediated in tapping 

tasks by motor and auditory systems in the brain4. Hence, one would expect to see more coherent 

activity between the involved brain regions during mutual adaptation than in leading-leading or 

leading-following.   
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Figure 4 – Illustration of regions involved in interpersonal synchronization. Motor regions (shown in blue) are bidirectionally 
linked to auditory regions (shown in light red), and with the temporoparietal junction (shown in yellow). Actions produced by 
one individual’s motor system is perceived in auditory regions of the other individual.  

 

Conclusion 
In this paper we have shown how synchronization strategies found in human joint action may be 

successfully modelled using a reduced model consisting of four oscillators and four coupling terms. 

We found that synchronization strategies can be distinguished based on their within- and between-

unit coupling strengths. For this particular study we interpret our model within the framework of self-

other integration via within- and between-person action-perception links. However, we believe the 

model may be successfully applied to many other types of behaviour, such as modelling groups of 

people and other processes relying on perceptually mediated couplings between individuals. The 

model is easily scalable, although increasing the interacting units comes at computational cost. In 

informal tests with up to 200 interacting units we observe complex behaviours such as short-lived 

stable states of both in- and anti-phase synchronization. Hence, the model may be a promising tool 

for exploring network topologies in multi-person interactions, such as for instance in symphony 

orchestras. We furthermore present a likely neural interpretation of the model, where we suggest 

that interpersonal synchronization strategies may be represented as coherence in a network between 

auditory and motor regions, and the temporoparietal junction. Our model and its behaviour suggest 

that complex human behaviour may be the result of simple interacting components, and that coupled 

oscillators are able to capture these dynamics.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 20, 2019. ; https://doi.org/10.1101/640383doi: bioRxiv preprint 

https://doi.org/10.1101/640383


15 
 

Conflict of Interest Statement 

The authors report no conflict of interest. 

Author contributions 

OAH: Conceptualization, Software, Data curation, Methodology, Analysis, Validation, Visualization, 

Writing - original draft, Writing – review & editing. 

JC: Conceptualization, Software, Writing – review & editing. 

IK: Data curation, Analysis, Validation, Writing – review & editing. 

PV: Funding acquisition, Analysis, Writing – review & editing. 

MLK: Conceptualization, Methodology, Software, Visualization, Writing – review & editing. 

Data Availability Statement 

The code used in this manuscript is under active development and available on 

https://github.com/OleAd/FourOscModel. The behavioural data in dataset 1 is available upon request 

from Ole Adrian Heggli. The behavioural data in dataset 2 is available upon request from Ivana 

Konvalinka.  

Acknowledgments 

OAH, PV and MLK is supported as part of the Center for Music in the Brain, Danish National Research 

Foundation (DNRF117).  

MLK is supported by the ERC Consolidator Grant: CAREGIVING (615539). 

JC is supported under the project NORTE-01-0145-FEDER-000023 from the Northern Portugal Regional 

Operational Program (NORTE2020). 

IK is supported by The VILLUM Experiment grant, “Enhancing social interaction through real-time two-

brain imaging”. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 20, 2019. ; https://doi.org/10.1101/640383doi: bioRxiv preprint 

https://doi.org/10.1101/640383


16 
 

Methods 

Implementation of the models 
We implemented the models in MATLAB R2016b33, using a script for performing numerical integration 

of the Kuramoto model of coupled oscillators34. The oscillators are described in Equation 2 and are 

based on the Kuramoto model, with the exception that the between-oscillator couplings are defined 

by the matrix 𝐾𝑖𝑗. For the two-oscillator model we used two coupling terms as shown in Equation 3. 

For the four-oscillator model we used four coupling terms in six couplings as shown in Equation 4. 

Both models have a gaussian noise component 𝜍, to account for natural variability observed in 

empirical data. For study 1 and dataset 1 in study 2 the noise level was set to a standard deviation 

equivalent to 20 ms, corresponding to the interquartile range (IQR) of the inter-tap intervals (ITIs) 

observed in the empirical data used for study 215. For dataset 2 in study 2, the noise level was set to a 

standard deviation equivalent to 34.5 ms, corresponding to the IQR of the ITIs in dataset 2. In all 

simulations the oscillators intrinsic frequency 𝜔 was set to 2 Hz, with a standard deviation of 0.2 Hz, 

to account for natural variations in the frequency locking ability of the participants. The oscillators 

were initiated at random phases, and their phases were calculated in steps of 25 ms. For 

computational efficiency we then sampled the phase of the oscillators at intervals of 500 ms and 

linearly interpolated the zero-crossing point as a basis for creating a time-series of tap events. From 

this time-series of tap events we calculated the intertap interval (ITI).  

𝜃𝑛 = 𝜔𝑛 +∑𝐾𝑛𝑝 sin(𝜃𝑝 − 𝑛) + 𝜍

𝑘

𝑝=1

, 𝑛 = 1, . . , 𝑘 (2) 

𝐾𝑚𝑜𝑑𝑒𝑙1 [
𝑒1 0
0 𝑒2

] (3) 

 

𝐾𝑚𝑜𝑑𝑒𝑙2 [

0 𝑖1 𝑒1 0
𝑖1 0 0 0
0 0 0 𝑖2
0 𝑒2 𝑖2 0

] (4) 

Model behaviour 
To determine the range of coupling weights wherein the models transitioned from an incoherent to 

coherent state we ran simulations over a wider range of coupling weights. We linearly increased 

coupling weights equally between the oscillators in both models, starting at a minimum coupling 

weight of 0.1 up to a maximum of 30 with a step size of 0.1. 200 simulations of 12 seconds each were 

averaged per step. Note that in model 2 we only considered synchronization between the two action 

oscillators. We found that the models quickly reached coherent synchronous state, as shown in Figure 

5.  
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Figure 5 – Synchronization as measured by the synchronization index as a function of coupling weights. In A we see the 
synchronization index of the two-oscillator model as a function of coupling weight. The vertical orange indicates the point of 
maximum synchronization. In B the same is shown for the four-oscillator model.   

To examine the behaviour of the models we performed a parameter search within the previously 

determined bifurcation range. For the two-oscillator model we exploited the symmetrical nature of 

the two oscillators and coupling weights, by restricting the search range to a coupling weight of 0 to 5 

for the between-unit coupling term 1 (e1) and 10 to 5 for between-unit coupling term 2 (e2) in steps of 

+- 0.1. This results in 51 possible combinations, and for each combination 200 simulations of 12 

seconds were run. The oscillators were initiated at random phases, and the first two seconds of 

simulations were discarded to account for the metronome that was present in the first two seconds 

of the interaction in the empirical experiments. Four the four-oscillator model we had to restrict the 

search range, as a similar approach as with the two-oscillator model would results in over 5.7 × 108 

possible combinations. We decided to sample the model at four different coupling weights, 1, 5, 9, 

and 13. This gives 256 possible combinations, which we simulated in the same way as model 1. 

We analysed the time series produced by the model by performing a cross-correlation at lag -1, 0 and 

+1 for each simulation run. These correlations coefficients were then averaged for each coupling 

weight combination. We then clustered the lagged cross-correlations using the complete linkage 

method, and performed a similarity profile analysis in R35, using the simprof-package36, at an adjusted 

alpha of 0.001 (shown in Figure 6) 
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Figure 6 - Clustering dendrogram and resulting lag patterns. In A the clustering dendrogram for a two-oscillator model is 
shown on the left. On the right, the corresponding mean lag patterns are shown. In this case, the two-oscillator model 
produced three significantly different patterns. All these three patterns were dominated by a strong lag-0 component. In B 
we show the same procedure applied to data from the four-oscillator model. Here we see a much richer variety of lag patterns, 
with 13 being significantly different. 

 

Model validation on empirical data. 
To calculate the coupling weight which best fitted to the empirical data we performed a two-step 

consecutive parameter search. For dataset 1 we searched for the coupling weights that resulted in the 

best fit with each of the three subgroups of participants in the empirical data. For each of the three 

separate subgroups we first simulated 300 trials for each possible coupling value combination 

between the four oscillators, with the coupling weights ranging from 1 to 15.5 in steps of 1. Each trial 

was simulated using the same approach as for study 1. We averaged the cross-correlated lags of the 

individual time series produced in each trial per coupling value combination, and calculated the 

numerical distance between the simulated data and the empirical data. The best fit was then selected, 

and a second search performed at coupling weights of +- 0.9 in steps of 0.2 following the same 

procedure. The resultant best fit based on numerical distance was then chosen, and its coupling 

weights were used to simulate 2000 trials. The Bhattacharyya coefficient was calculated for each of 

the three lags (-1, 0, and +1) between the simulated data and the empirical data separately and then 

averaged, using the disparity package in R37. The same approach was followed for dataset 2. This 
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approach resulted in approximately 8 × 1011 simulations, which were performed over the course of 

roughly 60 hours using a MATLAB Distributed Computing Server.  
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