
Intragenomic variability and extended sequence patterns in the mutational 

signature of ultraviolet light 
Markus Lindberg1, Martin Boström1†, Kerryn Elliott1†, Erik Larsson1* 

1Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska 

Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden. 

*Correspondence to erik.larsson@gu.se 

†Equal contribution 

 

ABSTRACT 

Mutational signatures can reveal properties of underlying mutational processes and are important 

when assessing signals of selection in cancer. Here we describe the sequence characteristics of 

mutations induced by ultraviolet (UV) light, a major mutagen in several human cancers, in terms of 

extended (longer than trinucleotide) patterns as well as variability of the signature across chromatin 

states. Promoter regions display a distinct UV signature with reduced TCG>TTG transitions, and 

genome-wide mapping of UVB-induced DNA photoproducts (pyrimidine dimers) showed that this 

may be explained by decreased damage formation at hypomethylated promoter CpG sites. Further, an 

extended signature model encompassing additional information from longer patterns improves 

modeling of UV mutation rate, which may enhance discrimination between drivers and passenger 

events. Our study presents a refined picture of the UV signature and underscores that the 

characteristics of a single mutational process may vary across the genome. 
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INTRODUCTION 

Cancer is caused by somatic mutations that alter cell behavior, and the mutational processes that shape 

tumor genomes are therefore at the core of the disease1. Elucidation of such processes and their 

sequence preferences can provide clinically relevant insights2,3 and also allows improved estimation of 

expected mutation frequencies at recurrently altered positions, which is key when identifying driver 

events that are under positive selection4. A useful approach to discovering and characterizing 

mutational processes are trinucleotide-based mutational signatures, which describe the probability of 

mutagenesis at all possible trinucleotide sequence contexts for a given process, normally determined at 

the whole genome or exome level5. However, as cancer sequencing cohorts grow larger, even small 

errors in our understanding of mutation rate heterogeneity across the genome can lead to false signals 

of positive selection6, motivating an increasingly more detailed understanding of mutational processes 

and their sequence characteristics.  

Specifically in the case of ultraviolet (UV) light, the main mutational process in melanoma 

and other skin cancers5, prior work suggests that the widely adopted trinucleotide model is inadequate. 

The main basis for UV mutagenesis is the formation of cyclobutane pyrimidine dimers (CPDs) or, at 

lower frequency, (6,4) photoproducts (6,4-PPs); bulky DNA lesions that bridge neighboring 

pyrimidines and that may result in C>T or CC>TT transitions7,8. The canonical UV mutational 

signature (“Signature 7”) is consequently dominated by C>T substitutions at dipyrimidine-containing 

trinucleotides5. However, studies of UV-induced DNA damage in melanoma exome data9 as well as 

smaller target templates10,11 support that presence of thymines in positions beyond the immediate 

neighboring bases may confer elevated mutation rates. Additionally, it is known that ETS transcription 

factor binding site sequences (TTCCG) are associated with strongly elevated CPD formation and 

mutation rates in melanoma, but only in promoter regions and notably at positions that are variable 

relative to the motif12-15. These intricacies of the underlying mutational process may contribute to 

recurrent mutations in skin cancers, but cannot be captured using trinucleotide-based UV mutational 

signatures.  

Here, we characterize the sequence signature of somatic mutations arising from UV 

photoproduct formation, in terms of trinucleotide and extended (beyond trinucleotide) patterns that 

carry information about mutation rates. We also study variability in these patterns across chromatin 

states. To gain mechanistic insight, we further generate the first human genome-wide map of CPDs 

arising from UVB, the main inducer of DNA photolesions in sunlight, which differs in its effects on 

DNA compared to UVC used in earlier studies. Our results constitute a refined picture of the UV 

mutational signature and its variability across the genome, with possible implications for the 

interpretation of recurrent mutations in cancer. 
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RESULTS 

A large compendium of predominantly UV-induced somatic SNVs 

While most cancer genomes are mosaics of somatic mutations induced by different processes, the 

study of UV-induced mutations is facilitated by their dominance and abundance in skin cancers. Here, 

we selected a subset of 130 “high-UV” melanoma whole genomes from an initial set of 221 samples 

assembled from published studies16,17, excluding those with lower burden (<10,000 mutations) or 

lower fraction UV photoproduct-type mutations (<80 % C>T or CC>TT in a dipyrimidine context; 

Fig. 1a and Supplementary Table 1). 

 

 

Figure 1. A whole-genome compendium of somatic mutations predominantly induced by UV light. (a) 
Whole genome somatic mutation data from 221 melanomas was initially assembled from earlier studies16,17 and a 
subset of 130 samples with high burden (≥10,000 mutations) and with a high fraction (≥80%) of mutations having 
characteristics of UV photoproduct formation (C>T in a dipyrimidine context or CC>TT) were included for further 
study. TCGA, The Cancer Genome Atlas; AMPG, Australian Melanoma Genome Project. (b) SNVs (n = 
19.7×106) in the final dataset are predominantly C>T. (c) Trinucleotide signature (genome normalized) for 
included SNVs show mutations primarily at dipyrimidines, characteristic of mutations arising from UV 
photoproduct formation. 

 

Expectedly, single nucleotide variants (SNVs) in the resulting dataset were predominantly 

C>T (87%) with a trinucleotide signature closely resembling the canonical UV signature (“Signature 

7”5), where TCG and TCC (mutated base underscored) has the highest mutation probabilities after 

normalization for genomic trinucleotide frequencies (Fig. 1b-c). 99.5% of C>T mutations, which we 

give particular focus in this study, were in dipyrimidine contexts, consistent with the vast majority 

being canonical UV photoproducts mutations. This established a large (19.7×106 SNVs) compendium 

of primarily UV-induced mutations to facilitate further study of their sequence properties.  
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Promoter-related chromatin states exhibit a unique UV trinucleotide signature 

While it is known that the relative contributions of mutational processes may vary across genomic 

features18, less is known about genomic variability in the characteristics of a single process. To this 

end, we investigated how the trinucleotide signature, normalized by local sequence composition, 

varied across chromatin states in the present UV-dominated mutational dataset.  

Based on a segmentation of the genome into 15 chromatin states (ChromHMM19 model based 

on RoadMap epigenomic data20), we found that while all genomic regions exhibited a general UV-like 

dipyrimidine-related trinucleotide signature, there was also notable variability (Supplementary Fig. 

1). Specifically, principal components analysis (PCA) appeared to separate the signatures based on 

whether the corresponding regions were related to transcription start sites (TSSs)/promoters, with E1 

(“Active TSS”) and E15 (“Quiescent/low”) representing opposite extremes along the first component 

(Fig. 2a). Further, non-TSS-related states, encompassing the vast majority (98.7%) of the genome, 

showed strong similarity to the canonical UV “Signature 7”5 while TSS-related regions deviated (Fig. 

2b). 

 

 

Figure 2. Variation in the UV trinucleotide signature across chromatin states. (a) PCA plot of trinucleotide 
signatures across 15 ChromHMM chromatin states19. Transcription start site (TSS)-related regions are indicated 
in red. (b) Similarity (cosine) to the canonical UV signature, “Signature 7”5, for each genomic region. (c) Pooled 
C>T trinucleotide signature (local genome normalized) for the TSS-related regions (E1, E2, E10 and E11; red) 
and remaining non-TSS regions (blue), revealing a reduced mutation rate at TCG in the former. The difference 
between the two is shown in gray. Frequencies are normalized to sum to 1. (d) The C>T substitution frequency at 
TCG (weight in normalized signature) varies across ChromHMM regions and is reduced in TSS-related states. (e) 
Trinucleotide signature in promoters (500 bp upstream regions) of highly (top 25%) compared to lowly (bottom 
25%) expressed genes, with TTC>TCG substitution rate being more reduced in the former category. The two sets 
were selected from 20,017 annotated coding genes. 
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Examination of the signature in TSS-related regions revealed that C>T substitutions in the 

TCG context were notably reduced (Fig. 2c-d). TCG, while relatively infrequent in the genome, 

normally has the highest weight (highest probability of being mutated) in the normalized UV 

trinucleotide signature (Fig. 1c). This may be due to facilitated CPD formation at 5-

methylcytosines21,22 (5mC), prevalent at CpGs throughout the genome but not in promoters23, thus 

possibly also explaining the deviating signature. Consistent with this model, a recent analysis of XPC -

/- cutaneous squamous cell carcinomas (cSCC) lacking global nucleotide excision repair (NER), 

which repairs UV photoproducts, revealed a generally reduced mutation burden in promoters 

explained by a reduction in YCG mutations (Y = C/T) that varied with methylation level24. CCG 

mutations, which should theoretically be similarly affected, were slightly increased rather than reduced 

(Fig. 2c), plausibly explained by its low frequency in combination with signature weights being 

relative rather than absolute. 

In agreement with the above results, we found that promoters of annotated genes (500 bp 

upstream regions) displayed a similar reduction at TCG, which was more pronounced for highly 

compared to lowly expressed genes (Fig. 2e). We conclude that promoter regions show a unique UV 

trinucleotide signature dominated by TCC>TTC rather than TCG>TTG, possibly explained by 

reduced CPD formation due to decreased CpG methylation in promoters.  

Local UV trinucleotide signature varies with methylation level 

Next, we further investigated the relationship between trinucleotide signature and methylation levels 

using available whole-genome bisulfite sequencing data20. CpG methylation was frequent in non-TSS 

chromatin states (82.5% combined) but heavily reduced in TSS-related regions (11.2% in E1, “Active 

TSS”; Fig. 3a). Consequently, the weight for TCG>TTG in the signature correlated positively with 

methylation level across regions (Fig. 3b; Pearson’s r = 0.82, P = 1.8×10-4). 

 

 

Figure 3. UV trinucleotide signature in promoters vary with methylation. (a) Extensive variability in CpG 
methylation across ChromHMM chromatin states. (b) Positive correlation between methylation level and the 
weight of TCG>TTG substitutions in the trinucleotide signature (local genome normalized) across chromatin 
states. (c) The weight of TCG>TTG substitutions in the trinucleotide signature of promoters varies positively with 
methylation level. 12,239 annotated coding gene promoters with sufficient bisulfite coverage were divided into 10 
methylation level bins (the first three, all representing 0%, were merged into one; x-axis indicates average 
methylation). Pearson’s correlation coefficients across regions/bins are indicated in panels b and c. 
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In annotated promoters, representing a more homogenous set compared to the ChromHMM 

regions, the weight for TCG>TTG in the signature correlated strongly with increasing methylation 

level (Fig. 3c; Pearson’s r = 0.95, P = 2.7×10-3). These results further solidify a relationship between 

the deviating UV trinucleotide signature in promoters and reduced methylation in these regions. 

Reduced pyrimidine dimer formation by UVB in promoters with reduced CpG methylation 

Given the correlation between methylation level and UV signature characteristics, we next sought to 

directly determine whether this may be explained by differential DNA damage formation at CpGs. 

Notably, it has been shown that 5mC facilitates CPD formation by UVB (280-315 nm), the main 

inducer of CPDs in sunlight, but not by UVC (100-280 nm)25,26, which does not penetrate the 

atmosphere. Despite this, genome-wide studies of CPD formation in human cells to date have all been 

performed using UVC14,15,27,28. 

 

 

Figure 4. Genome-wide mapping of UVB-induced pyrimidine dimers reveals reduced DNA damage in 
promoters with reduced CpG methylation. (a) Simplified protocol overview for genome-wide mapping of CPDs 
induced by UVB in A375 human melanoma cells. Cells were treated with 10,000 J/m2 UVB (310 nm) and DNA 
was harvested immediately for analysis. (b) Genome-wide CPDs counts for all dinucleotides, normalized with 
respect to genomic dinucleotide counts and library size, showing preferable detection at dipyrimidines as 
expected. UVC results from Elliott, et al. 15 were included for comparison. (c) Reduced UVB-induced DNA 
damage at YCG sites in promoters. Comparison of the CPD trinucleotide signature (relative formation frequency 
per genomic site) in highly expressed promoters compared to non-promoter regions, expressed as a log2 ratio. 
Examined patterns include one additional 3ʹ base following the CPD-forming dipyrimidine (bold) in all possible 
combinations, to enable comparison between CpG- and non-CpG-adjacent sites. Results are shown for UVB, 
UVC and no UV controls. (d) CPD frequency at YCG (weight in CPD trinucleotide signature) increases with 
increasing CpG methylation across ChromHMM regions, specifically for UVB. (e) CPD frequency at YCG 
increases with increasing CpG methylation across annotated promoters, specifically for UVB. Bins were defined 
as in Fig. 3c. Pearson’s correlation coefficients across regions/bins are indicated in panels d and e. 

 

To address this, we mapped CPDs genome-wide in human A375 melanoma cells immediately 

following exposure to UVB (310 nm), using a protocol based on T4 endonuclease V digestion and 

Illumina sequencing as described previously for UVC15 (Fig. 4a). Two independent maps were 
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were included for comparison15. CPDs were preferably detected at TT, TC, CT and CC dinucleotides 

as expected, notably with lower TT and higher CC frequencies relative to UVC, further supporting 

that the two wavelength ranges are not physiologically equivalent (Fig. 4b). Interestingly, an elevation 

at CG, weak compared to the dipyrimidines but observed in all conditions including non-UV controls, 

was found to be methylation-dependent, suggesting occasional T4 endonuclease V cleavage at 

methylated CG dinucleotides (Supplementary Fig. 2). In total 77.1 million UVB-induced CPDs were 

mapped to dipyrimidines throughout the genome and used for further analyses. 

To compare CpG- and non-CpG-adjacent dipyrimidines in terms of CPD formation, we 

determined “CPD trinucleotide signatures” describing relative CPD frequencies across patterns 

consisting of a CPD-forming dipyrimidine plus one additional 3ʹ base. Genome-wide, these signatures 

differed markedly between UVB and UVC, as expected given the differences in dinucleotide 

distribution (Supplementary Fig. 3). 

Next, we compared highly expressed promoters to non-promoters in terms of CPD signature. 

Importantly, the former were characterized by reduced CPD formation at YCG (CPD underscored) 

specifically for UVB but not UVC, thus confirming reduced UVB-induced DNA damage at CpGs in 

promoters (Fig. 4c). A similar UVB-specific pattern was observed when comparing highly to lowly 

methylated genomic regions (Supplementary Fig. 2). Likewise, across ChromHMM regions, the 

general trend was for UVB CPD frequency at YCG to increase with increasing methylation (r = 0.70, 

P = 1.5×10-5; Fig. 4d). Finally, across annotated promoters there was a strong correlation between 

methylation level and YCG CPD formation specifically by UVB (r = 0.94, P = 1.0×10-7; Fig. 4e). 

These results show that UVB-induced DNA damage at CpGs is reduced in promoters with reduced 

methylation, consistent with their deviating mutational signature. 

Improved UV signature modeling by addition of longer contextual patterns 

While trinucleotide patterns are informative of whether a UV photoproduct can form, thus providing 

key information regarding mutation probability, it is also clear that longer motifs may be important9-15. 

These signals may in part be detectable by simply considering a larger number of patterns, or using a 

position weight matrix still centered at the position of interest9, but this will obscure longer patterns 

occurring at highly asymmetric or variable positions relative to the mutation12-15. To address this, we 

devised an extended mutational signature model that considers the central trinucleotide as well 

presence/absence of longer pentamer patterns at flexible locations within a +/- 10 bp context around a 

given position, here focusing on the predominant C>T mutations (Fig. 5a). 

Extended signatures were determined for each of the 15 ChromHMM regions as well as 

promoters (highly or lowly expressed) using a common set of candidate pentamer features, briefly by 

feature selection and fitting of a logistic regression model to randomly subsampled positions from 

each region (see Methods). In principle, this approach allows longer patterns to have stimulating as 

well as attenuating effects. Cross-validation, again based on random subsampling, showed that the 
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addition of longer motifs consistently led to improved modeling of observed mutations compared to a 

regular trinucleotide model, which is equivalent to setting the number of long features to zero in the 

extended model (Fig. 5b and Supplementary Fig. 4). 

 

 

Figure 5. A regression-based signature model reveals extended patterns that are informative of UV 
mutagenesis in addition to trinucleotides. (a) UV mutations (C>T subset) were modeled using logistic 
regression, taking into account standard trinucleotide patterns as well as presence/absence of longer pentamer 
patterns occurring anywhere within +/- 10 bp of a given position. Signature models were built repeatedly for each 
the 15 ChromHMM regions as well promoters (high/low expression), based on 0.5 Mb randomly sampled 
positions from each region and using a common set of pentamer features (see Methods). (b) Modeling of 
observed mutations is improved when long features are considered (all regions shown in Supplementary Fig. 5). 
Ten 0.5 Mb random subsets were evaluated for each region. Log likelihood ratios relative a standard trinucleotide 
model (zero long features) are shown (bars indicate SD). (c) Top heatmap: influence (odds ratio) of different 
pentamer patterns on mutation probability (blue = stimulatory; red = attenuating) across interrogated regions. 
Pentamers with low regression weights were excluded for visualization, leaving 43/61 patterns included during 
feature selection (union of top 20 patterns from each ChromHMM region; see Methods). Bottom distance matrix 
and clustering dendrogram: co-occurrence patterns linking pentamers together into longer motifs. Dashed lines 
delineate notable clusters. Bold mark patterns highlighted in panel d. (d) Positional distribution of mutations 
across select patterns from panel a (either individual pentamers or aggregated from multiple pentamers forming a 
longer consensus motif, as indicated by clustering). Frequencies were normalized to trinucleotide-based 
expectations given by the underlying sequences. (e) Probability of mutagenesis at promoter mutation hotspots 
(recurrent bases within 500 bp upstream of a TSS) in melanoma, as given by a simple trinucleotide model (upper 
graph) or the extended model (trinucleotide core model plus longer patterns; lower graph). Locally derived models 
from corresponding ChromHMM regions were used for all mutations. Recurrence is indicated on the y-axis (n ≥ 
10). Colors indicate whether probabilities are up (red) or down (blue) in the extended compared to the 
trinucleotide model. 
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The majority of uncovered motifs (pentamers or longer consensus patterns indicated by co-

occurrence clustering of pentamers) were associated with increased mutation probability (odds ratio > 

1), and the effects were often but not always consistent across the interrogated regions (Fig. 5c). 

TTCCG was detected specifically in promoter-related regions, with E1 (“Active TSS”) and annotated 

active promoters in particular showing strong positive odds ratios (4.1 and 2.2, respectively, the 

strongest of all patterns). Elevated mutation frequency was observed in particular at bases preceding 

TTCCG (Fig. 5d). These observations are consistent with a known influence from ETS transcription 

factor binding site sequences (TTCCG) on CPD formation efficacy, specifically in promoter regions 

and preferably one or two bases upstream of the motif12-15.  

In agreement with a demonstrated positive influence from flanking thymines9-11, we found 

patterns related to TTTCNT (main position with elevated mutation rate underscored), as well as other 

poly-T-containing motifs, to have positive weights across all regions (Fig. 5c; exemplified by 

TTTCAT and TTTCGT in Fig. 5d). GC-rich patterns were generally informative of reduced mutation 

rate, but this effect was notably absent in active promoter regions (Fig. 5c). Conceivably, this may be 

explained by reduced power to call somatic mutations in GC-rich regions29, possibly counteracted by a 

general increase in UV mutation rate at active GC-rich promoters24,30. Notable and consistent positive 

and negative coefficients were also seen for ATCGT and AGTCA, respectively (Fig. 5c-d). 

Assessment of signals of selection in cancer involves determination of expected mutation 

rates/probabilities, which may be improved by considering mutational signatures4. When applied to 

recurrent promoter mutations, common in melanoma31,32, we found that a regular trinucleotide model 

failed to give higher mutation probability estimates for non-TERT recurrent sites, generally believed to 

be passengers12-15, compared to TERT promoter mutations (C228T and C250T)33,34, which are 

established drivers (Fig. 5e). In contrast, the extended model typically gave considerably higher 

probabilities for the non-TERT sites compared to the TERT mutations (Fig. 5e), primarily driven by 

TTCCG (ETS) elements among the former. Exceptions included UTP11L and RPS20, both lacking 

ETS motifs, but where C>T mutations in the RPS20 promoter generate a de novo ETS site, similar to 

TERT33,34. Low estimated probability for an ETS-related recurrent site in the RPL29 promoter was 

explained by counteraction from an uncommon trinucleotide context (ACT). Our results support that 

consideration of longer contextual patterns in addition to trinucleotides improves modeling of UV 

mutations, which is beneficial when assessing recurrent mutations in cancer. Moreover, analogous to 

our observations regarding trinucleotides, this extended UV signature varies between chromatin states. 

 

DISCUSSION 

Earlier studies have revealed a range of mutational signatures representative of different mutational 

processes, and have shown that the activities of these processes vary between tumors, cancer types and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/640722doi: bioRxiv preprint 

https://doi.org/10.1101/640722


genomic features1,18. Here, by detailed characterization of mutations induced by UV radiation through 

pyrimidine dimer formation, we highlight an additional layer of complexity in the form of 

intragenomic heterogeneity in the trinucleotide signature characteristics of a single process. Further, 

we find that longer contextual patterns, which were here combined with trinucleotides into an 

extended signature model, are informative of mutation probability. Notably, intragenomic variability 

is again observed for the extended signature. Signatures are thus not static but may vary depending on 

genomic context, which may be considered in situations such as driver mutation detection where 

accurate modeling of mutation rates is important. 

 We specifically find that the UV trinucleotide signature deviates in promoters, primarily due 

to reduced TCG mutations, which was linked to methylation levels. A methylation-related reduction in 

mutations at promoter CpG sites has previously been noted in NER-deficient cSCC tumors, 

proposedly due to reduced CPD formation24, but an impact from this effect on the general UV 

signature in repair-proficient cells has to our knowledge not previously been described or quantified. 

By generating the first human genome-wide map of UVB-induced CPDs, we here directly 

demonstrate that DNA damage is reduced at these sites. Importantly, this is not testable using existing 

UV damage maps generated using UVC25,26, and our results support marked physiological differences 

between the two wavelength ranges. UVC does not penetrate the atmosphere, and previous UV 

damage data thus fails to accurately reflect sunlight-induced DNA damage patterns in tumors. 

Incorporation of longer patterns into a signature model led to improved modelling of observed 

UV mutations, and our results suggest that this may be beneficial in the context of methods for 

evaluating signals of selection in cancer. More work is needed for full comprehension of the 

mechanistic basis of some of the uncovered sequence motifs. Finally, it can be noted that the analyses 

in this study were considerably simplified by the purity and abundance of UV mutations in skin 

cancers, eliminating the need for deconvolution strategies. A future prospect, requiring further 

methodological development, is to more broadly address hypotheses regarding intragenomic signature 

variability and extended sequence patterns, as these questions are relevant also to other cancers and 

mutational processes. 

 

MATERIALS AND METHODS 

Whole genome mutation calls 

Mutation calls from the Australian Melanoma Genome Project (AMGP) whole genome sequencing 

cohort16 were obtained from the International Cancer Genome Consortium’s (ICGC) database35. These 

data were pooled with mutation calls from The Cancer Genome Atlas (TCGA) melanoma whole 

genome cohort17, called as described previously32. Population variants (dbSNP v138) were removed 

and in cases where multiple samples from the same patient were available, the sample with the highest 
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median allele frequency was maintained, resulting in a total of 221 tumors. From these, a subset of 

130 tumors with heavy UV mutation burden were selected for subsequent analyses (>80% 

dipyrimidine C>T or CC>TT and total burden >10,000 mutations). 

Gene annotations and ChromHMM genome segmentation data 

Gene annotations from GENCODE36 v19 were used to define TSS positions for 20,017 uniquely 

mapped coding genes, disregarding chrM and considering the 5ʹ-most annotated transcripts while 

excluding non-coding isoforms. Promoters were defined as 500 bp regions upstream of TSSs. 

Processed RNA-seq data for the TCGA subset of samples were obtained from Ashouri, et al. 37, 

allowing lower and upper expression quartiles to be determined for promoters. ChromHMM19 

chromatin state genomic segmentations based on epigenomic data from foreskin melanocytes 

(Roadmap celltype E059, core 15-state model) were obtained from the Roadmap Epigenomics Project 

(http://www.roadmapepigenomics.org). Positions within 100 bp of a satellite class repeat from 

RepeatMasker 38 were excluded from all regions in all analyses, to avoid erroneously mapped reads in 

CPD and other datasets. 

CpG methylation analyses 

Bisulfite-determined CpG methylation data from leg skin were acquired from ENCODE39 (accession 

ENCFF219GCQ), and coordinates were converted from hg38 to hg19 using liftOver40. For 

methylation analyses of promoters, ChromHMM regions, and genomic bins, methylation levels were 

defined as the average across all CpGs in that segment, after removing CpGs below a minimum 

coverage threshold of 5. Segments with fewer than 5 (promoters) or 10 (genomic bins) CpGs were 

excluded from further analyses, while no such threshold was used for the larger ChromHMM regions. 

Promoters were initially grouped by methylation level into 10 equally sized bins followed by merging 

of the lower 3 bins which all represented 0% methylation. 

Genome-wide mapping of UVB-induced cyclobutane pyrimidine dimers 

A375 cells were grown in DMEM + 10% FCS + Penicillin/streptomycin (Gibco, Carlsbad, MA) and 

were treated with 10,000 J/m2 UVB 310 nm (7 mins @ 25 J/m2/s) using a UV-2 Ultraviolet radiation 

system (Tyler Research Corporation, Canada) in duplicates (UVB 1 and UVB 2), and DNA from 

untreated cells was isolated as a control (No UV). Appropriate UVB dose was determined by T4 

endonuclease V (NEB) digestion followed by analysis on a 1% alkaline gel (Supplementary Fig. 

5). CPD sequencing then proceeded as described in Elliott, et al. 15. All adapter oligos, including 

additional indexes used, are indicated in Supplementary Table 2. The indexed libraries were pooled 

and sequenced with a NextSeq 500 using the High Output kit (Illumina, San Diego CA). The data has 

been deposited in GEO under accession GSE127966. Existing UVC CPD data (UVC1, UVC2, No 

UV1, No UV2) was obtained from Elliott, et al. 15. 
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CPD bioinformatics 

FastQ files were aligned with Bowtie 2 version 2.3.141 to hg19 with default parameters. Duplicate 

reads, identified with Picard MarkDuplicates version 2.18.2342 with default parameters, were 

disregarded. For all subsequent analysis, R was used with Bioconductor43 packages. CPD positions 

were defined as two bases upstream on the opposite strand of the first mate in each read pair. CPD 

trinucleotide signatures were determined by considering patterns consisting of a CPD-forming 

dinucleotide followed by an additional 3ʹ base, to enable CpG-related CPDs to be discerned from 

others. Signature weights were calculated by normalizing CPD counts by local genomic trinucleotide 

frequencies, followed by scaling of the values such that all shown trinucleotides sums to one. Log2 

ratios, used to compare CPD signatures between conditions, were calculated based on these scaled 

weights. 

Analysis of trinucleotide and extended mutational signatures 

Trinucleotide signatures were determined and presented in normalized form throughout the study, 

dividing observed mutation counts by local genomic trinucleotide counts followed by scaling of 

signatures weights such that they sum to one. For a given genomic site, the corresponding weight can 

be interpreted as the relative probability for mutagenesis at this position. 

Logistic regression was used to model the impact of longer contextual pentamer patterns, 

occurring within a +/- 10 bp region of a given position, on mutation probability. These were 

considered in addition to trinucleotide patterns in the same model. We here focused on the 

predominant C>T substitutions, but other substitution types can in principle easily be accounted for 

using multinomial logistic regression. Only cytosine positions were thus considered, taking both 

strands into account, with a binary response variable indicating whether a mutation was detected or 

not at each position. The explanatory variables, all binary indicating presence/absence of specific 

patterns, consisted of all possible trinucleotide contexts plus a limited set of pentamer motifs 

determined during a feature selection step. It can be noted that, if the number of contextual patterns is 

set to zero and the resulting regression weights are transformed to frequency space, the resulting 

signature is equivalent to the genome-normalized trinucleotide signature described above. 

To select a common set of long features to be used across all analyzed regions, Fisher’s exact 

tests was used to test for motifs that were enriched or depleted at mutated positions. 500 kb random 

subsets of cytosine positions were analyzed this way for each ChromHMM region, and the highest-

ranking motifs from each chromHMM region were subsequently pooled. Both pentamers and 

hexamers were initially evaluated, as well as rank cutoffs of 10, 20 and 30 motifs per region, as 

indicated in Fig. 5b. Based on results from repeated regression and validation on separate random 

subsets (see below), we opted for pentamers and a rank cutoff of 20 for the final analyses, resulting in 

a final feature set of 61 pentamers. 
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 Regression models were trained 10 times for each analyzed genomic region, each time on a 

random 500 kb subset. Each model was evaluated on a separate random subset by determining the log 

likelihood of the observed data relative to a basic trinucleotide model. The median of the coefficients 

from the 10 models was used as a consensus model for each region. The same procedure was 

performed on highly and lowly expressed promoter regions, as defined above. Weak coefficients (log 

odds within between 0.8 and 1.25 in all region) were excluded during visualization. Remaining motifs 

were analyzed for co-occurrence across 60 kb of mutated positions (4 kb sampled from each of the 15 

ChromHMM regions) using complete linkage hierarchical clustering with Euclidean distance. Select 

motifs with strong coefficients were further analyzed with respect to positional distribution of 

mutations. These included pentamers from the model as well consensus hexamers identified manually 

based on co-occurrence clustering and sequence similarity. For each position, the number of observed 

mutations were compared against the expected number of mutations based on a trinucleotide model. 

When comparing the extended signature model to a basic trinucleotide model with respect to estimated 

mutation probabilities at recurrently mutated positions in promoters (minimum recurrence 10/130 

samples), the appropriate extended or trinucleotide model from the corresponding ChromHMM region 

was used for each site. 
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