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Abstract 
The recycling of particulate organic matter (POM) by microbes is a key part of the global carbon 

cycle, one which is mediated by the extracellular hydrolysis of polysaccharides and the production 

of public goods that can trigger social behaviors in bacteria. Despite the potential importance of 

these microbial interactions, their role in regulating of ecosystem function remains unclear. In this 

study, we developed a computational and experimental model system to address this challenge 

and studied how POM depolymerization rate and carbon use efficiency –two main ecosystem 

function parameters– depended on social interactions and spatial self-organization on particle 

surfaces. We found an emergent trade-off between rate and efficiency resulting from the 

competition between oligosaccharide diffusion and cellular uptake, with low rate and high 

efficiency being achieved through cell-to-cell cooperation between degraders. Bacteria 

cooperated by aggregating in cell-clusters of ~10-20µm, where cells were able to share public 

goods. This phenomenon, which was independent of any explicit group-level regulation, led to the 

emergence of critical cell concentrations below which degradation did not occur, despite all 

resources being available in excess. By contrast, when particles were labile and turnover rates 

were high, aggregation promoted competition and decreased the efficiency of carbon utilization. 
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Our study shows how social interactions and cell aggregation determine the rate and efficiency of 

particulate carbon turnover in environmentally relevant scenarios.   

 
Keywords: microbes, cooperation, particulate organic matter, public goods, mathematical 
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Significance Statement 

Microorganisms can cooperate by secreting public goods that benefit local neighbors, however, 

the impact of cooperation on ecosystem functions remains poorly constrained. We here pair 

computation and experiment to show that bacterial cooperation mediates the degradation of 

polysaccharide particles recalcitrant to hydrolysis in aquatic environments. On particle surfaces, 

cooperation emerges through the self-organization of cells into ~10-20µm clusters that promote 

cooperative uptake of hydrolysis products. The transition between cooperation and competition in 

aggregates is mitigated by individual cell behaviors such as motility and chemotaxis, that promote 

reorganization on the particle surface. When cooperation is required, the degradation of 

recalcitrant biopolymers can only take place when degraders exceed a critical cell concentration, 

underscoring the importance of microbial interactions for ecosystem function. 

 

Introduction  

The microbial breakdown of complex polysaccharides is a key ecosystem process that enables 

the recycling of carbon from plant and animal detritus into global biogeochemical cycles and is a 

relevant process in all heterotrophic microbial ecosystems, from animal guts (1–3) to soils (4, 5) 

and oceans (6–8). A key feature of these polysaccharides is their insoluble nature: a large fraction 

is found in particles at the scale of 100 µm, that require both surface colonization and extracellular 

hydrolysis to be degraded (9, 10). On particle surfaces cells can attach and grow in close proximity, 

increasing the opportunity for microbial interactions to impact the ecosystem process. One 

particularly relevant type of interaction in this context is cell-cell cooperation mediated by the 
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sharing of public goods such extracellular enzymes and hydrolysis products (11). However, the 

extent to which these interactions take place and impact bacterial growth in the environment 

remains unclear. Previous work on cooperative interactions has largely focused on the opportunity 

that public goods open for exploitative populations to invade (so-called cheaters), and less on the 

environmental and physiological conditions that enable cooperation to take place or the potential 

role of cooperative behavior on ecosystem processes. From the perspective of ecosystem 

modeling, efforts to incorporate the role of microbes in organic matter degradation equate 

microbial activity with enzymatic activity without considering the role of population-level 

phenomena such as cooperation. In this paper we reveal how microbial social interactions can 

impact relevant ecosystem parameters.  

The extent to which social interactions mediated by public goods play a relevant role in 

ecosystem function is highly dependent on how public goods diffuse (12, 13). In a three-

dimensional aqueous environment like the ocean, if cells are too far apart only a minuscule fraction 

of the public goods are recovered by neighbors, while the rest is lost to the environment. In 

contrast, if cells are sufficiently proximal to each other and the resource is limiting, growth kinetics 

can be cooperative, meaning that the per-capita growth rate is positively dependent on the density 

of degrader cells (14). This logic suggests that cooperation should be accompanied by the 

emergence of spatial patterns, such as cell patches. If the cooperative effects in these patches 

are strong, critical population density thresholds might emerge below which degradation cannot 

support population growth (14, 15). Less recognized is the contribution of individual cell behaviors, 

such as surface attachment, chemotaxis, and biofilm formation, on the ability of cells to find those 

critical densities by aggregating into cell patches. Therefore, in order to begin to understand the 

role of social interactions in natural systems, we need to take into account the physical constraints 

of the micro-environment and how populations interact with these constraints through their 

behavior. 
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To quantify the impact of bacterial social interactions and spatial behavior on ecosystem 

function, we focus on two main parameters: the speed at which polymers are hydrolyzed and 

converted to soluble oligosaccharides, that is, the turnover rate (16, 17), and the carbon use 

efficiency (CUE), which is the fraction of the dissolved oligosaccharide that can be taken up by 

cells and converted into biomass. To study the role of social interactions and spatial behavior on 

ecosystem function, we developed a computational and experimental model of the colonization of 

insoluble particulate polysaccharides by marine heterotrophic bacteria. The individual-based 

model (18, 19) simulates the functional traits of individual cells: chemotactic movement, particle 

attachment and detachment, the secretion of enzymes, oligosaccharide uptake and growth. The 

experimental system validates computational predictions in a chitin-degrading bacterial strain 

isolated from the coastal ocean, and clarifies the role of physiological parameters on social 

interactions (17). We leveraged the computational model to study the relationship between 

degradation rate and CUE and how emergent bacterial behaviors influence their ability to degrade 

recalcitrant particles, and we tested some of our predictions using our experimental model of chitin 

colonization. Our work demonstrates that cell-cell cooperation is critical for the degradation of 

complex biomaterials, implying that the degradation of recalcitrant polysaccharides can be 

bacteria-limited. Moreover, cell-density thresholds that determine the onset of cooperative growth 

depend strongly on individual cell behavior, in particular those behaviors that regulate the 

residence time of bacteria on particles.  

 

Results 

We modeled the dynamics of cell colonization, enzyme secretion and growth (Figure 1A) using an 

individual based model to describe cells, coupled to a reaction-diffusion framework to describe 

enzymes and oligosaccharides. In the model, bacterial cells that attached to the surface of a 

polysaccharide particle broadcast enzymes that reacted with the surface of the particle, releasing 

oligosaccharides to which non-attached cells could chemotax. Cellular uptake of oligosaccharides 
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followed Monod kinetics (20) and cells were allowed to divide after a certain quota of 

oligosaccharide is consumed (19) (see Methods and Supplementary Information for a detailed 

description and Table S1 for the parameters). This individual-based approach allowed us to 

modulate traits such as chemotaxis or particle-attachment rate, and measure their impact on the 

carbon uptake rate on a cell by cell basis.  

A crucial parameter of our model was the “particle lability”, Kp, which defined how many 

grams of oligosaccharide were released per gram of enzyme acting on the polysaccharide surface 

per unit of time. Kp was a compound parameter that resulted from the product of the catalytic 

activity of the enzyme, kcat and the recalcitrance of the substrate. This parameter played a central 

role because it determined the maximum degradation rate and controlled the nutrient supply rate 

of bacteria. A survey of hydrolysis rate values reported in the literature revealed that the particle 

lability, Kp can exhibit significant variation across natural environments and microbial enzymes. Kp 

varied by more than 6 orders of magnitude within glycosyl hydrolase families- a trend that held 

true among different substrate types such as chitin, alginate and starch (Figure 1B). This led us to 

ask how variation in particle lability, Kp affected population growth dynamics and the rate – 

efficiency relation of POM depolymerization. 
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Figure 1. Carbon use efficiency is regulated by an emergent rate-yield trade-off. A) 
Conceptual representation of enzyme secretion by bacterial cells, breakdown of polysaccharide 
substrates to oligosaccharides by enzymes and uptake of oligosaccharides by bacterial cells. 
Schematic representation of trait based modeling of microbial dispersal and colonization on the 
particle is shown (below). B) The distribution range of particle lability (Kp) from natural polymeric 
carbohydrates (Chitin, Alginate, Starch). The data are for various bacterial species with their 
corresponding abiotic conditions (species name, substrates and environmental conditions are 
represented in supplementary Table S2) (data are from Brenda database: www.brenda-
enzymes.org). The solid line indicates the mean value of the particle lability. C) Carbon use 
efficiency (CUE) as a function of particle lability and initial population size. Dashed line indicates 
the no growth zone. Microbial population assembly on the particle for three levels of particle lability 
(recalcitrant I: Kp:1hr-1, semi-labile II: Kp:100hr-1 and labile III: Kp:1000hr-1) are shown. Green dots 
show individual cells on the particle. Simulations are performed for a range of initial cell densities 
and 1% detachment is allowed. Half saturation, Ks is assumed 0.1mg/L. D) The cell spatial 
distribution on particles for scenarios with 8 and 22µm mean cell distances are shown. E) 
Depolymerization and mean uptake rates for a range of mean cell-cell distance are represented 
as a function of particle lability. The simulations are initialized with placing individual cells uniformly 
on the particle to meet their corresponding mean cell-cell distance for neighboring cells. No 
detachment is allowed in simulations. Initial cell number was 1000 cells.    
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            Our results revealed that there is an emergent negative relationship between the rates of 

depolymerization and growth, and the carbon use efficiency (CUE) of the particle-associated 

bacterial population (Figure 1C) (21, 22). This emergent rate – efficiency trade-off was a 

consequence of the diffusion of oligosaccharide in a three dimensional environment where soluble 

products that were not taken up by cells in the vicinity of the particle were lost. At high values of 

Kp, oligosaccharides are produced in excess of Ks, the half-saturation constant of the Monod 

growth function, and therefore cells approached their maximum growth rate. However, high Kp 

also led to ~99% loss of oligosaccharide to diffusion (~1% recovery), which reduced the theoretical 

biomass yield of the population and the CUE. For comparison, if the system was closed, as in a 

laboratory reactor, CUE could theoretically reach 100% because dissolved oligosaccharides 

would accumulate (Figure S1). However, natural environments are rarely, if ever, closed and 

diffusive losses are likely to limit CUE in nature, given low particle densities, (Table S3). Moreover, 

adding the movement of fluids around particles by convective flow to the model (23–25), further 

increased the loss rate of oligosaccharide to the bulk environment, and reduced CUE from 10% 

to 2% (Figure S2-S5). Although the exact value of CUE could depend on substrate affinity (1/Ks) 

and on cell numbers (the more cells that can capture oligosaccharides the higher CUE), the trade-

off between rate and efficiency held for different physiological parameters (Figure S6). Taken 

together, these results suggest that in natural environments most public goods are lost and that 

the competition between diffusion and uptake should lead to a tradeoff between CUE and the rate 

of particulate carbon turnover. Quantifying the CUE for natural marine particles revealed that the 

maximum CUE barely exceeded 7% at the optimum particle lability (Kp ~100hr-1) for the highest 

of particle-associated cell density observed (~2.32×107) (Table S3). 

Surprisingly, we found that the high CUE observed at low Kp (recalcitrant particles/low 

enzymatic activity per cell) was mediated by the aggregation of cells into micro-scale patches on 

the particle surface, a phenomenon that was not hardcoded in the model but emerged from the 

interplay between diffusion, cell behavior and growth (Figure 1C and Figure S7). Within these 
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patches, cells grew cooperatively by sharing oligosaccharides that would otherwise be lost to 

diffusion, which increased the per capita growth rate and CUE up to a density of 0.3 cells/µm2 

(Figure S8). To characterize the spatial density dependence, we performed simulations to quantify 

particle depolymerization and mean growth rates as a function of the inter-cell distance (Figure 

1D). Our analysis showed that dense spacing (a nearest neighbor distance of 8 µm) promoted 

cooperation by sharing of oligosaccharides, but only when particles were recalcitrant and the 

oligosaccharide production rate was slow (Kp<100hr-1) (Figure 1E). More precisely, when the 

amount of oligosaccharide available to cells fell near Ks, the half-saturation of the Monod growth 

curve, an increase in the local concentration of oligosaccharide due to cell-cell aggregation 

increased the per capita growth rate. In contrast, at high Kp (~2000 hr-1), oligosaccharides quickly 

accumulated and the uptake rate was decoupled from the spatial organization of the cells on the 

particle, since there were enough resources for cells to grow at their maximal rate ([C]>>Ks) 

(Figure 1E). Under these conditions, there is no benefit to aggregation and even cells spaced 22 

µm apart reached their maximum oligosaccharide uptake rate (Figure 1E).  

In our model, cell detachment and reattachment from the particle surface was a critical 

behavior that enabled the formation of patches and the degradation of recalcitrant particles. On 

recalcitrant particles (Kp=10-100 hr-1) 1% detachment significantly increased the particle 

degradation rate and CUE (Figure 2A), and also increased the mean carbon uptake rate by a 

factor of 5 (Figure S9A), compared to a non-detaching population. This allowed populations to 

survive on recalcitrant particles that might otherwise not sustain growth and drive the population 

to extinction (Figure S9B). Without chemotaxis, random motility alone still allowed detaching 

populations to grow on more recalcitrant particles than non-detaching populations, but at ~1/6 the 

CUE (Figure 2A) and ~1/10 the rate of biomass accumulation (Figure S9B). This was due to the 

fact that with chemotactic motility most cells had access to the same of hydrolysis products 

emanating from cell patches, with the distribution of carbon uptake rates for individual cells 

displaying a tight peak near the maximum uptake rate (µ~0.8µmax) (Figure S9C). Our model thus 
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suggests that detachment and chemotaxis enhance CUE under nutrient-limited conditions ([C]~ 

Ks) by enabling the formation of patches where cells cooperate by sharing public goods. This also 

implies that the onset of cooperation is dependent on the individual strain physiology. Organisms 

that had either a high affinity for oligosaccharides (low Ks) or a high hydrolytic activity saturated 

their growth at low oligosaccharide concentrations (Figure 2B), circumventing the need to 

cooperate Figure (2C-D). In contrast, organisms with a low uptake affinity for the public good, or 

organisms with a low per-cell rate of hydrolysis, such as those that tether enzymes to their 

membrane, had a higher need to cooperate with other cells (Figure 2D). Therefore, although there 

was a general trend to increase cooperation as particles became harder to degrade (Figure 2D), 

traits such as motility, surface detachment rates, substrate affinity or enzyme localization 

determined determine the exact onset of cooperation for each population. 
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Figure 2. Bacterial cooperation enhances carbon uptake rate. A) Effects of individual cells 
attachment/detachment frequency to/from particles on CUE. Solid line shows the simulation 
results with chemotactic behavior compared to simulations with only random walk shown with 
dashed line. The computational results are shown for the initial cell number of 107cells/ml and the 
particle size was set to 200 µm. The results are shown for simulations after 10 hours. B) Monod 
growth kinetics represents the mean cellular uptake rate of oligosaccharides as a function of 
oligosaccharide concentration. C) The fold of change in biomass as a function of initial bacterial 
density is shown for simulations of bacterial colonization on a single particle after 20hours. D) The 
effects of bacterial cell density on produced oligosaccharide concentration, experienced by 
individual cells. The simulations are performed for a particle with constant radius of 200 µm and 
initial cell density of 0.3 cell/µm-2. Labile (Kp=400 hr-1) vs. recalcitrant (Kp=40hr-1) particles are 
considered with two relatively low (Ks=1mg/L) and high (Ks=0.1mg/L) affinity to substrates uptake 
by bacterial cells.  
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To experimentally validate our prediction that cell-cell cooperation drives the degradation 

of hard-to-degrade polysaccharides, we turned our attention to Psychromonas sp., psych6C06, a 

marine isolate that had previously been enriched from coastal seawater on model chitin 

particles(10). The strain readily degrades chitin hydrogel in ~30 hours (17) and encodes at least 

eight predicted chitinases, or glycosyl hydrolase family 18 and 19 homologs, but no other families 

of glycosyl hydrolases, leading us to conclude that the strain is representative of a chitin specialist. 

We reasoned that if cooperative growth kinetics played a role in this system, we would observe a 

strong dependency between the initial number of cells that can colonize the particle and the growth 

of the population. In particular, we would expect a critical cell density below which the population 

is unable to form the patches required to degrade particles, revealing that the degradation process 

is bacteria-limited. 

In agreement with this prediction, psych6C06 displayed a strong density dependence 

when growing on hydrogel chitin beads, in the form of a critical cell density below which 

degradation never occurred (Figure 3A). Interestingly, we observed that colonization involved the 

formation of cell patches, in agreement with the model results (Figure 3B). At concentrations just 

below the threshold critical cell density, we saw that cells that initially colonized the particle were 

not able to persist. Populations that persisted did so by forming cell patches (Figure 3C). We 

artificially increased Kp by adding exogenous chitinase to supply 776 µg/h GlcNAc. Consistent 

with individual-based model results (Figure 2D), the addition of the exogenous enzyme activity 

lowered the cell density-dependent threshold for colonization of the chitin hydrogel beads (Figure 

3D). In addition, the broadcast chitinases led to a more uniform distribution of psych6C06 cells on 

the chitin hydrogel bead, a state that was morphologically distinct from the patchy colonization 

achieved at 24 h psych6C06 without enzyme (Figure 3B) and similar to the simulation results at 

high Kp (Figure 2D).  
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Figure 3. Chitinase limitation drives psych6C06 to form growth-promoting surface-
associated clusters. A) An Allee effect emerges for populations of psych6C06 over 24 h. Data 
points are combined from three experimental replicates. Error bars are SEM from at least 6 
individual measurements of colonization density on chitin beads. Lines represent the mean 
trajectory for each cell density. B) Representative images showing colonization density of initial 
populations of cells below (4*106 cells/mL), and above (8*106 cells/mL) the colonization threshold 
at timepoints during colonization. Scale bars are 20 µm. C) The fraction of cell area on chitin 
hydrogel beads that exists in patches >2000 cells. Dashed line indicates the limit where all cell 
area exists in patches (x=y). Raw data analyzed are the same as 3A and 3B. D) The addition of 
exogenous chitinase enables smaller populations of cells to colonize chitin hydrogel particles. 
Dark purple bars, initial density 8*106 cells/mL; light purple bars, initial density 4*106 cells/mL. 
Colonization density was assessed after 24 h. Bars are SEM from at least 5 measurements. The 
amount of chitinase added to the medium supplies 776 µg/h GlcNAc. 
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Figure 4. Physiological traits predict an Allee effect for chitin-degrading strain psych6C06 
in a diffusive environment. A) Rates of attachment to chitin hydrogel beads, measured for three 
different initial cell densities per mL (Bi). Error is SEM from a minimum of 10 measurements and 
lines are fits of the data to a linear regression, where the slope (Bon/Boff) gives the rate of cell 
accumulation on the particle (for Bi=8*106, Bon/Boff = 2.9*10-2  6.9*10-3; Bi=4*106; for Bon/Boff = 
3.2*10-2  6.6*10-3; Bi=2*106, for Bon/Boff = 3.4*10-2  5.0*10-3,  standard error).  B) Rates of 
detachment from chitin hydrogel beads, measured 24 h after colonization by an initial population 
of 8*106 cells/mL. Error is SEM from a minimum of 11 measurements and lines are fits of the data 
to a linear regression for data points between 0 h and 3.5 h, where the slope gives the rate at 
which cells leave the particle. Two independent replicates are shown (slope replicate 1= -2.8*105 

 3.4*104 cells/bead/hour; slope replicate 2= -2.7*105  5.1*104 cells/bead/hour,  standard error).  
C) Yield of psych6C06 cells grown on GlcNAc as the sole carbon source. Data points represent 
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individual measurements. Line is a linear regression of the data, where the slope (0.89  0.08 g 
cells / g GlcNAc) gives the fractional yield. D) Dependency of psych6C06 growth rate on substrate 
availability. Three biological replicates are shown. Measurements of growth rate at nine different 
GlcNAc concentrations were fit to the Monod growth model µ = µmax*S/(Ks + S), where µ is the 
observed exponential growth rate, S is the concentration of GlcNAc, to find the maximum growth 
rate (µmax) and half-saturation constant (Ks). For replicates 1-3 respectively, µmax=0.35  0.02, 
0.39  0.02, 0.37  0.02 and Ks=1.2  0.5, 1.1  0.3, 1.0  0.32. E) The rate of chitin hydrolysis to 
GlcNAc by cell-associated psych6C06 chitinase (Kp) was measured using fluorescent substrates 
for exponentially growing cells at two different densities (OD 0.1 open circles and OD 0.4 filled 
circles). Linear regression was fit to each replicate Kp (OD 0.1)= 12.5  0.2 g GlcNAc/g cells/h, Kp 
(OD 0.4)= 14.5  0.3 g GlcNAc/g cells/h. The average of the two replicates was used as the 
estimate for psych6C06 Kp. F) Prediction of psych6C06 biomass yield after 24 h of growth on chitin 
hydrogel beads with different initial population densities (cells/mL). The analytical model is based 
on the parameters measured in 3A-E. Dashed horizonal line indicates no biomass change. Purple 
data points indicate the experimentally measured change in biomass observed for the indicated 
initial population densities. Error bars represent SD for measurements from at least 3 replicates. 
 

Discussion 

Despite the key regulatory role of microbes in carbon cycling (17, 26, 27), linking the micro-scale 

physiology and behavior of bacteria to carbon flux models remains elusive. Here, we show that in 

conditions where diffusion limits oligosaccharide accumulation, like in the ocean, the breakdown 

of particulate polysaccharides is subject to population density-dependent effects. These effects 

are driven by three key physiological parameters: the affinity of cells for hydrolyzed 

oligosaccharide, the rate of polysaccharide hydrolysis, and the amount of exchange on/off the 

particle surface that define a tradeoff between the rate of polysaccharide degradation and biomass 

yield. These features contrast with a common assumption of carbon flux models: that model 

heterotrophic cells consume nutrients at rates comparable to the consumption of simple dissolved 

substrates by laboratory-adapted model organisms in a well-mixed systems (27–29). In particular, 

our computational and experimental results highlight that the frequency at which cells exchange 

on and off the polysaccharide surface has a large impact on cell carbon uptake. This effect is 

emerged not only by setting the threshold population density that is achieved by the initial 

population without growth, but by reconfiguring the arrangement of surface-associated cells in 

ways that maximize oligosaccharide uptake and growth. In addition, we show that the emergence 

of microbial aggregates on recalcitrant particles inacreases the chance of survival for populations 
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of bacteria by enhancing the local dissolved carbon production rate and cell uptake rates. The 

benefit of aggregate formation is dependent on size: structures that are too large or dense to 

support the maximum uptake rate of individual cells promote competition rather than cooperation 

(30). In natural ecosystems, aggregate formation and dispersal is the rule rather than an exception 

(31–34) and cells are likely to carry adaptations to enhance aggregation/dispersal on particle 

surfaces, for instance by regulating chemotactic movement or the expression of biofilm 

components such as adhesins and matrix proteins (35, 36). Thus, micro-scale interactions could 

significantly affect the rates of POM turnover in the environment, underscoring the need to 

incorporate these interactions into models of carbon cycling. 

Our computational and experimental system also highlights the importance of social 

collective behavior and spatial self-organization on community fitness and survival. Previous 

studies have shown that secretion of public goods (enzyme) favors the formation of patchy 

microbial aggregates by enhancing cooperative behavior (11, 14, 15, 37). Notably, many bacteria 

actively regulate enzyme secretion and other group behaviors at the level of transcription (38–40), 

and cell-density-dependent transcription factors such as quorum signal receptors are capable of 

sensing both changes to the environment and to cell density (41). While our simulations reveal 

that physiology alone is sufficient to explain patch formation, further studies are required to 

evaluate the contribution of such regulation on the group behaviors that may facilitate patch 

formation and dispersal by psych6C06. Our results also suggest that the benefit of clustering is 

not universal and is instead dependent on physiology: the carbon use efficiency and growth rate 

of cells with high affinity for substrates suffers in the context of an aggregate, while aggregation is 

optimal for strains with lower substrate affinity and lower rates of polysaccharide hydrolysis (11). 

This observation highlights the fact that in systems with potential for spatial organization – that is, 

most systems outside the lab, the balance between cooperation and competition can be delicate 

and modulated by the intersection of physical processes with microbial physiology.  
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Methods  

Individual based model of individual cell behavior and physiology 

The mathematical model represents metabolism, surface interaction and flagellar motility of 

individual cells in 3D space in the presence of chemical gradients. We introduce an individual-

based model (42, 43) to quantify single-cell interactions with organic particles by abstracting the 

structural heterogeneities of natural POM into a mathematically simpler spherical shape, while 

preserving some key physical and chemical processes associated with POM degradation. A 

spherical organic particle of 200 µm radius is simulated such that it remains static in the middle of 

an aqueous volume (~1mm3). While natural organic matter aggregates may show various shapes 

and chemical compositions, we modeled particles as perfect spheres made of a single type of 

insoluble linear polysaccharides such as chitin, alginate, or cellulose. This computational model is 

inspired by experimental model systems used to study community assembly on marine POM (10, 

17). The particle’s size and its surface chemistry are assumed to be unchanged during particle 

degradation: only the particle density changes over time to satisfy mass conservation. This 

assumption is consistent with experimental observations that have shown no significant change 

in organic particle size during microbial degradation until the final stages of collapse(17). We 

simulated a scenario where an isogenic population of cells is allowed to colonize and degrade a 

particle with a defined volume. The simulations were started with zero oligosaccharides and the 

particle was considered to be the sole carbon source. 

To take into account the fact that cells might regulate their enzymatic activity, the model 

limits enzyme secretion to two scenarios: when cells adhere to the particle surface or when the 

rate of oligosaccharide supply exceeds the maintenance threshold. Importantly, our simulations 

ensure mass conservation between total carbon uptake, growth and loss of oligosaccharides. 

Individual cells are initialized as a uniform random distribution in the aqueous volume, and are 

allowed to disperse following gradients of chemo-attractant (in this case, oligosaccharide). The 

cells can consume the oligosaccharide, grow, and divide to new daughter cells and experience a 
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range of local conditions. A full derivation of the mathematical expressions and steps used for 

modeling of microbial growth, dispersal and enzyme secretion can be found in the Supplemental 

Information.   

Experimental methods: Strain psych6C06 was previously isolated from an enrichment of 

nearshore coastal seawater (Nahant, MA, USA) for surface-associated chitin degrading microbial 

communities (10, 17). The strain was maintained as colonies on Marine Broth 2216 (Difco 279110) 

with 1.5% agar (BD 214010). To establish exponential growth without hysteresis, we modified a 

culturing protocol previously developed for Escherichia coli K12(44), and grew cells on a defined 

seawater medium with the N-acetyl-D-glucosamine (GlcNAc) at concentrations indicated. Chitin 

hydrogel beads (NEB) were washed and diluted to 200-250 particles per mL with size range from 

40 to 100 μm in diameter. The beads were rotated end over end at 21-25 C. The density of 

inoculated cells was set to be at an A600 of 0.01, diluted from 20 mM GlcNAc minimal medium 

cultures prepared as described above. To visualize particles and their surface-associated 

bacteria, 200 µl subsamples were stained with the DNA-intercalating dye SYTO9 (Thermo Fisher, 

S34854) at a 1:285 dilution of the stock in 96-well plates with optically clear plastic bottoms (VWR 

10062-900).  

Cell density measurements (Absorbance at 600 nm, A600) of exponentially-growing cells 

were used to measure the maximum cellular growth rate, and plating was used to measure growth 

under GlcNAc limitation, from which we derived the half-saturation constant. GlcNAc depletion 

was measured during growth using the dintrosalicylic acid reagent method(45), and the depletion 

rate was used to calculate the biomass yield (see Supplemental Information) 

Chitinase activity was quantified using Methylumbelliferyl(MUF)-conjugated substrates N,N′-

diacetyl-β-D-chitobioside, N-acetyl-β-D-glucosaminide, and β-D-N,N′,N′′-triacetylchitotriose 

(Sigma CS1030). Microscopy was performed on micro-confocal high-content imaging system 

(ImageXpress Micro Confocal, Molecular Devices), using the 60 µm pinhole spinning disk mode. 

Fluorescent signal was visualized with a LED light cube (Lumencore Spectra X light engine), and 
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bandpass filters (ex 482/35 nm  em 538/40 nm dichroic 506 nm), with a 40x objective (Nikon Ph 

2 S Plan Fluor ELWD ADM 0.60 NA cc 0-2 mm, correction collar set to 1.1), and a sCMOS detector 

(Andor Zyla). Image analysis was performed in MATLAB (release 2018a). Briefly, image stacks 

were split in half and a maximum intensity projection was obtained for each half. The low level of 

fluorescent signal associated with free dye in the hydrogel particles was used to define an intensity 

threshold suitable to create a binary mask for the particle projections. A mask of the cells within 

the beads was then defined using their brighter fluorescence intensity. We used this segmentation 

to quantify the total surface area occupied by the cells on the bead, and to quantify the total surface 

area occupied by patches (areas where cells contact other cells >10 µm2).  
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Supplementary Methods 

Individual based modeling procedure   

- Growth and division  

The individual-based model assumes that an individual cell doubles to two identical cells after a 

certain amount of carbon is taken up (1, 2). In this model, a Monod-kinetic parameterization(3) 

gives the carbon uptake kinetics of individual cells 𝜈௜
௦ and their biomass accumulation:  

max

[ ]

[ ]
s
i i
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C
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C +K
       (1) 

where Bi is the cell dry mass of the individual cell, i, and the maximum rate of substrate uptake is:

 (maximum specific growth rate / growth yield). Ks is the half-saturation 

constant for dissolved oligosaccharide. We assume that dissolved oligosaccharides [C] are the 

primary limiting substrate for growth, and that all other nutrients (e.g., sources of phosphate and 

nitrogen) available at non-rate limiting levels. 

  For cell i, the actual biomass accumulation ( ) and resources consumed (

) for maintenance, mi are both assumed to be propositional to the cell’s dry mass, 

Bi, therefore, the net growth in the cell biomass ( ) can be described as follows: 
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     (2) 

The minimum volume of the individual cell at division ( ) is estimated from the descriptive 

Donachie model (1, 2)     

     (3) 

where  is median volume of the individual cell. If the individual cell volume becomes larger than 

, the parent cell divides to form two new daughter cells. The individual cells are assumed to 

be cylindrical. It should be noted that the actual growth kinetics of an individual cell could be limited 

due to substrate availability within the corresponding mathematical mesh grid ( ) at each time 

step ( ), therefore if the uptake driven by Eq. 1 is higher than the available substrate in a given 

mesh grid ( ) then the available substrate is equally shared among the number of 

individuals inhabiting the same grid ( , n: number of individuals within the same mesh 

grid). The biological parameters of the kinetic microbial model are summarized in Table S2.  

- Microbial active movement 

Microbial movement is modeled as flagellar motility: a self-propulsive force guided by chemotaxis 

that is driven by local substrate gradients (4, 5). The model describes the chemotactic movement 

of an individual bacterium as a biased-random walk where the flagella propel a straight “run” by 

rotational movement of the motor and then reverse the rotation to switch direction with a probability 

to change direction (“tumble”) set by surrounding gradients of chemo-attractants. To apply 

chemotactic movement to a single cells at each time step, the sensitivity of microbial 

chemoreceptors towards higher substrate concentrations are described using a receptor model 

that uses the specific growth rate as the chemotactic potential (6, 7). Thus in the biased random 

walk of an individual bacterium, the probability of transition  in a tumbling event into a new 
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(more favorable) direction from the current direction (previous “run”) is expressed quantitatively 

as(1, 6):  

                          (4) 

                                             (5) 

Where α is the factor for the chemotactic motion derived from chemotactic sensitivity coefficient 

of individual cells to chemo-attractant(8), , bacterial maximum swimming velocity,  and the 

growth rate in response to local gradients, μmax . m is the number of directions that an individual 

cell could sense the local gradients in 3D surrounding environment. To insure homogenous 

directional choices, the summation is evaluated with a relatively high number of possible directions 

(m=20) for each individual cells, but still minimize the computational burden when scaling up to 

systems of thousands of individual cells. The distance in which bacterial cells sense the local 

chemotactic gradient is set equal to the cell length (1 µm). Periodic boundary conditions are 

assumed for bacterial cells that pass outside of the external boundaries of the system. 

- Bacteria-particle interactions 

Bacterial cells are allowed to attach to the particle surface when they stochastically encounter a 

particle. The model assumes that bacterial cells attach to the particle upon surface encounter, but 

that a set detachment probability for each cell allows them to detach from the particle. This 

probability is invariant over the span of time that cells are surface-associated, which contrasts with 

many characterized mechanisms by which bacteria form irreversible contact with surfaces(9). To 

determine the effect of this simplifying assumption on the behavior of the model, we simulated a 

wide range of detachment probabilities, ranging from no detachment to a relatively high 

detachment rate (1% detachment probability per second).  

- Enzymatic activity 
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Cells in the model can broadcast extracellular enzymes. These enzymes are produced at a 

constant rate that is proportional to the biomass of the cell, and the enzymes can diffuse into the 

bulk environment. Enzymes that come into contact with the particle subsequently hydrolyze 

polysaccharide and release diffusible oligosaccharide at the particle surface. The production of 

enzyme is assumed to be activated when a bacterial cell adheres to the particle, or when cells 

take up enough oligosaccharide to support cell maintenance. That is, the process of enzyme 

production preserves mass conservation. We modeled the rate that an individual cell I broadcasts 

enzymes ( ) as a conditional linear function to its biomass, :  

                                         (6) 

 

where  is the actual uptake rate by the individual cell and m is the maintenance rate. The 

diffusion of the enzyme is then solved by considering a source term, equivalent to the total 

production rate of enzymes from a corresponding cubic mesh grid ( ) and a sink term 

on the particle source that gives the rate at which enzymes adhere ( ).  

- Oligosaccharide diffusion-reaction in physical domain 

The model explicitly simulates the loss of oligosaccharides to the bulk environment due to the 

presence of diffusion or flow. This is implemented by absorbing conditions at the boundaries of 

the simulated domain in which oligosaccharides that arrive at a boundary are lost to the bulk 

environment with no accumulation. This is a relevant assumption for many aquatic and terrestrial 

ecosystems, in contrast to soil ecosystems under dry conditions that may impose restrictions on 

substrate diffusivity or to batch culture where substrates accumulate in culture vessels.  

The transport and uptake of depolymerized oligosaccharides are modelled based on Fick’s law of 

diffusion and mass conservation. We modeled a 3D cubic volume around a single particle and 
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assumed that diffusion of oligosaccharides is the main mode of mass transport. The reaction-

diffusion equation is then numerically solved by the finite-difference method, assuming a regular 

cubic mesh discretization(10): 

2s
s s s dp

C
D C S S

t


   

                   (7) 

where Cs is the concentration of oligosaccharide (the product of enzymatic hydrolysis), Ds is the 

diffusion coefficient of the oligosaccharide and Ss is the oligosaccharide consumption rate (the 

sink term) due to microbial uptake. Ss is a summation of the individual uptake rates ( sv ), of all cells 

within a cubic mesh grid (
1:

s
s i

i n

S v


 , n is the number of individuals in the mesh grid) (10). dpS is 

the production rate of oligosaccharide given from Eq. 11. The mesh grid size is chosen to be 

approximately 10 µm and the time step used for simulating oligosaccharide diffusion is the same 

as that used for chemotactic movement for computational simplicity. For each time step, the 

Dirichlet boundary conditions are applied for the particle surface and the external boundaries of 

the cubic volume around the particle. The concentration of oligosaccharide at the external 

boundaries is set to zero to create an absorbing boundary condition (eliminate the accumulation 

of oligosaccharide). This external boundary condition is similar to that used for enzyme diffusion 

(below). A convective term is added in the case where oligosaccharide transport processes are 

modeled around sinking particles.  

 

- Enzyme diffusion and decay: 

The diffusion of the enzyme is solved by considering a source and sink term, similar to Eq. 7: 

2
, ,

E
E E E P A P

C
D C S S

t


   


                                   (8) 

here EC is the concentration of broadcast enzyme and DE is the enzyme diffusion coefficient. Both 

values can be measured experimentally. In this study, we used an empirical model that 

decomposes the diffusion coefficient into components describing the viscosity  and temperature 
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T of the medium, and molecular weight of the molecule, Mw  7 0.41 21.7 10 / (cm / s)ED T Mw   (11). 

In Eq. 7, the adhesion of enzyme to the particle acts as a sink term at the particle surface boundary 

that is equivalent to the total amount of enzyme that arrives at the particle surface (

,

r L

A P Er
S C dA


  , L ). The total enzyme accumulation on the particle ( , .E surfS

) is then the integral 

of the accumulation rate ,A PS minus the decay rate, ,E DS :  

, . , ,0

t

E surf A P E DS S dt S                                                  (9) 

Enzymes are assumed to decay with first order kinetics, so ,E DS  is a function of the amount of 

enzyme adsorbed to the particle surface (12–14): 

, , .E D l E surfS K S                                                        (10) 

where Kl is defined as the enzyme decay coefficient. The depolymerization rate of polysaccharide 

( dpS
) to oligosaccharide is therefore a function of the particle-adsorbed enzyme ( , .E surfS ) with a 

linear empirical relationship:  

, .dp p E surfS K S                                                                (11) 

where pK  is the particle lability, defined as a lumped parameter that resembles biopolymer and 

enzyme biochemistries. That is, pK is a combined term to express difficulty of the particle to 

degrade relative to the activity of the enzyme produced by the cells.  

 

-  Oligosaccharide transport in presence of particle sinking 

Where we model sinking in our simulations, we assume a constant 1D speed rate along the water 

column, u (see Figure S2). For simplicity, we assume that particle sinking creates a laminar flow 

around the particle with the same speed as the particle sinking rate. To address the effect of flow 
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on dissolved carbon and enzyme transport, we added advection term to diffusion model for 

dissolved carbon and enzyme transports (Eq. 7 and 8) and expressed as:  

For dissolved carbon: 

2.s
s s s s dp

C
u C D C S S

t


     


                 (12) 

 

For enzyme: 

2
, ,.E

E E E E P A P

C
u C D C S S

t


     


                         (13) 

where sink and source terms for dissolved carbon ( ,s dpS S ) and enzyme ( ,s dpS S )  are all expressed 

similar to equations 7 and 8, respectively. Similar to the stationary particle simulations, the mesh 

grid size was chosen to be approximately 10 µm and the time step of calculations was assumed 

to be similar to the time interval between chemotactic tumbles (5 seconds). At each time step, 

Dirichlet boundary conditions are applied to the particle surface to the external boundaries of the 

volume around the particle. At the particle surface a constant flux of oligosaccharide production is 

considered as given by Eq. 11, as a function of the particle-adsorbed enzyme concentration. As 

above, the external boundary concentration of oligosaccharide is set to zero. A finite difference 

method was applied to solve Eq. 12 and 13 simultaneously at each time step within the individual-

based model.  

           To model longer time scales of particle sinking in the water column, we implemented a 

spatial algorithm to only model the effective zone around the particle in each time scale, instead 

of modeling the whole water column for each time step. Based on analyzing the concentration 

gradient of dissolved carbon around the particle, we chose the effective zone as the region with 

concentration gradient above a threshold value (5% of maximum chemical gradient).   

 

‘Population-level’ analytical bottom-up model 
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We developed a simple quantitative model to predict the fold change in biomass based on the 

measurable physiological and behavioral features of marine bacterial isolates. The model is 

parametrized based on the rate of enzyme production and activity (degradation rate) to predict the 

total of oligosaccharide production, M over time, given by a first order kinetics:  

, maxp m p p
s

M [C]
K B V B M

t [C]+K


  


                  (14) 

where ,p mK is the rate of oligosaccharide production per biomass per hour that is derived from 

enzymes bound to the cell membrane. Bp is the particle-associated fraction of the total biomass. 

max
maxV

Y


  is the maximum uptake rate, defined as the ratio of maximum growth rate of bacteria,

max to the yield of substrate conversion to biomass, Y (experimentally measured).  is the 

fraction of monomers that are lost to the bulk environment and the value is assumed from what 

we obtained from simulations individual based model, and from previous reports in the literature 

about the inefficiency of oligosaccharide recovery from hydrolysis(15). Note that as the enzyme is 

tethered to the cells, no diffusion for the enzyme is assumed.  

The particle-associated biomass production rate is represented based on the combination 

of Monod-type growth kinetics and attachment-detachment frequencies:  

max
p

p a F d p
s

B [C]
B B B

t [C]+K
  


  


                (15) 

where BF is the fraction of free living biomass in the system, [C] is the oligosaccharide 

concentration, calculated from the ratio of oligosaccharide mass, M to the volume. Ks is the half-

saturation constant, experimentally measured in Figure 4. a  and d  are attachment and 

detachment rates, respectively, measured in Figure 4.  

The change in free-living biomass, BF is derived from the frequency of attachment and 

detachment, assuming that free-living cells do not themselves grow:  
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F
d p a F

B
B B

t
 

 


         (16) 

 

Experimental methods: 

Culture conditions: Strain psych6C06 was previously isolated from an enrichment of nearshore 

coastal seawater (Nahant, MA, USA) for surface-associated chitin degrading microbial 

communities (16, 17). The strain was maintained as colonies on Marine Broth 2216 (Difco 279110) 

with 1.5% agar (BD 214010). To establish exponential growth without hysteresis, we modified a 

culturing protocol previously developed for Escherichia coli K12(18). Briefly, single colonies were 

picked and transferred to 3 mL liquid Marine Broth 2216 and incubated at 25 ºC, shaking at 

150 rpm on a VWR DS-500 orbital shaker to establish seed cultures. Seed cultures were harvested 

after ~5 hours by centrifugation for 1 min at 5000 rcf (Eppendorf 5415D, Rotor F45-24-11). The 

supernatant was discarded and serial dilution of the cells were used to establish pre-cultures in 

pH 8.2 minimal media supplemented with 20 mM N-acetylglucosamine (GlcNAc). The core 

minimal medium contained the major ions present in seawater, plus vitamins and trace minerals 

per L: 20 g NaCl, 3 g MgCl2-6H2O, 0.15 g CaCl2-2H2O, 0.05 g KCl, 2.1 mg FeSO4-7H2O, 30 µg 

H3BO3, 100 µg MnCl2-4H2O, 190 µg CoCl2-6H2O, 2.2 µg NiSO4-6H2O, 2.7 µg CuSO4, 144 µg 

ZnSO4-7H2O, 36 µg Na2MoO4-2H2O, 25 µg NaVO3, 25 µg NaWO4-2H2O, 2.5 µg SeO2, 100 µg 

riboflavin, 30 µg D-biotin, 100 µg thiamine-HCl, 100 µg L-ascorbic acid, 100 µg Ca-D-pantothenate, 

100 µg folate, 100 µg nicotinate, 100 µg 4-aminobenzoic acid, 100 µg pyridoxine HCl, 100 µg 

lipoic acid, 100 µg nicotinamide adenine dinucleotide, 100 µg thiamine pyrophosphate, and 10 µg 

cyanocobalamin. In addition to the carbonate buffer present in the core minimal medium (reflecting 

natural seawater buffering capacity), we added 50 mM HEPES buffer pH 8.2 to control for the 

effects of heterotrophic metabolism on pH. We also supplemented the core medium with10 mM 

NH4Cl, 1 mM Na2PO4, and 1 mM Na2SO4 to create a carbon-limited minimal medium. Where 

appropriate, we supplemented with the N-acetyl-D-glucosamine (GlcNAc, concentrations 

indicated). Following overnight growth at 25 ºC, the cell density was measured in 1 cm cuvettes 
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by absorbance measurements at 600 nm (A600) using a Genesys 20 spectrophotometer. Under 

these conditions, A600 1.0 =8x108 cells/mL, measured by serial dilution and plating. 

 

Measurement of Monod growth parameters 

To measure the maximum growth rate on N-acetylglucosamine, cells were prepared as described 

above, then diluted to a starting OD of 0.01 in 4 mL of fresh 20 mM GlcNAc minimal medium in a 

10 mL vented polystyrene tube. OD measurements were taken over time, and the linear 

regression was fit to the plot of ln(OD) vs. time. The slope of this regression is equivalent to the 

growth rate. To measure the half-saturation constant, cells were diluted from a OD 1.0 by a factor 

of 105 into carbon-free minimal medium, and 100 µl of this dilution was used to inoculate medium 

containing a GlcNAc at different concentrations (221, 110, 22, 11, 2.2, 1.1, 0.22, 0.11, and 0.02 

mg/L). At 2 h time intervals, 100 µl of this culture was plated onto MB 1.5% agar plates. The 

resultant colonies were counted, and the change in colony numbers over time was used to derive 

the growth rate. The maximum growth rate measured by this method was the same as that 

measured using the OD-based approach. Growth rate was plotted against carbon concentration 

(S), and the experimentally measured µ and S were fit to the Monod growth equation 

(µ=µmax(S/(S+Ksat)) to derive parameters µmax and Ksat using a least squares fit with a maximum 

of 1000 iterations. The biomass yield during growth on GlcNAc was derived from direct 

measurement of cell density (A600) and GlcNAc depletion using the dintrosalicylic acid reagent 

method to colorimetrically quantify reducing sugars in cell-free media(19).  The grams of 

GlcNAc/mL depleted from the media was plotted against the grams of cells produced, at 

timepoints covering three population doublings (A600 0.1-0.8). The mass of an individual cell was 

assumed to be 19 fg: a value which we derived from scaling the measured mass of individual E. 

coli with 60 min doubling time (220 fg)(20), scaled by the growth rate of psych6C06 (0.35), and 

also by a factor of 4 to reflect a linear increase in biomass per cell with osmolarity between M9 

and seawater (21), divided by the ratio of E. coli to psych6C06 volume (16:1). 
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Measurement of protein production and enzymatic activity 

To collect secreted protein and cell-associated protein, cells were grown in large batches. Cells 

were prepared for inocualtion as described above, and inoculated at an initial density of OD 0.01 

into 250 mL Erlenmeyer flasks containing 150 mL of 20 mM GlcNAc minimal medium. The flasks 

were grown with 150 rpm shaking at 25 ºC. Periodically, 25 mL of culture was removed from the 

flasks, and centrifuged at 5000 rcf for 10 min at 4 ºC. Sampling was stopped when the culture 

flask volume reached 75 mL, past which point culture growth rate was affected by volume. The 

supernatant was collected and filtered through 0.2 µm Sterivex filters (EMD Millipore), at which 

point protease inhibitor (Roche cOMplete) was added. The pellet was immediately frozen at -20 

until quantification. Supernatant was concentrated ~50 x in Amicon Ultra 3 kDa centricon tubes 

(EMD Millipore), and rinsed twice with 12 mL of carbon-free minimal media to remove small 

molecules and other potentially inhibitory compounds. The protein abundance was quantified by 

measuring absorbance at 280 nm, with a 340 nm pathlength correction on a Nanodrop 

spectrophotometer (Thermo Scientific). The quantification was calibrated using standards of from 

proteins of known concentration (BSA, chitinase). Chitinase activity was quantified using 

Methylumbelliferyl(MUF)-conjugated substrates N,N′-diacetyl-β-D-chitobioside, N-acetyl-β-D-

glucosaminide, and β-D-N,N′,N′′-triacetylchitotriose (Sigma CS1030). Briefly, 2.5 µl of a 20 µg/mL 

stock of each substrate in DMSO was added to 197.25 µl of concentrated protein or crude cell 

lysate in chitinase assay buffer (carbon-free minimal medium, pH 8.2 with no vitamins, ammonium 

or phosphate). The amount of cell lysate was normalized prior to assay. The accumulation of 

fluorescence (ex 360-20/em 450-20) was monitored on a Tecan Spark at 25 C with a cooling 

module, by measuring fluorescence signal accumulation at 2-minute intervals with continuous 

shaking at 54 rpm with 6 mm amplitude. Serial dilutions of an unconjugated 4-Methylumbelliferone 
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standard were used to establish the linear range of the instrument and to convert fluorescence 

intensity into mg/mL of released oligosaccharide. 

  

Bacterial colonization on particles 

Precultures with absorbance between 0.1-0.3 were prepared as described above and used to 

colonize magnetic chitin hydrogel beads. To prepare the beads, 500 µl of bead slurry was washed 

3 times with carbon-free minimal media using magnetic pulldown. The washed beads were further 

diluted 1:3 and used to fill 15 mL conical tubes. The particle density in the tubes was counted, and 

all replicates contained between 200-250 particles per mL with size range from 40 to 100 μm in 

diameter. This density of beads is consistent with previous studies of community assembly(17), 

and provides the equivalent of about 100 µM of the monomeric unit of chitin, N-acetylglucosamine 

(GlcNAc) to the system. The beads were rotated end over end, so that they fell through the 

medium due to gravity and remained constantly suspended. Because of the rotation, we were 

unable to continuously observe the beads and instead sub-sampled the population and made 

individual measurements of multiple beads at each sampled timepoint. The density of inoculated 

cells was set to be at an A600 of 0.01, diluted from 20 mM GlcNAc minimal medium cultures 

prepared as described above. A vertical wheel (Stuart S3B, 10” diameter wheel) was used to 

rotate the 15 mL tubes at 5 rpm at room temperature (21-25 C) with overhead rotation. To 

visualize particles and their surface-associated bacteria, 200 µl subsamples were stained with the 

DNA-intercalating dye SYTO9 (Thermo Fisher, S34854) at a 1:285 dilution of the stock in 96-well 

plates with optically clear plastic bottoms (VWR 10062-900). To avoid evaporation from the wells, 

sterile self-adhesive sealing films were used to seal the 96-well plates.  

  

Confocal microscopy and image processing: 

Microscopy was performed on micro-confocal high-content imaging system (ImageXpress Micro 

Confocal, Molecular Devices), using the 60 µm pinhole spinning disk mode. Fluorescent signal 
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was visualized with a LED light cube (Lumencore Spectra X light engine), and bandpass filters (ex 

482/35 nm  em 538/40 nm dichroic 506 nm), with a 40x objective (Nikon Ph 2 S Plan Fluor ELWD 

ADM 0.60 NA cc 0-2 mm, correction collar set to 1.1), and a sCMOS detector (Andor Zyla). To 

visualize individual particles, particles were manually centered in the field of view and then 100 

µm image stacks sampled at Nyquist were acquired in the Z plane using MetaXpress software 

(version revision 31201). Image analysis was performed in MATLAB (release 2018a). Briefly, 

image stacks were split in half and a maximum intensity projection was obtained for each half. 

The low level of fluorescent signal associated with free dye in the hydrogel particles was used to 

define an intensity threshold suitable to create a binary mask for the particle projections. A mask 

of the cells within the beads was then defined using their brighter fluorescence intensity. We used 

this segmentation to quantify the total surface area occupied by the cells on the bead, and to 

quantify the total surface area occupied by patches (areas where cells contact other cells >10 

µm2).  

 
Figure S1. Microbial cooperative behavior affected by batch (closed system with no flux boundary 
conditions for bacterial cells, dissolved carbon and enzymes) vs. open (absorbing boundary 
conditions for dissolved carbon and enzyme and periodic boundary for bacterial cells) systems. 
(A) Cooperative behavior is described as dependency of bacterial growth rate to cell initial load 

(N0). It is basically defined based on divergence from exponential growth behavior (
0

( )
N

Log t
N



) in which  is 1 for exponential growth and 1  shows positive cell dependency of growth 
rate (Cooperative growth). (B) and (C) growth rate dependency to initial cell load for open and 
closed systems, respectively. Dashed line indicates the extinction of bacterial community for cell 
load lower than a threshold value. Inset images indicate the dissolved carbon concentration 
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profiles for their corresponding scenarios. Simulations are done for a particle size of 200µm and 
results are plotted for the time that allows reaching to population size of 105 cells. Our simulations 
reveal that diffusion in an open system may lead to the emergence of spatial self-organization and 
cooperative growth among individual cells (defined as positive dependency of growth rate to cell 
number). However, in a closed environment, like a batch culture environment (often the case for 
experimental designs) this need not be the case. With limited diffusion, substrates produced from 
particulate biopolymers could eventually accumulate and be fully consumed (assuming that no 
other factors limit growth). Such closed conditions lead to a stepwise relationship between CUE 
and particle lability where above a threshold lability (Kp), CUE reaches to 100% and below that no 
degradation/uptake is expected.  
 
 

 
 
Figure S2. Model description for particle sinking, oligosaccharide profile and individual cell 
distributions. Individual cells are uniformly distributed over the water column. Each individual is 
assigned dispersal and enzymatic functions.  
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Figure S3. Particle sinking affects local gradients of dissolved organic matter and 
carbon use efficiency of particle associated and free-living bacterial cells. (A) Carbon 
use efficiency for a wide range of particle lability affected by the ratio of cell velocity (Vcell) to 
particle sinking speed (Vflow). (B) Spatial patterns of dissolved carbon concentration around the 
particle. Concentrations are normalized by the maximum local concentrations for each scenario. 
(C) Mean uptake rate at community level presented for particle associated and free-living bacterial 
cells. (D) Individual cell uptake rate frequencies. The cell velocity is kept constant at 10µm/s and 
particle sinking speed is changed from 5 (top) to 10(middle) and 20(bottom) µm/s to evaluate the 
effects of various ratios. The numbers in grey circle at the peaks of histogram for scenario Vcell 
<Vflow corresponds to the individual cells spatial location around the particle in Figure S8B. The 
results are shown for simulations after 10hours. Initial cell number is about 105 cells per ml 
uniformly distributed along the depth of the water column.  
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Figure S4. Particle sinking affects biomass accumulation (A) and depolymerization (B) rates and 
uptake efficiency (C). The simulations are performed for 3 ratios of cell to particle sinking speeds. 
The results are represented for various polymer labilities from labile (Kp=10000 hr-1) to recalcitrant 
(Kp=1 hr-1). The cell velocity is kept constant at 10µm/s and particle sinking speed is changed 
from 5 to 10 and 20 µm/s to evaluate the effects of various ratios. The results are shown for 
simulations after 10hours from initializing the simulations. Initial cell number is ~105 cells per 
milliliter volume.  
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Figure S5. Comparing the effects of particle sinking on biomass accumulation (A) and 
depolymerization (B) rates and uptake efficiency (C) against reference sinking speed. The 
reference scenario is assumed to be when cell velocity and particle sinking speed are equal 
(Vcell~Vflow). Ratios are calculated by dividing the biomass accumulation, depolymerization and 
CUE from Figure S9 for two scenarios of particle sinking (Vcel >Vflow & Vcel <Vflow) with reference 
scenario.  
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Figure S6. Physiological properties of bacterial cells (maximum growth rate μ, affinity to 
substrate Ks) affect CUE. CUE as a function of particle lability is shown for high (μ=0.5hr-1) and 
low (μ=0.5hr-1) maximum growth rates. The results are shown for two levels of affinity to substrate 
(0.1 and 0.01 mg/L). Vertical lines show the threshold particle lability below which no particle 
degradation and growth/substrate uptake is observed.  
 

 
Figure S7. Spatial self-organization and cooperative growth allow degradation of 
recalcitrant organic particles. (A) Dissolved carbon concentration profile (red high and blue low 
concentrations) projected on microbial population assembly on the particle for three levels of 
particle lability (recalcitrant I: Kp:1hr-1, semi-labile II: Kp:100hr-1 and labile III: Kp:1000hr-1). Green 
dots show individual cells and (B) only shows the bacterial cell colonization on the particle. For 
visualization purposes, carbon concentrations below a certain threshold are not shown (below 1% 
of maximum concentration). A particle size of 200 µm is considered and initial cell density was 
assumed to be 1000 cells.  
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Figure S8. Detachment changes in the distribution of cell-cell distances within particle 
associated populations. Distribution shown for simulations with 10% detachment (A) or without 
detachment (B). The simulations were run for semi-recalcitrant particles (Kp=100 hr-1), 
corresponding to the simulations in Figure 2B with an initial cell density of 1000 and after 10 hours. 
The dashed grey lines separate single patches. (C) A hypothetical scenario with a uniform random 
distribution of bacterial cells on the particle surface is shown for comparison. In this comparison, 
the cell-cell distance was calculated between a reference single cell and randomly selected 2000 
cells on the particle.  
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Figure S9. Microbial dispersal strategies regulate CUE from organic particle. (A) Effects of 
individual cells chemotactic behavior vs. random walk and attachment/detachment frequency 
to/from particles on Mean carbon uptake rates, represented as a function of particle lability (Kp). 
The mean uptake rate is normalized by the maximum uptake rate of individual cells imposed by 
their physiological properties. (B) Biomass accumulation after 10hours. Grey dashed line indicates 
extinction zone of bacterial population (no biomass accumulation). (C) Histogram of individual cell 
uptake rates as represented by the number of cells colonizing the particle. The results are shown 
only for Kp=10hr-1. The initial cell number was 10000 cells and the particle size was set to 200 µm. 
The results are shown for simulations after 10hours.  
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Figure S10. Chitinase production by psych6C06 is cell-associated, and exochitinase 
accounts for most of the activity.  A) Activity of psych6C06 chitinases in culture supernatant, 
and cell-associated fractions. B) Activity of cell-associated chitinase for three different chitinase 
substrates (1, exochitinase-specific; 2, chitobiosidase-specific; 3, endochitinase specific). 
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 1 

Table S1. Physiological parameters for microbial growth, metabolism and nutrient concentrations 1 
in the individual-based model.  2 
 3 
 4 

Parameters Values (Units) 

max : maximum growth rate (hr-1) 0.2-0.5* 

sK : half saturation (mg/L) 0.01-0.1* 

maxY  : growth yield (gr dry mass/gr 

substrate) 

0.5* 

cell maintenance 0.1
max ſ 

cell size (µm) 1 ſ 

ρ: cell density (mg L-1) 2.9×105 ſ 

V1D : cell velocity at bulk solution 
(µm/s) 

10* 

Vu : median cell volume (fl)  0.4 ſ 

.enzK :  enzyme production (gr 

enzyme/ gr biomass hr-1) 

0.05* 

 

 
Tumbling frequency (s-1) 0.1| 

X0: chemotactic 
sensitivity(mm2/hr) 446 Ʈ 

ſ  (2) 5 
| (22) 6 
Ʈ (8) 7 
*Model assumption 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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 2 

Table S2. The distribution range of the catalytic activity of various enzymes kcat. as a measure 20 
for particle lability from natural polymeric carbohydrates (Chitin, Alginate, Starch). The data are 21 
for various bacterial species with their corresponding abiotic conditions (species name, substrates 22 
and environmental conditions) 23 
 24 
Starch (alpha-amylase): 25 
Turnover 
Number [1/S] , 
kcat. 

Substrate  Species   Commentary   Literature  

140 Pullulan   Anabaena sp. wild-type enzyme (23) 

268 maltotriose    Anabaena sp. pH 4.5, 90°C, recombinant enzyme (24) 

283.3 beta-cyclodextrin    Anabaena sp. - (25) 

8.73 4,6-ethylidene-[G7]-
p-nitrophenyl-[G1]-
alpha-D-
maltoheptaoside    

Bacillus 
licheniformis 

wild-type, kcat/Km: 770000 1/s/M, 
25°C, pH 6.0 

(26) 

34 4,6-ethylidene-[G7]-
p-nitrophenyl-[G1]-
alpha-D-
maltoheptaoside    

Bacillus 
licheniformis 

wild-type, kcat/Km: 140000 1/s/M, 
37°C, pH 4.5 

(26) 

205 4,6-ethylidene-[G7]-
p-nitrophenyl-[G1]-
alpha-D-
maltoheptaoside    

Bacillus 
licheniformis 

wild-type, kcat/Km: 1420000 1/s/M, 
37°C, pH 6.5 

(26) 

0.156 starch   Bacillus megaterium 15°C, pH 8.3 (27) 

9.8 starch   Bacillus megaterium mutant enzyme A53S, in the presence 
of 5 mM Ca2+, in 20 mM Tris-HCl 
buffer (pH 7.2), at 30°C 

(28) 

19.9 starch   Bacillus megaterium wild type enzyme, in the presence of 5 
mM Ca2+, in 20 mM Tris-HCl buffer 
(pH 7.2), at 30°C 

(28) 

0.025 soluble starch   Bacillus sp. - (25) 

91.4 starch   Bacillus sp. pH 5.6, 40°C (29) 

98.3 soluble starch   Bacillus sp. - (30) 

31.1 beta-cyclodextrin    Fusicoccum sp. pH 5.6, 40°C (29) 

196 beta-cyclodextrin    Fusicoccum sp. pH 4.5, 90°C, recombinant enzyme (24) 

3420 soluble potato starch Fusicoccum sp. at 30°C in 10 mM MOPS buffer (pH 7.0) 
with 5 mM CaCl2 

(31) 

0.02 soluble starch   Geobacillus 
thermoleovorans 

in 50 mM sodium phosphate buffer 
(pH 6.5) at 75°C 

(32) 

120 starch   Pseudoalteromonas 
haloplanktis 

wild-type enzyme (23) 

392 4,6-ethylidene-[G7]-
p-nitrophenyl-[G1]-
alpha-D-
maltoheptaoside    

Pseudoalteromonas 
haloplanktis 

15°C, pH 7.2 (33) 

675 4,6-ethylidene-[G7]-
p-nitrophenyl-[G1]-
alpha-D-
maltoheptaoside    

Pseudoalteromonas 
haloplanktis 

pH not specified in the publication, 
25°C 

(34) 

697 4,6-ethylidene-[G7]-
p-nitrophenyl-[G1]-
alpha-D-
maltoheptaoside    

Pseudoalteromonas 
haloplanktis 

25°C, pH 7.2 (33) 
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25.7 starch   Pyrococcus furiosus wild type enzyme, in the absence of 
Ca2+, in 20 mM Tris-HCl buffer (pH 
7.2), at 30°C 

(28) 

29.4 beta-cyclodextrin    Pyrococcus furiosus calculated as low molecular weight 
products 

(35) 

228 acarbose Pyrococcus furiosus pH 4.5, 90°C, recombinant enzyme (24) 

241 acarbose Pyrococcus furiosus pH 4.5, 90°C, recombinant enzyme (24) 

1940 Dextrin Pyrococcus furiosus at 30°C in 10 mM MOPS buffer (pH 7.0) 
with 5 mM CaCl2 

(31) 

130 glycogen    Pyrococcus sp. from rat liver, calculated as low 
molecular weight products 

(35) 

230 acarbose Pyrococcus sp. short chain amylose, calculated as low 
molecular weight products 

(35) 

2280 acarbose Pyrococcus sp. pH 6.5, 90°C (36) 

3000 starch   Pyrococcus sp. calculated as low molecular weight 
products 

(37) 

4180 acarbose Pyrococcus sp. pH 6.5, 90°C (36) 

4680 starch   Pyrococcus sp. pH 6.5, 90°C (36) 

1457 starch   Streptomyces 
megasporus 

pH not specified in the publication, 
55°C 

(34) 

0.085 Pullulan   Thermoactinomyces 
vulgaris 

pH 5.6, 40°C (29) 

67 starch   Thermoactinomyces 
vulgaris 

pH 4.5, 90°C, recombinant enzyme (24) 

153 4,6-ethylidene-[G7]-
p-nitrophenyl-[G1]-
alpha-D-
maltoheptaoside    

Thermobifida fusca pH not specified in the publication, 
25°C 

(34) 

1.6 maltotriose    Thermotoga 
neapolitana 

- (35) 

34 4-nitrophenyl alpha-
D-maltohexaoside 

Thermotoga 
neapolitana 

in 50 mM sodium phosphate buffer 
(pH 6.5) at 75°C 

(32) 

37.2 maltopentaose    Thermotoga 
neapolitana 

pH 5.6, 40°C (29) 

1920 rabbit glycogen Thermotoga 
neapolitana 

at 30°C in 10 mM MOPS buffer (pH 7.0) 
with 5 mM CaCl2 

(31) 

 26 
Alginate lyase: 27 
guluronate-specific alginate lyase    

Turnover 
Number [1/s] , 
kcat.  

Substrate  Species Commentary  Literature 

936 alginate   Flavobacterium sp. pH 8.5, 30°C (38) 

872.8 sodium alginate   Flavobacterium sp. recombinant His-tagged enzyme, pH 
8.5, 45°C 

(38) 

32 alginate   Pseudomonas 
aeruginosa 

pH 7.1, 25°C (39) 

32 poly-(beta-(1->4)-D-
mannuronan) 

Pseudomonas 
aeruginosa 

pH 7.1, 25°C (39) 

1.5 acetylated poly-(beta-
(1->4)-D-
mannuronan) 

Pseudomonas 
aeruginosa 

pH 7.1, 25°C (39) 

1.2 acetylated alginate Pseudomonas 
aeruginosa 

pH 7.1, 25°C (39) 
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56.9 sodium alginate   Saccharophagus 
degradans 

pH 7.5, 30°C, wild-type enzyme (40) 

19.51 sodium alginate   Zobellia 
galactanivorans 

with L-guluronate content of 33.3%, 
pH 7.5, 30°C, recombinant enzyme 

(41) 

17.89 sodium alginate   Zobellia 
galactanivorans 

with L-guluronate content of 52.6%, 
pH 7.5, 30°C, recombinant enzyme 

(41) 

12.66 sodium alginate   Zobellia 
galactanivorans 

with L-guluronate content of 66.7%, 
pH 7.5, 30°C, recombinant enzyme 

(41) 

mannuronate-specific alginate lyase   

Turnover 
Number [1/S] , 
kcat. 

Substrate  Species  Commentary  Literature 

2.42 alginate   Pseudomonas 
aeruginosa 

protein PA1167, pH 7.5, 37°C (42) 

748 alginate   Pseudomonas 
aeruginosa 

AlgL (42) 

7.6 hepta-alpha1,4-L-
guluronate 

Alteromonas sp. pH 8.5, 30°C (42) 

13.2 hepta-beta1,4-D-
mannuronate 

Alteromonas sp. pH 8.5, 30°C (42) 

7.9 hexa-alpha1,4-L-
guluronate 

Alteromonas sp. pH 8.5, 30°C (42) 

11.9 hexa-beta1,4-D-
mannuronate 

Alteromonas sp. pH 8.5, 30°C (42) 

7.8 nona-alpha1,4-L-
guluronate 

Alteromonas sp. pH 8.5, 30°C (42) 

10.8 nona-beta1,4-D-
mannuronate 

Alteromonas sp. pH 8.5, 30°C (42) 

7.3 octa-alpha1,4-L-
guluronate 

Alteromonas sp. pH 8.5, 30°C (42) 

11.1 octa-beta1,4-D-
mannuronate 

Alteromonas sp. pH 8.5, 30°C (42) 

6.2 penta-alpha1,4-L-
guluronate 

Alteromonas sp. pH 8.5, 30°C (42) 

7.4 penta-beta1,4-D-
mannuronate 

Alteromonas sp. pH 8.5, 30°C (42) 

0.057 sodium alginate   Saccharophagus 
degradans 

pH 7.5, 30°C, H415A (40) 

56.9 sodium alginate   Saccharophagus 
degradans 

pH 7.5, 30°C, wild-type enzyme (40) 

2.5 tetra-alpha1,4-L-
guluronate 

Alteromonas sp. pH 8.5, 30°C (43) 

3.2 tetra-beta1,4-D-
mannuronate 

Alteromonas sp. pH 8.5, 30°C (43) 

 28 
 29 
Chitin (Chitinase) 30 
Turnover 
Number [1/S] , 
kcat.  

Substrate  Species  Commentary  Literature 

110.6 4-
methylumbelliferyl-
N,N',N''-
triacetylchitotriose   

Vibrio 
parahaemolyticus 

pH 7, 37°C, VpChiA (44) 

13.94 4-
methylumbelliferyl-

Vibrio 
parahaemolyticus 

pH 7, 37°C, VpChiA (44) 
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N,N'-
diacetylchitobiose   

0.383 p-nitrophenol-beta-
D-N,N'-
diacetylchitobioside 

Vibrio harveyi 70°C, pH 7 (45) 

2.9 chitohexaose   Vibrio harveyi pH 5.5, 37°C, wild-type enzyme (46) 

2.37 colloidal chitin   Vibrio harveyi pH 7.0, 40°C (47) 

1.2 chitin   Vibrio harveyi pH 5.5, 37°C, colloidal chitin, wild-
type enzyme 

(46) 

0.21 GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAc   

Vibrio harveyi wild-type, 37°C (48) 

0.19 GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAc   

Vibrio harveyi wild-type, 37°C (48) 

0.032 p-nitrophenol-beta-
D-mannopyranoside 

Vibrio harveyi - (45) 

0.005 chitin   Thermococcus 
chitonophagus 

- (45) 

67.4 4-
methylumbelliferyl-
beta-D-N,N',N''-
triacetylchitotrioside   

Serratia marcescens pH 6.5, isozyme ChiA (49) 

56.8 4-
methylumbelliferyl-
beta-D-N,N',N''-
triacetylchitotrioside   

Serratia marcescens pH 6.5, isozyme ChiB (49) 

2 4-
methylumbelliferyl-
beta-D-N,N',N''-
triacetylchitotrioside   

Serratia marcescens pH 6.5, isozyme ChiC (49) 

2.2 beta-chitin   Serratia marcescens pH 6.1, 37°C (50) 

1.7 beta-chitin   Serratia marcescens pH 8.0, 37°C; pH 8.0, 37°C (50) 

6.7 4-nitrophenyl 
chitobioside   

Pyrococcus furiosus pH 4.8, 50°C, wild-type enzyme (51) 

0.1 colloidal chitin   Penicillium 
ochrochloron 

wild-type, 37°C (48) 

9.6 4-nitrophenyl N,N'-
diacetyl-beta-D-
chitobioside 

Paenibacillus 
thermoaerophilus 

pH 7.0, 60°C (52) 

0.99 4-nitrophenyl N,N'-
diacetylchitobiose 

Paenibacillus sp. recombinant enzyme, pH 5.5, 37°C (53) 

83.46 chitin   Paenibacillus sp. pH 5.0, 50°C (54) 

19.54 4-nitrophenyl-beta-
1,4-N,N'-diacetyl-
chitobiose   

Moritella marina pH 5.0, 28°C, purified recombinant 
enzyme 

(55) 

11.88 4-nitrophenyl-beta-
1,4-N,N'-diacetyl-
chitobiose   

Moritella marina pH 5.0, 20°C, purified recombinant 
enzyme 

(55) 

7.33 4-nitrophenyl-beta-
1,4-N,N'-diacetyl-
chitobiose   

Moritella marina pH 5.0, 15°C, purified recombinant 
enzyme 

(55) 
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5.46 4-nitrophenyl-beta-
1,4-N,N'-diacetyl-
chitobiose   

Moritella marina pH 5.0, 10°C, purified recombinant 
enzyme 

(55) 

4.33 4-nitrophenyl-beta-
1,4-N,N'-diacetyl-
chitobiose   

Moritella marina pH 5.0, 5°C, purified recombinant 
enzyme 

(55) 

0.79 4-nitrophenyl-beta-
1,4-N,N'-diacetyl-
chitobiose   

Moritella marina pH 5.0, 0°C, purified recombinant 
enzyme 

(55) 

0.5 chitohexaose   Coccidioides immitis 30°C (56) 

18 4-
methylumbelliferyl-
N,N'-
diacetylchitobiose   

Chromobacterium sp. pH 7.0, 37°C, wild-type enzyme (57) 

0.43 4-nitrophenyl-
chitobiose   

Bacillus licheniformis wild-type, strain DSM13, pH 6.0, 37°C (58) 

0.31 4-nitrophenyl-
chitobiose   

Bacillus licheniformis pH 6.0, 37°C (59) 

0.31 4-nitrophenyl-
chitobiose   

Bacillus licheniformis wild-type, strain DSM8785, pH 6.0, 
37°C 

(58) 

0.17 4-nitrophenyl-
chitobiose   

Bacillus licheniformis wild-type, strain DSM13, pH 3.0, 37°C (58) 

0.14 4-nitrophenyl-
chitobiose   

Bacillus licheniformis wild-type, strain DSM8785, pH 3.0, 
37°C 

(58) 

22.4 4-
methylumbelliferyl-
tri-N-
acetylchitotriose   

Bacillus circulans 37°C, pH 6, wild-type (60) 

26.9 reduced 
chitopentaose   

Bacillus circulans 37°C, pH 6, wild-type (60) 

2.15 p-nitrophenyl-N,N'-
diacetylchitobiose   

Bacillus circulans pH 5.0, 30°C, wild-type enzyme (61) 

9.55 carboxymethyl chitin   Bacillus circulans 37°C, pH 6, wild-type (60) 

0.0007 4-
methylumbelliferyl 
GlcNAcbeta(1-
4)GlcNAcbeta(1-
4)GlcNAc   

Aeromonas caviae pH 6.0, 50°C, recombinant His-tagged 
wild-type enzyme 

(62) 

0.006 4-
methylumbelliferyl-
GlcNAcbeta(1-
>4)GlcNAc   

Aeromonas caviae pH 6.0, 50°C, recombinant His-tagged 
wild-type enzyme 

(62) 

 31 
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 32 

Table S3. Particle associated cell density at different water solutions and seasons in the Baltic Sea. The data are extracted from Rieck 33 

et al., 2015 (63). The data on particle size range and number of particles per one litter of solution are used from field studies (64) to 34 

estimate the number of cells per single particles across observed size ranges. The simulations are performed for three initial cell 35 

densities for approximately the mean particle lability observed for natural biopolymers (Kp~100hr-1, Figure 1B) and carbon uptake 36 

efficiency (CUE) is estimated after 10hours. The simulation data are used to predict CUE from natural marine snow.  37 

 Summer  Winter/fall  Simulations (this study) 

  Marine Mesohaline Oligohaline  Marine Mesohaline Oligohaline 

 

   

Particle-associated  

cell density [cells L−1](63) 

0.26 

(±0.06)×108 

0.57 (± 0.13) 

×108 
0.76 (± 0.21) ×108  

0.12 (± 0.069) 

×108 

0.13 (± 0.08) 

×108 

0.74 (± 

0.03)×108 
1000* 5000* 10000* 

Particle size range (mm)(63) 0.2-7(mean 0.5) 
0.2-7(mean 

0.5) 
0.2-7(mean 0.5)  

0.2-7(mean 

0.5) 

0.2-7(mean 

0.5) 

0.2-7(mean 

0.5) 
 0.2 0.2 0.2 

Number of particles per 

L(64) 
≤28 (mean 6.4) 

≤28 (mean 

6.4) 
≤28 (mean 6.4)  

≤28 (mean 

6.4) 
≤28 (mean 6.4) 

≤28 (mean 

6.4) 
 ---- ----- ----- 

Total cell fraction per 

particle 

0.2mm:1.8%; 

7mm:98.2% 

0.2mm:1.8%; 

7mm:98.2% 

0.2mm:1.8%; 

7mm:98.2% 
 

0.2mm:1.8%; 

7mm:98.2% 

0.2mm:1.8%; 

7mm:98.2% 

0.2mm:1.8%

; 

7mm:98.2% 

 ---- ----- ----- 

Cells per particle            

0.2 mm 7.80E+04 1.71E+05 2.28E+05  3.60E+04 3.90E+04 2.32E+05  
8.83E+03
Ʈ 

2.10E+05Ʈ 6.32E+05Ʈ 

7 mm 8.51E+07 1.87E+08 2.49E+08  3.93E+07 4.26E+07 2.42E+08  ---- ----- ----- 

Estimated CUE             

0.2 mm 0.041 0.057 0.061  0.03 0.032 0.07  0.025 0.064 0.08 

Ʈ cell numbers after 10hours 38 
*initial cell number for simulation 39 

 40 

41 
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