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ABSTRACT 

Dimensionality reduction (DR) is an indispensable analytic component for many 

areas of single cell RNA sequencing (scRNAseq) data analysis. Proper DR can 

allow for effective noise removal and facilitate many downstream analyses that 

include cell clustering and lineage reconstruction. Unfortunately, despite the critical 

importance of DR in scRNAseq analysis and the vast number of DR methods 

developed for scRNAseq studies, however, few comprehensive comparison 

studies have been performed thus far to evaluate the effectiveness of different DR 

methods in scRNAseq. Here, we aim to fill this critical knowledge gap by providing 

a comprehensive comparative evaluation of a variety of commonly used DR 

methods for scRNAseq studies. Specifically, we compared 11 different DR 

methods on 28 publicly available scRNAseq data sets that cover a range of 

sequencing techniques and sample sizes. We evaluate the performance of 

different DR methods both for cell clustering and for lineage reconstruction in terms 

of their accuracy and robustness. We evaluate the computational scalability of 

different DR methods by recording their computational cost. Based on the 

comprehensive evaluation results, we provide important guidelines for choosing 

DR methods in scRNAseq data analysis. We also provide all analysis scripted 

used in the present study at www.xzlab.org/reproduce.html. Together, we hope 

that our results will serve as an important practical reference for practitioners to 

choose DR methods in the field of scRNAseq analysis. 
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INTRODUCTION 

Single-cell RNA sequencing (scRNAseq) is a rapidly growing and widely applying 

technology [1-3]. By measuring gene expression at single cell level, scRNAseq 

provides an unprecedented opportunity to investigate the cellular heterogeneity of 

complex tissues [4-8]. However, despite the popularity of scRNAseq, analyzing 

scRNAseq data remains a challenging task. Specifically, due to the low capture 

efficiency and low sequencing depth per cell in scRNAseq data, gene expression 

measurements obtained from scRNAseq are noisy: collected scRNAseq gene 

measurements are often in the form of low expression counts paired with an 

excessive number of zeros known as dropouts [9]. Subsequently, dimensionality 

reduction (DR) methods that transform the original high-dimensional noisy 

expression matrix into a low-dimensional subspace with enriched signals become 

an important data processing step for scRNAseq analysis [10]. Proper DR can 

allow for effective noise removal, facilitate data visualization, and enable efficient 

and effective downstream analysis of scRNAseq [11].  

DR is indispensable for many types of scRNAseq analysis. Because of the 

importance of DR in scRNAseq analysis, many DR methods have been developed 

and routinely used in many scRNAseq software tools that include, but not limited 

to, cell clustering tools [12, 13] and lineage reconstruction tools [14]. Indeed, most 

commonly used scRNAseq clustering methods rely on DR as the first analytic step 

[15]. For example, Seurat applies clustering algorithms directly on a low 

dimensional space inferred from principal component analysis (PCA) [16]. CIDR 

improves clustering by improving PCA through imputation [17]. SC3 combines 

different ways of PCA for consensus clustering [18]. Besides PCA, other DR 

techniques are also commonly used for cell clustering. For example, nonnegative 

matrix factorization (NMF) is used in SOUP [19]. Diffusion map is used in destiny 

[20]. Multidimensional scaling (MSD) is used in ascend [21]. Variational inference 

autoencoder is used in scVI [22]. In addition to cell clustering, most cell lineage 

reconstruction and developmental trajectory inference algorithms also rely on DR 

[14]. For example, TSCAN builds cell lineages using minimum spanning tree based 

on a low dimensional PCA space [23]. Waterfall performs k-means clustering in 

the PCA space to eventually produce linear trajectories [24]. SLICER uses locally 

linear embedding (LLE) to project the set of cells into a lower dimension space for 

reconstructing complex cellular trajectories [25]. Monocle employs independent 

components analysis (ICA) for DR before building the trajectory [26]. Wishbone 

combines PCA and diffusion maps to allow for bifurcation trajectories [27]. 
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Besides the generic DR methods mentioned in the above paragraph, many DR 

methods have also been developed recently that are specifically targeted for 

modeling scRNAseq data. These scRNAseq specific DR methods can account for 

either the count nature of scRNAseq data and/or the dropout events commonly 

encountered in scRNAseq studies. For example, ZIFA relies on a zero-inflation 

normal model to model dropout events [28]. pCMF models both dropout events 

and the mean-variance dependence resulting from the count nature of scRNAseq 

data [29]. ZINB-WaVE incorporates additional gene-level and sample-level 

covariates for more accurate DR [30]. Finally, several deep learning-based DR 

methods have recently been developed to enable scalable and effective 

computation in large-scale scRNAseq data; for example, data that are collected by 

10X Genomics techniques [31] and/or from large consortium studies such as 

Human Cell Atlas (HCA) [32, 33]. Common deep learning-based DR methods for 

scRNAseq include Dhaka [34], scScope [35], VASC [36], and DCA [37], to name 

a few.  

With all these different DR methods for scRNAseq data analysis, one naturally 

wonders which DR method one would prefer for different types of scRNAseq 

analysis. Unfortunately, despite the popularity of scRNAseq technique, the critical 

importance of DR in scRNAseq analysis, and the vast number of DR methods 

developed for scRNAseq studies, few comprehensive comparison studies have 

been performed to evaluate the effectiveness of different DR methods for practical 

applications. Here, we aim to fill this critical knowledge gap by providing a 

comprehensive comparative evaluation of a variety of commonly used DR 

methods for scRNAseq studies. Specifically, we compared 11 different DR 

methods on 28 publicly available scRNAseq data sets that cover a range of 

sequencing techniques and sample sizes. We evaluate the performance of 

different DR methods both for cell clustering and for lineage reconstruction in terms 

of their accuracy and robustness using different metrics. We also evaluate the 

computational scalability of different DR methods by recording their computational 

time. Together, we hope our results can serve as an important guideline for 

practitioners to choose DR methods in the field of scRNAseq analysis.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/641142doi: bioRxiv preprint 

https://doi.org/10.1101/641142
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS 

Our evaluated the performance of 11 DR methods (Table 1; Figure S1) on 28 

publicly available scRNAseq data sets (Table S1). Details of these data sets are 

provided in Methods and Materials. Briefly, these data sets cover a wide variety of 

sequencing techniques that include Smart-Seq2 (7 data sets), 10X genomics (6 

data sets), Fluidigm C1 (4 data sets), Smart-Seq (5 data sets), inDrop (1 data set), 

SMARTer (3 data sets) and others (2 data sets). In addition, these data cover a 

range of sample sizes from a couple hundred cells to a few thousand cells. In each 

data set, we evaluated the effectiveness of different DR methods for one of the two 

important tasks: cell clustering and lineage inference. In addition, we recorded 

computation time of different DR methods. An overview of the comparison 

workflow is shown in Figure 1. All data and analysis scripts for reproducing the 

results in the paper is available at www.xzlab.org/reproduce.html.  

Cell clustering  

We first evaluated the performance of different DR methods for cell clustering 

applications. To do so, we obtained 14 publicly available scRNAseq data sets and 

simulated two additional scRNAseq data sets using Splatter package (Table S1). 

Each of the 14 real scRNAseq data sets contains known cell clustering information 

while each of the two simulated data sets contains 4 or 8 known cell types. For 

each DR method and each data set, we applied DR to extract a fixed number of 

low-dimensional components (e.g. these are the principal components in the case 

of PCA). We varied the number of low-dimensional components to examine their 

influence on downstream analysis. In particular, for a data with less than or equal 

to 300 cells, we varied the number of low dimensional components to be either 2, 

6, 14, or 20. For a data with more than 300 cells, we varied the number of low 

dimensional components to be either 0.5%, 1%, 2%, or 3% of the total number of 

cells. We then applied either the hierarchical clustering algorithm or the k-means 

clustering algorithm to obtain cluster labels. We used both normalized mutual 

information (NMI) and adjusted rand index (ARI) values for comparing the true cell 

labels and inferred cell labels obtained by clustering methods based on the low 

dimensional components. 

The evaluation results on DR methods based on clustering analysis using the k-

means clustering algorithm are summarized in Figure 2 (for NMI criterion) and 

Figure S2 (for ARI criterion). Because the results based on either of the two criteria 

are similar, we will mainly explain the results based on the NMI criteria in Figure 2. 

For easy visualization, we also display the results averaged across data sets in 
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Figure S3. A few patterns are noticeable. First, as one would expect, clustering 

accuracy depends on the number of low-dimensional components that are used 

for clustering. Specifically, accuracy is relatively low when the number of low-

dimensional components is very small (e.g. 2 or 0.5%) and generally increases 

with the number of included components. In addition, accuracy usually saturates 

once a sufficient number of components is included, though the saturation number 

of components can vary across data sets and across methods. For example, the 

average NMI across all data sets and across all methods are 0.59, 0.67, 0.68 and 

0.69 for increasingly large number of components, respectively. Second, when 

conditional on using a low number of components, scRNAseq specific DR method 

ZINB-WaVE and scRNAseq non-specific DR method ICA often outperform the 

other methods. For example, with the lowest number of components, the average 

NMI across all data sets for ICA and ZINB-WaVE is 0.77 and 0.76, respectively. 

The performance of ICA and ZINB-WaVE is followed by Diffusion Map (0.71), ZIFA 

(0.69), PCA (0.68), FA (0.68), NMF (0.59) and DCA (0.57). While the remaining 

three methods, Poisson NMF (0.42), pCMF (0.41) and scScope (0.26), do not fare 

well with a low number of components. The good performance of ZINB-WaVE with 

a low number of components presumably is because its direct modeling of dropout 

events and raw counts of scRNAseq data. The good performance of ICA with a 

low number of components presumably is because it extracts low-dimensional 

components using a non-linear transformation. Third, with increasing number of 

low-dimensional components, generic methods such as FA, ICA and PCA are 

often comparable with scRNAseq specific methods such as ZINB-WaVE, and in 

many cases can slightly outperform ZINB-WaVE. For example, with the highest 

number of low-dimensional components, the average NMI across all data sets for 

FA, ICA, PCA, ZINB-WaVE and Diffusion Map are 0.85, 0.84, 0.83, 0.83 and 0.80, 

respectively. Their performance is followed by ZIFA (0.79), NMF (0.73), and DCA 

(0.69). The same three methods, pCMF (0.55), Poisson NMF (0.31), and scScope 

(0.31), again do not fare well with a large number of low-dimensional components. 

The comparable results of generic DR methods with scRNAseq specific DR 

methods with a high number of low-dimensional components are also consistent 

some of the previous observations; for example, the original ZINB-WaVE paper 

observed that PCA generally can yield comparable results with scRNAseq specific 

DR methods in real data [30].  

Besides the k-means clustering algorithm, we also used the hierarchical clustering 

algorithm to evaluate the performance of different DR methods (Figures S4-S6). 

In this comparison, we had to exclude one DR method, scScope, as hierarchical 
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clustering does not work on the extracted low-dimensional components from 

scScope. Consistent with the k-means clustering results, we found that the 

clustering accuracy measured by hierarchical clustering is relatively low when the 

number of low-dimensional components is very small (e.g. 2 or 0.5%), but 

generally increases with the number of included components. In addition, 

consistent with the k-means clustering results, we found that generic DR methods 

often yield results comparable to or better than scRNAseq specific DR methods. 

In particular, two generic DR methods, FA and NMF, outperform various other DR 

methods across a range of settings. For example, when the number of low-

dimensional components is moderate (6 or 1%), both FA and NMF achieve an 

average NMI value of 0.80 across data sets (Figures S6). Their performance is 

followed by PCA (0.72), Poisson NMF (0.71), ZINB-WaVE (0.71), Diffusion Map 

(0.70), ICA (0.69), ZIFA (0.68), pCMF (0.65), and DCA (0.63). We note, however, 

that the clustering results obtained by hierarchical clustering are often slightly 

worse than that obtained by k-means clustering across settings (e.g. Figure S3 vs 

Figure S6), consistent with the fact that many scRNAseq clustering methods use 

k-means as a key ingredient [18, 24]. 

While some DR methods (e.g. Poisson NMF, ZINB-WaVE, pCMF and DCA) 

directly model count data, many DR methods (e.g. DR methods, PCA, ICA, FA, 

NMF, and Diffusion Map) require normalized data. The performance of DR 

methods that use normalized data may depend on how data are normalized. 

Therefore, we investigated how different normalization approaches impact on the 

performance of the aforementioned five DR methods that use normalized data. We 

examined two alternative data transformation approaches, log2 CPM (count per 

million) and z-score, in addition to the log2 count we used in the previous results 

(transformation details are provided in Methods and Materials). The evaluation 

results are summarized in Figures S7-S10 and are generally insensitive to the 

transformation approach deployed. For example, with the k-means clustering 

algorithm, when the number of low-dimensional components is small (1%), PCA 

achieves an NMI value of 0.82, 0.82 and 0.81, for log2 count transformation, log2 

CPM transformation, and z-score transformation, respectively (Figures S3A, S8A, 

and S10A). Similar results hold for the hierarchical clustering algorithm (Figures 

S3B, S8B, and S10B). Therefore, different data transformation approaches do not 

appear to substantially influence the performance of DR methods.  

Finally, we also investigated the stability and robustness of different DR methods. 

To do so, we randomly split the Kumar data into two subsets with an equal number 
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of cells for each cell type in the two subsets. We applied each DR method to the 

two subsets and measured the clustering performance in each subset separately. 

We repeated the procedure 10 times to capture the potential stochasticity during 

the data split. We visualize the clustering performance of different DR methods in 

the two subsets separately. Such visualization allows us to check the effectiveness 

of DR methods with respective to reduced sample size in the subset, as well as 

the stability/variability of DR methods across different split replicates (Figure S11). 

The results show that four of the DR methods, PCA, ICA, FA, and ZINB-WaVE, 

often achieve both accurate clustering performance and highly stable and 

consistent results across the subsets. The accurate and stable performance of 

both ICA and ZINB-WaVE is notable even with a relatively small number of low-

dimensional components. For example, with very small number of low-dimensional 

components, both ICA and ZINB-WaVE achieve an average NMI value of 0.98 

across the two subsets, with virtually no performance variability across data splits 

(Figure S11). 

Overall, the results suggest that, in terms of downstream clustering analysis 

accuracy and stability, ICA is preferable across a range of data sets examined 

here. In addition, scRNAseq specific DR methods such as ZINB-WaVE is also 

preferable if one is interested in extracting a small number of low-dimensional 

components, while generic methods such as PCA or FA are also preferred when 

one is interested in extracting a large number of low-dimensional components.  

Trajectory inference 

We next evaluated the performance of different DR methods for lineage inference 

applications (details in Methods and Materials). To do so, we obtained 14 publicly 

available scRNAseq data sets, each of which contains known lineage information 

(Table S2). The known lineage in all these data are linear, without bifurcation or 

multifurcation patterns. For each data set, we applied one DR method at a time to 

extract a fixed number of low-dimensional components. In the process, we varied 

the number of low-dimensional components from 2, 6, 14 to 20 to examine their 

influence for downstream analysis. With the extracted low-dimensional 

components, we first used the hierarchical clustering algorithm or the k-means 

clustering algorithm to obtain cell type labels, where the number of cell types in the 

clustering was set to be the known truth. Afterwards, we supplied the low-

dimensional components and cell type labels to the software Slingshot [38] to infer 

the lineage. Following [38], we evaluated the performance of DR methods by 

Kendall correlation coefficient that compares the true lineage and inferred lineage 
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obtained based on the low-dimensional components. In this comparison, we also 

excluded one DR method, scScope, which is not compatible with Slingshot. The 

lineage inference results for the remaining DR methods are summarized in Figures 

3 and S12-17.  

Different from the clustering results where accuracy generally increases with 

increasing number of included low-dimensional components, the lineage tracing 

results do not show a clear increasing pattern with respect to the number of low-

dimensional components, especially when we used k-means clustering as the 

initial step (Figures 3 and Figure S13A). For example, the average Kendall 

correlation across all data sets and across all methods are 0.37, 0.37, 0.38 and 

0.37 for increasingly large number of components, respectively. When we use 

hierarchical clustering algorithm as the initial step, the lineage tracing results in the 

case of a small number of low-dimensional components are slightly inferior as 

compared to the results obtained using a large number of low-dimensional 

components (Figures S12 and Figure S13B). However, we do note that the lineage 

tracing results obtained using k-means are better than that obtained using 

hierarchical clustering as the initial step. Therefore, k-means clustering algorithm 

is recommend as the initial step for lineage inference and a small number of low-

dimensional components there is often sufficient for accurate results. When 

conducting lineage inference based on a low number of components with k-means, 

we found that four DR methods, PCA, FA, NMF and ZINB-WaVE, all perform well 

for lineage inference (Figure S13A). These methods also worked reasonably well 

for the previous cell clustering analysis. For example, with the lowest number of 

components, the average Kendall correlation across data sets for PCA, FA, NMF, 

and ZINB-WaVE, are 0.43, 0.42, 0.42, and 0.41, respectively. Their performance 

is followed by ICA (0.38), ZIFA (0.37), and Diffusion Map (0.35). While DCA (0.31), 

pCMF (0.29), and Poisson NMF (0.29) do not fare well. These four methods (PCA, 

FA, NMF and ZINB-WaVE), with the only exception of NMF, are also among the 

best performers for lineage inference across varying number of low-dimension 

components.  

For methods that require normalized data, we further examined the influence of 

different data transformation approaches on their performance (Figures S14-S15). 

Like in the clustering comparison, we found that different transformations do not 

influence the performance results for most DR methods in lineage inference. For 

example, with the k-means clustering algorithm as the initial step, when the 

number of low-dimensional components is small, ICA achieves a Kendall 
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correlation of 0.38, 0.36 and 0.38, for log2 count transformation, log2 CPM 

transformation, and z-score transformation, respectively (Figures S13A, S15A, 

and S17A). Similar results hold for the hierarchical clustering algorithm (Figures 

S13B, S15B, and S17B). However, some notable exceptions exist. For example, 

with log2 CPM transformation but not the other transformations, the performance 

of Diffusion Map increases with increasing number of included components when 

k-means clustering was used as the initial step: the average Kendal correlation 

across different low-dimensional components are 0.37, 0.42, 0.44, and 0.47, 

respectively (Figures S14 and S15A). As another example, with z-score 

transformation but not with the other transformations, FA achieves the highest 

performance among all DR methods across different number of low-dimensional 

components. 

We also investigated the stability and robustness of different DR methods by data 

split on the Hayashi data. We applied each DR method to the two subsets and 

measured the lineage inference performance in the two subsets separately. We 

again visualize the clustering performance of different DR methods in the two 

subsets, separately. Such visualization allows us to check the effectiveness of DR 

methods with respective to reduced sample size in the subset, as well as the 

stability/variability of DR methods across different split replicates (Figure S18). The 

results show that three of the DR methods, FA, Diffusion Map, and ZINB-WaVE, 

often achieve both accurate performance and highly stable and consistent results 

across the subsets. The accurate and stable performance of these is notable even 

with a relatively small number of low-dimensional components. For example, with 

very small number of low-dimensional components, FA, Diffusion Map and ZINB-

WaVE achieve Kendall correlation of 0.75, 0.77, and 0.77 averaged across the two 

subsets, respectively, and again with virtually no performance variability across 

data splits (Figure S18). 

Overall, the results suggest that, in terms of downstream lineage inference 

accuracy and stability, the scRNAseq non-specific DR method FA is preferable 

cross a range of data sets examined here. In addition, scRNAseq specific DR 

method ZINB-WaVE and the scRNAseq non-specific DR method NMF are also 

preferable if one is interested in extracting a small number of low-dimensional 

components. scRNAseq specific DR method Diffusion Map may also be preferable 

if one is interested in extracting a large number of low-dimensional components. 

Computation time 
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We recorded and compared computing time for different DR methods on simulated 

data sets. Here, we also examined how computation time for different DR methods 

varies with respect to the number of low-dimensional components extracted 

(Figure 4A) as well as with respect to the number of cells contained in the data 

(Figure 4B). Overall, the computational cost of three methods, ZINB-WaVE, ZIFA, 

and pCMF, is substantially heavier than the remaining methods. Their computation 

time increase substantially with both increasingly large number of low-dimensional 

components and increasingly large number of cells in the data. Specifically, when 

the sample size equals 500 and the desired number of low dimensional 

components equals 22, the computing time for ZINB-WaVE, ZIFA, and pCMF to 

analyze 10,000 genes are 2.15, 1.33, and 1.95 hours, respectively (Figure 4A). 

When the sample size increases to 10,000, the computing time for ZINB-WaVE, 

ZIFA, and pCMF increases to 12.49, 20.50, and 15.95 hours, respectively (Figure 

4B). Similarly, when the number of low-dimensional components increases to 52, 

the computing time for ZINB-WaVE, ZIFA, and pCMF increases to 4.56, 4.27, and 

4.62 hours, respectively. Besides these three methods, the computing cost of both 

ICA and Poisson NMF can also increase noticeably with increasingly large number 

of low-dimensional components. The computing cost of ICA, but to a lesser extent 

of Poisson NFM, also increases substantially with increasingly large number of 

cells. In contrast, PCA, FA, Diffusion Map, and the two deep learning-based 

methods (DCA, and scScope) are computationally efficient. In particular, the 

computation time for these five methods are stable and do not show substantial 

dependence on the sample size or the number of low-dimensional components. 

Certainly, we expect that the computation time of all DR methods will further 

increase as the sample size of the scRNAseq data sets increases in magnitude. 

Overall, in terms of computing time, PCA, FA, Diffusion Map, DCA, and scScope 

are preferable.   

Practical guidelines 

In summary, our comparison analysis shows that different DR methods can have 

different merits for different tasks. Subsequently, it is not straightforward to identify 

a single DR method that strives the best in all data sets and for all downstream 

analyses. Instead, we provide a relatively comprehensive practical guideline for 

choosing DR methods in scRNAseq analysis in Figure 5. Our guideline is based 

on the accuracy and effectiveness of DR method in terms of the downstream 

analysis, the robustness and stability of DR method in terms of replicability and 

consistency across data splits, as well as computational scalability for large 

scRNAseq data sets. Briefly, for cell clustering analysis, PCA, ICA, FA and ZINB-
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WaVE are recommended for small data where computation is not a concern. In 

contrast, PCA, ICA, FA are recommended for large data where computation is a 

concern. For lineage inference analysis, FA, NMF and ZINB-WaVE are all 

recommended for small data. In contrast, a subset of these methods, FA is also 

recommended for large scRNAseq data. In addition, for very large scRNAseq data 

sets (e.g. >100,000 samples), DCA perhaps is the only feasible approach with 

reasonable performance for both downstream analyses. Finally, beside these 

general recommendations, we note that some methods have additional features 

that are desirable for practitioners. For example, ZINB-WaVE can include sample-

level and gene-level covariates, thus allowing us to easily control for batch effects 

or size factors. We provide our detailed recommendations in Figure 5. 
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DISCUSSION 

We have presented a comprehensive comparison of different dimensionality 

reduction methods for scRNAseq analysis based on two important downstream 

applications: cell clustering and trajectory inference. We hope the summary of 

these state-of-the-art DR methods, the detailed comparison results, and the 

recommendations and guidelines for choosing DR methods can assist researchers 

in the analysis of their own scRNAseq data. 

We have primarily focused on evaluating DR methods based on two downstream 

applications. We did not, however, examine the performance of DR methods for 

data visualization purposes. Data visualization aims to project scRNAseq data into 

a two- or three-dimensional subspace for visualizing cell clustering results. For 

example, both tSNE [39] and UMAP [40] are commonly applied data visualization 

tools. Different from cell clustering, which often rely on a relatively large number of 

low-dimensional components, data visualization focuses on using only the top two 

or three low-dimensional components. Subsequently, DR methods for data 

visualization may not fare well for cell clustering, and DR methods for cell 

clustering may not fare well for visualization [41]. Besides data visualization, we 

note that DR methods are also used for many other analytic tasks in scRNAseq 

studies. For example, factor models for DR is an important modeling part for 

multiple scRNAseq data sets alignment [16], for integrative analysis of multiple 

omics data sets [42, 43], as well as for deconvoluting bulk RNAseq data using cell 

type specific gene expression measurements from scRNAseq [44, 45]. In addition, 

cell classification in scRNAseq also relies on a low-dimensional structure inferred 

from original scRNAseq through DR [46, 47]. Therefore, the comparative results 

obtained from the present study can provide important insights into these different 

scRNAseq analytic tasks. In addition, investigating the performance of DR 

methods in these different scRNAseq downstream analyses is an important future 

research direction.  

We mostly focused on evaluating feature extraction methods for DR. Another 

important category of DR method is the feature selection method, which aims to 

select a subset of features/genes directly from the original feature space. The 

feature section methods rely on different criteria to select important genes and are 

also commonly used in the preprocessing step of scRNAseq data analysis [48]. 

For example, M3Drop relies on dropout events in scRNAseq data to identify 

informative genes [49]. Seurat uses gene expression variance to select highly 

variable genes [16]. Evaluating the benefits of different methods and criteria for 
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selecting informative genes for different downstream tasks is another important 

future direction. 

Due to the heavy computing cost of several DR methods, we unfortunately have 

to limit our comparisons to scRNAseq data sets with sample sizes less than 10,000 

cells. With the advance of scRNAseq technologies and with the increase 

collaborations across scientific groups, new consortium projects such as the 

Human Cell Atlas (HCA) will generate scRNAseq data sets that contain millions of 

cells [32]. The large data at this scale poses critical computational and statistical 

challenges to many current DR methods. Many existing DR methods, in particular 

those that require the computation and memory storage of a covariance or 

distance matrix among cells, will no longer be applicable there. Therefore, new 

algorithmic innovations and new efficient computational approximations will likely 

be needed to scale many of the existing DR methods to millions of cells.  
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METHODS AND MATERIALS 

scRNAseq data sets 

We obtained a total of 28 scRNAseq data sets from public domains for 

benchmarking DR methods. All data sets were retrieved from the Gene Expression 

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) or the 10X 

genomics website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets). These data sets cover a wide variety of sequencing 

techniques that include Smart-Seq2 (7 data sets), 10X genomics (6 data sets), 

Fluidigm C1 (4 data sets), Smart-Seq (5 data sets), SMARTer (3 data sets), inDrop 

(1 data set) and others (2 data sets). In addition, these data cover a range of 

sample sizes from a couple hundred cells to several thousand cells measured in 

either human (16 data sets) or mouse (12 data sets). In each data set, we 

evaluated the effectiveness of different DR methods for one of the two important 

downstream analysis tasks: cell clustering and lineage inference. In particular, 14 

data sets were used for cell clustering evaluation while another 14 data sets were 

used for lineage inference evaluation. For cell clustering, 10 of the 14 data sets 

were obtained by mixing cells from different cell types either pre-determined by 

fluorescence activated cell sorting (FACS) or cultured on different conditions. 

Therefore, these 10 studies contain the true cell type labels for all cells. The 

remaining 4 data sets contain cell labels that were determined in the original study 

and we simply treated them as truth though we do acknowledge that such “true” 

clustering information may not be accurate. For lineage inference, 4 of the 14 data 

sets were obtained by mixing cells from different cell types pre-determined by 

FACS. These different cell types are at different developmental stages of a single 

linear lineage; thus these 4 studies contain the true lineage information for all cells. 

The remaining 10 data sets contain cells that were collected at multiple time points 

during the development process. For these data, we simply treated cells at these 

different time points as part of a single linear lineage, though we do acknowledge 

that different cells collected at the same time point may represent different 

developmental trajectories from an early time point if the cells at the early time are 

heterogeneous. In either case, the true lineage in all these 14 data sets are treated 

as linear, without any bifurcation or multifurcation patterns.  

A detailed list of the selected scRNAseq datasets with corresponding data features 

is provided in Tables S1-S2. In each of the above 28 data sets, we removed genes 

that are expressed in less than five cells. For methods modeling normalized data, 

we transformed the raw counts data into continuous data with the normalize 
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function implemented in scater (R package v1.12.0). We then applied log2 

transformation on the normalized counts by adding one to avoid log transforming 

zero values. We simply term this normalization as log2 count transformation, 

though we do acknowledge that such transformation does take into account of cell 

size factor etc. through the scater software. In addition to log2 count transformation, 

we also explore the utility of two additional data transformation: log2 CPM 

transformation and z-score transformation. In the log2 CPM transformation, we 

first computed counts per million reads (CPM) and then performed log2 

transformation on the resulted CPM value by adding a constant of one to avoid log 

transformation of zero quantities. In the z-score transformation, for each gene in 

turn, we standardized CPM values to achieve a mean of zero and variance of one 

across cells using Seurat package (v2.3).  

Besides the above 28 real scRNAseq data sets, we also simulated 2 additional 

scRNAseq data sets for cell clustering evaluation. In the simulations, we used all 

94 cells from one cell type (v6.5 mouse 2i+LIF) in the Kumar data as input. We 

simulated scRNAseq data with 500 cells and a known number of cell types, which 

were set to be either 4 or 8, using the Splatter package v1.2.0. All parameters used 

in the Splatter (e.g., mean rate, shape, dropout rate, etc.) were set to be 

approximately those estimated from the real data. In the case of 4 cell types, we 

set the group parameter in Splatter as 4. We set the percentage of cells in each 

group as 0.1, 0.15, 0.5 and 0.25, respectively. We set the proportion of the 

differentially expressed genes in each group as 0.02, 0.03, 0.05 and 0.1, 

respectively. In the case of 8 cell types, we set group/cell type parameter as 8. We 

set the percentage of cells in each group as 0.12, 0.08, 0.1, 0.05, 0.3, 0.1, 0.2 and 

0.05, respectively. We set the proportion of the differentially expressed genes in 

each group as 0.03, 0.03, 0.03, 0.1, 0.05, 0.07, 0.08, and 0.1, respectively. 

Compared dimensionality reduction methods 

DR methods aim to transform an originally high-dimensional feature space into a 

low-dimensional representation with a much-reduced number of components. 

These components are in the form of a linear or non-linear combination of the 

original features (known as feature extraction DR methods) and in the extreme 

case are themselves a subset of the original features (known as feature selection 

DR methods). In the present study, we have collected and compiled a list of 11 

popular and widely used DR methods in the field of scRNAseq analysis. These DR 

methods include factor analysis (FA; R package psych, v1.8.12), principal 

component analysis (PCA; R package stats, v3.6.0), independent component 
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analysis (ICA; R package ica, v1.0.2), Diffusion Map (Diffusion Map; R package 

destiny, v2.14.0), nonnegative matrix factorization (NMF; R package NNLM, 

v1.0.0), Kullback-Leibler divergence-based NMF (Poisson NMF; R package NNLM, 

v1.0.0), zero-inflated factor analysis (ZIFA; Python package ZIFA), zero-inflated 

negative binomial based wanted variation extraction (ZINB-WaVE; R package 

zinbwave, v1.6.0), probabilistic count matrix factorization (pCMF; R package 

pCMF, v1.0.0), deep count autoencoder network (DCA; Python package dca), and 

a scalable deep-learning-based approach (scScope; Python package scscope). 

An overview of these 11 DR methods with their corresponding modeling 

characteristics is provided in Table 1.  

Assess the performance of dimensionality reduction methods 

We evaluated the performance of DR methods by evaluating how effective the low-

dimensional components extracted from DR methods are for downstream analysis. 

We evaluated either of the two commonly applied downstream analysis, clustering 

analysis and lineage reconstruction analysis, in the 30 data sets described above. 

In the analysis, we varied the number of low-dimensional components extracted 

from these DR methods. Specifically, for cell clustering data sets, in a data with 

less than or equal to 300 cells, we varied the number of low dimensional 

components to be either 2, 6, 14, or 20. In a data with more than 300 cells, we 

varied the number of low dimensional components to be either 0.5%, 1%, 2%, or 

3% of the total number of cells. For lineage inference data sets, we varied the 

number of low dimensional components to be either 2, 6, 14, or 20 for all data sets, 

since common lineage inference methods prefer a relatively small number of 

components.  

For clustering analysis, after DR with these DR methods, we used two different 

clustering methods, the hierarchical clustering (R function hclust; stats v3.5.3) and 

k-means clustering (R function kmeans; stats v3.6.0), to perform clustering on the 

reduced feature space. The k-means clustering is a key ingredient of commonly 

applied scRNAseq clustering methods such as SC3 [18] and Waterfall [24] while 

the hierarchical clustering is a key ingredient of commonly applied scRNAseq 

clustering methods such as CIDR [17] and CHETAH [50]. In both these clustering 

methods, we set the number of clusters k to be the known number of cell types in 

the data. We compared the cell clusters inferred using the low dimensional 

components to the true cell cluster and evaluated clustering accuracy by two 

criteria: the adjusted rand index (ARI) [51] and the normalized mutual information 

(NMI) [52]. The ARI and NMI are defined as: 
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where 𝑃 = (𝑝1, 𝑝1, ⋯ , 𝑝𝑛)𝑇  denotes the inferred cell-type cluster labels from 

clustering analysis while 𝑇 = (𝑡1, 𝑡1, ⋯ , 𝑡𝑛)𝑇  denotes the known true cell-type 

labels for 𝑛  samples in the data;  𝑙  and 𝑠  enumerate the clusters, with 𝑙, 𝑠 =

1, ⋯ , 𝑘 ; 𝑛𝑙 = ∑ 𝐼(𝑝𝑖 = 𝑙)𝑙  is the number of cells that belong to cluster l in the 

inferred cluster labeling, with 𝐼(∙) being an indicator function; 𝑛𝑠 = ∑ 𝐼(𝑡𝑖 = 𝑠)𝑠  is 

the number of cells that belong to cluster s in the true cluster labeling; and 𝑛𝑙𝑠 =

∑ 𝐼(𝑝𝑖 = 𝑙)𝐼(𝑡𝑖 = 𝑠)𝑙,𝑠  is the number of times where the i’th cell belongs to the 

cluster 𝑙 in the inferred cluster labeling and belongs to the cluster 𝑠 in the true 

cluster labeling; note that 𝑛𝑙𝑠 effectively measures the number of cells that are in 

common between 𝑃  and 𝑇 ; 𝑀𝐼(𝑃, 𝑇) = ∑ ∑
𝑛𝑙𝑠
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information between two cluster labels; and 𝐻(𝑇) = ∑
𝑛𝑠
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𝑛𝑠

𝑛
) is the entropy 

function for true cell-type labeling. We used the compare function in the igraph R 

package (v1.0.0) to compute both ARI and NMI criteria. For each data set, we 

repeated the above procedure five times and report the averaged results to avoid 

the influence of the stochasticity embedded in some DR methods and/or the 

clustering algorithm.  

For trajectory inference, after DR with these DR methods, we used Slingshot [38] 

(R package, v1.2.0), which is the recommend lineage inference method based on 

a recent comparative study [14]. The Slingshot software takes two input data: the 

low-dimensional components extracted from DR methods and a vector of cluster 

labels predicted by clustering algorithms. For the later, we used either k-means or 

hierarchical clustering algorithm on the extracted low-dimensional components to 

obtain cluster labels. After obtaining the two types of input through the slingshot 

function, we used the getLineages function to fit a minimum spanning tree (MST) 

to identify lineage. The final output from Slingshot is an object of class 

SlingshotDataSet that contains the inferred lineage information. We follow the 

original Slingshot paper [38] to evaluate the accuracy of the inferred lineage using 

the Kendall rank correlation coefficient. To do so, for each data, we first ranked 

genes based on their position on the true lineage. We ordered all m genes based 

on this rank order and denoted the corresponding rank in ascending order for these 

genes as {𝑥1, ⋯ , 𝑥𝑚}, where 𝑥𝑖 ≤ 𝑥𝑖+1. Note that the true lineage is linear without 

any bifurcation or multifurcation patterns, while the inferred lineage may contain 

multiple ending points in addition to the single starting point. Therefore, for each 
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inferred lineage, we examined one trajectory at a time, where each trajectory 

consists of the starting point and one of the ending points. In each trajectory, we 

ranked genes in order based on their position in the trajectory. We denote the 

corresponding rank order in the inferred trajectory for all m genes as {𝑦1, ⋯ , 𝑦𝑚}, 

where we set 𝑦𝑙 as missing if l’th gene is not included in the inferred trajectory. 

For each pair of non-missing genes, we labeled the gene pair (i, j) as a concordant 

pair if their relative rank in the inferred lineage are consistent with their relative 

rank in the true lineage; that is, either (𝑥𝑖 ≥ 𝑥𝑗  & 𝑦𝑖 ≥ 𝑦𝑗) or (𝑥𝑖 < 𝑥𝑗  & 𝑦𝑖 < 𝑦𝑗). 

Otherwise, we labeled the gene pair (i, j) as discordant. We denoted 𝐶 as the 

number of concordant pairs, 𝐷 as the number of discordant pairs, and 𝑈 as the 

total number of non-missing genes. The Kendell correlation coefficient is then 

computed as   

𝜏 =  
𝐶 − 𝐷

𝑈(𝑈 − 1) 2⁄
. 

Afterwards, we obtained the maximum absolute 𝜏 over all these trajectories as 

the final Kendall correlation score to evaluate the similarity between the inferred 

lineage and the true lineage. For each data set, we repeated the above procedure 

five times and report the averaged results to avoid the influence of the stochasticity 

embedded in some DR methods and/or the lineage inference algorithm. 

Finally, we investigated the stability and robustness of different DR methods in 

both cell clustering or lineage inference applications through data splitting. Here, 

we focused on two representative scRNAseq data sets, the Kumar data set for cell 

clustering and the Hayashi data set for lineage inference. For each data, we 

randomly split the data into two subsets with an equal number of cells in each cell 

type in the two subsets. We repeated the split procedure 10 times to capture the 

potential stochasticity during the data split. In each split replicate, we applied 

different DR methods to analyze each subset separately. We used k-means 

clustering algorithm to infer the clustering labels in each subset. We used NMI to 

measure cell clustering accuracy and used Kendall correlation to measure lineage 

inference accuracy.  
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Figure 1. Overview of the evaluation workflow for dimensionality reduction 
methods. We obtained a total of 28 publicly available scRNAseq data from GEO 
and 10x Genomics website. We also simulated two addition simulation data sets. 
For each of the 30 data sets in turn, we applied 11 dimensionality reduction (DR) 
methods to extract the low-dimensional components. Afterwards, we evaluated the 
performance of DR methods by evaluating how effective the low-dimensional 
components extracted from DR methods are for downstream analysis. We did so 
by evaluating the two commonly applied downstream analysis: clustering analysis 
and lineage reconstruction analysis. In the analysis, we varied the number of low-
dimensional components extracted from these DR methods. The performance of 
each DR method is qualified by normalized mutual information (NMI) and adjusted 
rand index (ARI) for cell clustering analysis and Kendall correlation coefficient for 
trajectory inference. We also recorded the stability of each DR method across data 
splits and recorded the computation time for each DR method. Through the 
comprehensive evaluation, we eventually provide practical guidelines for 
practitioners to choose DR methods for scRNAseq data analysis. 
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Figure 2. DR method performance evaluated by k-means clustering based on 
NMI in downstream cell clustering analysis. We compared 11 DR methods 
(columns), including factor analysis (FA), principal component analysis (PCA), 
independent component analysis (ICA), Diffusion Map, nonnegative matrix 
factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-
inflated negative binomial based wanted variation extraction (ZINB-WaVE), 
probabilistic count matrix factorization (pCMF), deep count autoencoder network 
(DCA), and scScope. We evaluated their performance on 14 real scRNAseq data 
sets and 2 simulated data sets (rows). The simulated data based on Kumar data 
is labeled with #. The performance of each DR method is measured by normalized 
mutual information (NMI). For each data set, we compared the four different 
number of low-dimensional components. The four numbers equal to 0.5%, 1%, 2%, 
and 3% of the total number of cells in big data and equal to 2, 6, 14, and 20 in 
small data (which are labeled with *). For convenience, we only listed 0.5%, 1%, 
2%, and 3% on x-axis. No results for ICA are shown in the Pancreatic data (grey 
fills) because ICA cannot handle the large number of features in that data. 
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Figure 3. DR method performance evaluated by Kendal correlation in the 
downstream trajectory inference analysis. We compared 10 DR methods 
(columns), including factor analysis (FA), principal component analysis (PCA), 
independent component analysis (ICA), Diffusion Map, nonnegative matrix 
factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-
inflated negative binomial based wanted variation extraction (ZINB-WaVE), 
probabilistic count matrix factorization (pCMF), and deep count autoencoder 
network (DCA). We evaluated their performance on 14 real scRNAseq data sets 
(rows) in terms of lineage inference accuracy. We used Slingshot with k-means as 
the initial step for lineage inference. The performance of each DR method is 
measured by Kendall correlation. For each data set, we compared four different 
number of low-dimensional components (2, 6, 14, and 20; four sub-columns under 
each column). Grey fills in the table represents missing results where Slingshot 
gave out errors when we supplied the extracted low-dimensional components from 
the corresponding DR method.  
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Figure 4. The computation time (in hours) for different DR methods. We 
recorded computing time for 11 DR methods on simulated data sets with varying 
number of low-dimensional components and varying number of sample sizes. (A) 
Computation time for different DR methods (y-axis) changes with respect to an 
increasing number of low-dimensional components (x-axis). The number of cells 
is fixed to be 500 and the number of genes is fixed to be 10,000 in this set of 
simulations. Three methods (ZINB-WaVE, pCMF, and ZIFA) become noticeably 
computationally more expensive than the remaining methods with increasing 
number of low-dimensional components. (B) Computation time for different DR 
methods (y-axis) changes with respect to an increasing sample size (i.e. the 
number of cells) in the data. The number of low-dimensional components is fixed 
to be 22 in this set of simulations. Four methods (ZIFA, pCMF, ZINB-WaVE and 
ICA) become noticeably computationally more expensive than the remaining 
methods with increasing number of cells in the data. Computing time is recorded 
on a single thread of an Intel Xeon E5-2683 2.00 GHz processor. Note that some 
methods are implemented with parallelization capability (e.g. ZINB-WaVE and 
pCMF) though we tested them on a single thread for fair comparison across 
methods. Compared DR methods include: factor analysis (FA; light green), 
principal component analysis (PCA; light blue), independent component analysis 
(ICA; blue), Diffusion Map (red), nonnegative matrix factorization (NMF; green), 
Poisson NMF(pink), zero-inflated factor analysis (ZIFA; light orange), zero-inflated 
negative binomial based wanted variation extraction (ZINB-WaVE; orange), 
probabilistic count matrix factorization (pCMF; light purple), deep count 
autoencoder network (DCA; yellow), and scScope (purple). 
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Figure 5. Practical guideline for choosing DR methods in scRNAseq analysis. 
We categorized the 11 DR methods into four groups: generic DR with linear 
projection; generic DR with non-linear projection; deep learning (LD) based DR 
methods; and single cell specific DR methods which aim to model counts and/or 
dropout events in scRNAseq. Compared DR methods include: factor analysis (FA), 
principal component analysis (PCA), independent component analysis (ICA), 
Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated 
factor analysis (ZIFA), zero-inflated negative binomial based wanted variation 
extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep 
count autoencoder network (DCA), and scScope. +: recommendation index, where 
a higher number represents higher recommendation. LD represents low number 
of low-dimensional components; HD represents high number of low-dimensional 
components. 
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Table 1. A list of compared dimensionality reduction methods. Each dimensionality reduction method has a unique set 

of strengths and weaknesses. FA: factor analysis; PCA: principal component analysis; ICA: independent component 

analysis; NMF: nonnegative matrix factorization; Poisson NMF: Kullback-Leibler divergence-based NMF; ZIFA: zero-inflated 

factor analysis; ZINB-WaVE: zero-inflated negative binomial based wanted variation extraction; pCMF: probabilistic count 

matrix factorization; DCA: deep count autoencoder network. 

No. Methods Modeling 

Counts 

Modeling 

Zero Inflation 

Non-Linear 

Projection 

Computation 

Efficiency 

Implementation 

Language 

Year of 

Publication 

Reference 

1 PCA No No No Yes R, C++, Python, MATLAB or 

others 

1901 [53] 

2 ICA No No Yes No R, C++, Python, MATLAB or 

others 

1994 [54] 

3 FA No No No Yes R, C++, Python, MATLAB or 

others 

1952 [55] 

4 NMF No No No Yes R, C++, Python, MATLAB or 

others 

1999 [56] 

5 Poisson NMF Yes No No No R, C++, Python, MATLAB or 

others 

1999 [56] 

6 Diffusion Map No No Yes Yes R, C++, Python, MATLAB or 

others 

2005 [57] 

7 ZIFA No Yes No No Python 2016 [28] 

8 ZINB-WaVE Yes Yes No No R 2018 [30] 

9 pCMF Yes Yes No No R 2019 [29] 
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10 scScope No Yes Yes Yes Python 2019 [35] 

11 DCA Yes No Yes Yes Python 2018 [37] 
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