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Abstract 37 

High-throughput sequencing of DNA and RNA from environmental and host-associated samples 38 

(metagenomics and metatranscriptomics) is a powerful tool to assess which organisms are present in 39 

a sample. Taxonomic identification software usually align individual short sequence reads to a 40 

reference database, sometimes containing taxa with complete genomes only. This is a challenging 41 

task given that different species can share identical sequence regions and complete genome 42 

sequences are only available for a fraction of organisms. A recently developed approach to map 43 

sequence reads to reference databases involves weighing all high scoring read-mappings to the data 44 

base as a whole to produce better-informed alignments. We used this novel concept in read mapping 45 

to develop a highly accurate metagenomic classification pipeline named CCMetagen. Using simulated 46 

fungal and bacterial metagenomes, we demonstrate that CCMetagen substantially outperforms other 47 

commonly used metagenome classifiers, attaining a 3 – 1580 fold increase in precision and a 2 – 922 48 

fold increase in F1 scores for species-level classifications when compared to Kraken2, Centrifuge and 49 

KrakenUniq. CCMetagen is sufficiently fast and memory efficient to use the entire NCBI nucleotide 50 

collection (nt) as reference, enabling the assessment of species with incomplete genome sequence 51 

data from all biological kingdoms. Our pipeline efficiently produced a comprehensive overview of the 52 

microbiome of two biological data sets, including both eukaryotes and prokaryotes. CCMetagen is 53 

user-friendly and the results can be easily integrated into microbial community analysis software for 54 

streamlined and automated microbiome studies.  55 
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Introduction 56 

Microbial communities in natural and host-associated environments commonly harbour a mix 57 

of bacteria, archaea, viruses and microbial eukaryotes. Bacterial diversity has been extensively 58 

studied with high-throughput sequencing (HTS) targeting 16S rDNA markers (Caporaso et al. 2011; 59 

Taberlet et al. 2012). However, these do not amplify eukaryotic sequences, and our knowledge on the 60 

diversity and distribution of microbial eukaryotes is limited (Bik et al. 2012; Norman et al. 2014). 61 

Although there is an increasing number of studies using eukaryotic-specific markers, these are 62 

relatively uncommon and face multiple methodological limitations (Piganeau et al. 2011; Marcelino 63 

and Verbruggen 2016). The problematic amplification step can be bypassed by sequencing the total 64 

DNA (metagenome) or RNA (metatranscriptome) in a sample to characterize all the genes contained 65 

or expressed within it. Metagenomics and metatranscriptomics are promising tools to bridge the 66 

knowledge gap in the diversity of microbial eukaryotes because they are essentially kingdom-67 

agnostic, are less susceptible to amplification bias, and yield a large set of genes that can be used for 68 

taxonomic identification. 69 

 Multiple software packages have been developed to reveal the species composition of 70 

metagenomic samples (reviewed in Breitwieser et al. 2017). While well-known bacterial species can 71 

be easily identified at the species and strain levels (Truong et al. 2015; Scholz et al. 2016), it remains 72 

challenging to obtain a fine-grained taxonomic classification of lesser-known species and microbial 73 

eukaryotes (Sczyrba et al. 2017; Nilsson et al. 2019). Many of the current metagenomic classifiers 74 

assign a taxonomy to each short sequence read individually (Breitwieser et al. 2017). However, as 75 

closely-related species share very similar or identical genome portions, short reads often map to 76 

multiple species in the reference data set. Some metagenomic classifiers, like MEGAN (Huson et al. 77 

2007) and Kraken (Wood and Salzberg 2016), address this issue by calculating the lowest common 78 

ancestor (LCA) among all species sharing those sequences. Paradoxically, this classification strategy 79 

is negatively affected by the increasing size of reference databases: as identical regions in reference 80 

databases become more common, fewer reads can be classified at the species level (Nasko et al. 81 

2018). Other classifiers use a database of clade-specific diagnostic regions (e.g. Truong et al. 2015). 82 

While highly accurate, this procedure relies heavily on reference databases of complete genomes, 83 

which often cannot be readily updated by the end-user. Complete genomes are available for only a 84 

small fraction of the microbial eukaryotic species. For example, as of April 2019, the widely used 85 
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NCBI RefSeq database contained 285 fungal genome sequences, even though it is estimated that 86 

there are over 2 million species of fungi (Hawksworth and Lucking 2017). Therefore, relying on these 87 

databases of complete genomes restricts the inclusion of microbial eukaryotes in metagenome 88 

studies. 89 

 A recently-developed concept in read mapping – the ConClave sorting scheme, implemented 90 

in the KMA software (Clausen et al. 2018) – is more accurate than other mapping strategies as it 91 

takes advantage of the information from all reads in the data set (Figure 1). Our goal was to use this 92 

approach to produce an accurate metagenomic classification pipeline that will allow the inclusion of 93 

microbial eukaryotes in metagenomic studies. We present a novel tool - CCMetagen (ConClave-94 

based Metagenomics) – to process KMA sequence alignments and produce highly accurate 95 

taxonomic classifications from metagenomic data. We benchmark CCMetagen using simulated fungal 96 

and bacterial metagenomes and metatranscriptomes. Additionally, we use two case-studies with real 97 

biological data to demonstrate that CCMetagen effectively produces a comprehensive overview of the 98 

eukaryotic and prokaryotic members of microbial communities. 99 

 100 

 101 

Results 102 

Implementation and availability 103 

Metagenomic reads (or contigs) are first mapped against a reference database with KMA (Clausen et 104 

al. 2018), which implements the ConClave sorting scheme for better-informed and highly accurate 105 

alignments (Figure 1). CCMetagen is then used to perform quality filtering and produce taxonomic 106 

classifications that can be explored in text or interactive visualization formats (Krona plots - Ondov et 107 

al. 2011). Our pipeline uses the NCBI taxonomic database (taxids) to produce ranked and updated 108 

taxonomic classifications, so that the ever-changing species nomenclature issue is minimized 109 

(Federhen 2012). CCMetagen yields classifications at a taxonomic level that reflect the similarity 110 

between query and reference sequences. This ranked classification means that the method is able to 111 

identify species that have only distant relatives in reference databases (e.g. undescribed genera), as 112 

well as well-known microorganisms. The output of CCMetagen can be easily converted into a 113 

PhyloSeq object for statistical analyses in R (McMurdie and Holmes 2013). The pipeline is sufficiently 114 

fast to use the entire NCBI nucleotide collection (nt) as a reference database, thereby enabling the 115 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/641332doi: bioRxiv preprint 

https://doi.org/10.1101/641332
http://creativecommons.org/licenses/by-nd/4.0/


 5 

inclusion of microbial eukaryotes – in addition to bacteria, viruses and archaea – in metagenome 116 

surveys. Our program is implemented in Python 3 and is freely available at 117 

https://github.com/vrmarcelino/CCMetagen.  118 

 119 

 120 

Figure 1. Overview of the ConClave sorting scheme applied to species identification in metagenomic 121 

data sets. The figure represents a data set containing 5 sequence reads (4bp) and two closely-related 122 

reference sequences (templates), including a true positive (Ref.1) and a potential false positive 123 

(Ref.2). (A) Commonly used read mappers yield a high number of false-positives because reads can 124 

be randomly assigned to closely-related reference sequences sharing identical fragments spanning 125 

the whole sequence read (represented by the ATATT region). (B) The KMA aligner minimizes this 126 

problem by scoring reference sequences based on all possible mappings of all reads, and then 127 

choosing the templates with the highest scores. Coupled with KMA, CCMetagen produces highly 128 

accurate taxonomic assignments of reads in metagenomic data sets in user-friendly formats.  129 

 130 

 131 

Fungal classifications are more accurate with the CCMetagen pipeline 132 

 To test the performance of CCMetagen in identifying an important and diverse group of 133 

microbial eukaryotes, we simulated in silico a fungal metatranscriptome (15 species) and a fungal 134 
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metagenome (30 species). We then benchmarked CCMetagen's performance by comparing it with 135 

widely used metagenomic classification software, including Centrifuge (Kim et al. 2016), Kraken2 136 

(Wood and Salzberg 2016) and KrakenUniq (Breitwieser et al. 2018). These programs were chosen 137 

because they are compatible with custom-made reference databases, which is a desirable flexibility 138 

when working with microbial eukaryotes. KrakenUniq was recently shown to outperform eleven other 139 

classification methods when using the NCBI nucleotide collection (‘nt’ database), including 140 

Diamond/Blast + MEGAN (Altschul et al. 1990; Huson et al. 2007; Buchfink et al. 2015), CLARK 141 

(Ounit et al. 2015), GOTTCHA (Freitas et al. 2015), PhyloSift (Darling et al. 2014) and MetaPhlAn2 142 

(Truong et al. 2015). KrakenUniq therefore provides a gold standard for the available tools. We 143 

evaluated precision, recall and F1 scores of the benchmarked software in identifying fungal taxa in the 144 

simulated fungal metagenome and metatranscriptome (see Methods). The F1 score is the harmonic 145 

average of precision and recall; high F1 scores can be interpreted as a good trade-off between 146 

precision and recall. 147 

 The CCMetagen pipeline achieved the highest precision and F1 scores of all the approaches 148 

tested (Figure 2, Supplemental Table S1, Supplemental Figures S1 and S2). KrakenUniq achieved 149 

higher precision than Kraken2 and Centrifuge when using an ideal database (i.e. RefSeq-bf, which 150 

contains only the complete and curated genomes of fungi and bacteria, containing all species from 151 

the test data set). However, the performance of KrakenUniq decreased substantially when the 152 

database was incomplete (i.e. RefSeq-f-partial, where a part of the reference sequences was 153 

removed to mimic the effects of handling species without reference genomes). 154 

 155 
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 156 

 157 

Figure 2. The CCMetagen pipeline has a higher F1 score than other metagenomic classification 158 

methods for all taxonomic ranks. The two points for each program and taxonomic rank represent the 159 

results using a simulated metagenome and a metatranscriptome sample of a fungal community. (A) 160 

Results using the whole NCBI nt collection as a reference database. (B) Results using the RefSeq-bf 161 

(bacteria and fungi) database, containing all bacterial and fungal genomes available. (C) Partial 162 

RefSeq database containing only some of the fungal species currently present in the RefSeq-bf 163 

database, mimicking the effects of dealing with species without representatives in reference data sets. 164 

In this case, Kraken2, Centrifuge and KrakenUniq have overlapping results. Refer to Supplemental 165 

Table S1 and Supplemental Figures S1 and S2 for more information, including precision and recall. 166 

 167 

 168 

 Centrifuge, Kraken2 and KrakenUniq yielded many more taxa than included in the test data 169 

sets: for example, Centrifuge, when used with the nt database, reported 6950 species in the 170 

simulated metagenome containing 30 species, while CCMetagen yielded only 15. Naturally, their 171 
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recall was very high – Centrifuge and KrakenUniq recovered 100% of the taxa present in the test data 172 

set when using the RefSeq-bf and nt reference databases (Supplemental figure S2). The species-173 

level recall of Kraken2 decreased when using the nt database. CCMetagen recovered between 50% 174 

and 100% of the species when used with RefSeq-bf and nt databases (Supplemental Table S1). 175 

 The fastest processing time was achieved by Kraken2 (Table 1). The combined CPU time of 176 

KMA and CCMetagen (i.e. the CCMetagen pipeline) was faster than Centrifuge and KrakenUniq when 177 

using the whole NCBI nt database, but it was the slowest approach when using the RefSeq database. 178 

The KMA indexing of the nt database was limited to only include k-mers with a two-letter prefix, which 179 

on average corresponds to only saving non-overlapping k-mers. This prefixing substantially increases 180 

the speed and could also be applied to the RefSeq database if faster processing time is required 181 

(Supplemental Materials). When the NCBI nt data set was used, CCMetagen required ~ 15min to 182 

process a sample (~5GB, 7.8M reads on average). 183 

 184 

Table 1. CPU time (in minutes) required to analyze a simulated fungal metatranscriptome (mtt) and a 185 

fungal metagenome (mtg). 186 

 nt RefSeq-bf RefSeq-f-Partial 

 mtt mtg mtt mtg mtt mtg 

Kraken2 10.92 7.05 5.29 3.98 4.48 3.50 

CCMetagen* 17.24 13.54 85.74 67.00 69.29 20.58 

Centrifuge 40.11 27.54 23.70 19.41 16.67 16.10 

KrakenUniq 74.11 74.94 43.33 40.85 29.65 21.04 

* The CCMetagen time was calculated as the sum of the CPU time used by KMA and CCMetagen. 187 

 188 

 189 

Bacterial communities are best depicted with the CCMetagen pipeline 190 

We assessed the performance of the CCMetagen pipeline with 10 bacterial communities simulated at 191 

different levels of complexity (Segata et al. 2012; McIntyre et al. 2017). Using the NCBI nt collection 192 

as reference, CCMetagen achieved the highest precision and F1 scores, at all taxonomic ranks 193 

(Figure 3). Recall was highest for Centrifuge and KrakenUniq. In this data set, the recall of Kraken2 194 
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 9 

was higher than CCMetagen from phylum to family-level classifications, but lower than CCMetagen at 195 

genus and species level. 196 

 The complete CCMetagen pipeline (KMA + CCMetagen) required an average of 2.1 minutes 197 

to process the bacterial metagenomes (+/- 0.26 SD). It was slower than Kraken2 (average 0.27m, +/- 198 

0.21 SD) and faster than KrakenUniq (average 2.56m, +/- 2.60 SD) and Centrifuge (average 9.19m, 199 

+/- 0.80 SD). 200 

 201 

 202 

 203 

Figure 3. CCMetagen pipeline performance for bacterial classifications, compared with Kraken2, 204 

Centrifuge and KrakenUniq. Precision (% of true positives), Recall (% of taxa identified) and F1 205 

scores represent averages across 10 simulated metagenome samples. Shaded areas indicate 75% 206 

confidence intervals. 207 

 208 

 209 
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Biological data set 1: experimentally seeded fungal metatranscriptome 210 

We validated the CCMetagen pipeline with a fungal community previously generated in vitro by 211 

culturing, processing and sequencing 15 fungal species (Marcelino et al. 2019a, Supplemental Table 212 

S2). The analyses were performed using the NCBI nt collection as reference. Our pipeline correctly 213 

retrieved 13 out of the 15 fungal species sequenced, in addition to identifying a small component of 214 

other eukaryotic (0.4%) and bacterial (3%) RNA, which likely represents laboratory contaminants 215 

(Figure 4, Supplemental Table S3).216 

 217 

Figure 4. Snapshot of CCMetagen results for a spiked fungal community. This Krona graph shows 218 

the relative abundance of taxa at various taxonomic levels, which are color-coded according to their 219 

taxonomic classification at lower-ranks – here we see fungal taxa in shades of red, and bacterial taxa 220 

in shades of green. The Krona html file can be opened and interactively inspected in a web browser. 221 

Each circle represents a taxonomic level, where the user can click for a representation of the relative 222 

abundance at a given taxonomic rank. For a detailed list of taxa, refer to Supplemental Table S3. 223 
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 224 

As this data set contains the same 15 fungal species as those simulated in silico, it is possible 225 

to tease apart classification errors from laboratory-related confounders such as contamination. 226 

Accordingly, we were able to retrieve all 15 species when using the in silico data set, suggesting that 227 

the two false-negatives (Schizosaccharomyces pombe and Debaryomyces hansenii) were missing 228 

due to laboratory-related issues, such as RNA extraction biases, gene [under]expression and 229 

imprecise cell counts. We also identified seven times more false-positives in the seeded fungal 230 

metatranscriptome (44 species, while the simulated data yielded only 6). These additional 38 species 231 

were present at low abundance and most likely represent reagent and laboratory contaminants (Salter 232 

et al. 2014; Strong et al. 2014).  233 

 234 

 235 

Biological data set 2: the microbiome of Australian birds  236 

We used the CCMetagen pipeline to characterize the gut microbiome associated with 9 237 

metatranscriptome libraries from wild birds sampled at various sites across Australia (Wille et al. 238 

2018; Marcelino et al. 2019b). Fungal and bacterial transcripts were observed in all libraries 239 

(Supplemental Table S4). Eukaryotic microbes accounted for 60% of the family-level diversity of the 240 

bird microbiome samples (taxa unclassified at family-level were not taken into account). Notably, fungi 241 

represented 12 of the 20 most abundant microbial families, surpassing the diversity of bacterial 242 

families (Figure 5). Among the fungal transcripts with a species-level classification, those attributed to 243 

the basidiomycete Cystofilobasidium macerans (Tremellomycetes) were the most abundant and were 244 

present in all bird libraries. Transcripts from species of Mucor, Cladosporium, Metschnikowia, 245 

Fusarium and Cryptococcus were common. Other microbial eukaryotes were also observed, including 246 

the trichomonad Simplicimonas and the Apicomplexan Eimeria. Archaeal and viral transcripts were 247 

also detected. The methanogenic archaea Methanobrevibacter woesei, which was previously 248 

reported in chicken guts (Saengkerdsub et al. 2007), was observed in two duck libraries. Influenza A 249 

virus was detected and confirmed with PCR-based methods (Wille et al. 2018). The CCMetagen 250 

results were parsed with PhyloSeq for a graphical representation of the most abundant microbes, and 251 

the R script to reproduce Figure 5 is available on the CCMetagen website. 252 

 253 
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 254 

 255 

Figure 5. Microbial families in the microbiome of wild birds. The 20 most abundant families are 256 

shown, with fungal families indicated in bold. For a full list of taxa, refer to Supplemental Table S4. A 257 

tutorial and R scripts to reproduce these analyses are available on the CCMetagen website. 258 

 259 

 260 

Discussion 261 

 The application of the ConClave sorting scheme to differentiate highly similar genetic 262 

sequences (Clausen et al. 2018) represents an important step forward in metagenomic species 263 

profiling. We have applied this concept to develop a metagenome classification pipeline that is highly 264 

accurate yet fast enough to use the entire NCBI nucleotide collection as reference, thereby facilitating 265 

the identification of microbial eukaryotes in metagenomic studies. The species-level identifications of 266 

bacteria and fungi obtained with the CCMetagen pipeline were from 3´ to 1580´ more precise than 267 

other metagenome classifiers (across all databases tested). CCMetagen is therefore a powerful tool 268 

for achieving accurate taxa identifications across a range of biological kingdoms in metagenome or 269 

metatranscriptome samples. 270 
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Scarce reference data pose a major challenge to study any microbial system that is less well-271 

studied than the human gut. Some of the methods with reportedly high accuracy rely heavily on 272 

reference databases of complete or near complete genomes. KrakenUniq, for example, showed 273 

relatively high precision and recall when using the RefSeq-bf database, which contained the complete 274 

genomes of all species in the test data set. However, when KrakenUniq was tested with an 275 

incomplete reference database (RefSeq-f-partial), the number of false positives increased, on 276 

average, from 51 to 221 species. This likely happens because it is relatively easy to identify a species 277 

that is present in the reference database, while it can be challenging to identify the closest match in 278 

the absence of a perfectly matching reference sequence. In the latter case, when reads are classified 279 

individually, multiple reference sequences can have identical levels of similarity, leading to a high 280 

number of false-positives. This is an obvious problem when working with microbial eukaryotes, for 281 

which very few complete genomes are available. 282 

 One of the many advantages of metagenomics is that it enables the detection of novel and 283 

rare microbes. Being able to distinguish between known and novel microorganisms in metagenomic 284 

data sets is a desirable feature possessed by surprisingly few metagenome classifiers. Some of these 285 

classifiers (e.g. MEGAN and Kraken) use the lowest common ancestor between all reference 286 

sequences that match the query sequence. The accuracy of these taxonomic classifiers tends to 287 

decrease as reference databases get populated with closely-related taxa (Nasko et al. 2018) and, 288 

paradoxically, well-known taxa can be classified at higher taxonomic ranks than rare or novel ones. 289 

CCMetagen classifies taxa at the lowest common ancestor that reflects the genetic similarity between 290 

the query and the reference sequence. As rates of molecular evolution can vary substantially among 291 

genes and species, it is currently not feasible to set a universal sequence similarity threshold that 292 

works equally well for all organisms and genes. By default, CCMetagen uses similarity thresholds 293 

previously determined for fungi (Vu et al. 2016; Vu et al. 2019). Importantly, CCMetagen allows the 294 

user to easily set different similarity thresholds or disable the threshold-filtering step entirely. While 295 

this strategy also has limitations, it is a better alternative to the reference-dependent method of 296 

calculating LCAs, even when using the default thresholds for bacterial classifications (Figure 3). 297 

With CCMetagen, it is possible to confidently use metagenomics to identify microbial 298 

eukaryotes and prokaryotes in microbial communities. Our analyses of the gut microbiome of wild 299 

birds revealed an abundant and diverse community of micro-eukaryotes, representing 60% of the 300 
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family-level diversity in the samples. We detected various species of Mucor and of basidiomycetes, 301 

including species of the opportunistic pathogen genus Cryptococcus. These and other non-302 

ascomycetes fungi can be affected by mismatches in commonly used metabarcoding primers 303 

(Bellemain et al. 2010; Ihrmark et al. 2012; Tedersoo and Lindahl 2016). The fact that they were 304 

observed in high abundance indicates that metagenomics and metatranscriptomics are valuable for 305 

detecting these organisms in environmental samples. Importantly, CCMetagen can generate results in 306 

a format that resembles an Operational Taxonomic Unit (OTU) table that can be imported into 307 

software designed for microbial community analyses, such as PhyloSeq (McMurdie and Holmes 308 

2013), facilitating downstream ecological and statistical analyses of the microbiome. 309 

 In summary, CCMetagen is a versatile pipeline implementing the ConClave sorting scheme 310 

(via KMA) to achieve highly accurate taxonomic classifications. The pipeline is fast enough to use the 311 

entire NCBI nt collection as reference, facilitating the inclusion of understudied organisms, such as 312 

microbial eukaryotes, in metagenome surveys. CCMetagen then produces ranked taxonomic results 313 

in user-friendly formats that are ready for publication (with Krona) or for downstream statistical 314 

analyses (with PhyloSeq). We expect that a range of novel ecological and evolutionary insights will be 315 

obtained as information about microbial eukaryotes in metagenomic studies becomes more 316 

accessible. 317 

 318 

 319 

Methods 320 

 321 

Test data sets 322 

A fungal metagenome and a metatranscriptome were simulated in silico to assess the 323 

performance of CCMetagen and other classification pipelines in identifying the fungal members of a 324 

microbial community (Supplemental Table S2). Simulations were based on complete fungal genomes 325 

obtained from the NCBI RefSeq collection (Pruitt et al. 2007). The metagenome contained 30 fungal 326 

species and was simulated with Grinder (Angly et al. 2012) using parameters to mimic the insert size 327 

and sequencing errors of an Illumina library (-md poly4 3e-3 3.3e-8 -insert_dist 500 normal 50 -fq 1 -ql 328 

30 10). Coverage was set to vary between 0.001´ and 10´ for different species. The 329 

metatranscriptome contained 15 fungal species and was simulated for a subsample of 4000 genes 330 
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(CDSs) from each fungal genome. Transcripts were simulated with Polyester (Frazee et al. 2015), 331 

using the Illumina5 error model and gene expression following a normal distribution of average 3´ 332 

(20% of genes up- and 20% down-regulated). 333 

 Additionally, 10 bacterial metagenomes simulated by Segata et al. (2012), and compiled in 334 

McIntyre et al. (2017), were used to assess the performance of the different classifiers in identifying 335 

prokaryotic communities with various levels of complexity. Each metagenome contained between 25 336 

and 100 bacterial species. 337 

 338 

Reference databases 339 

We used three reference databases: (i) “nt” - the NCBI nucleotide collection; (ii) “RefSeq-bf”, 340 

containing curated genomes of fungi (all assembly levels) and bacteria (only complete) in NCBI 341 

Reference Sequence Database; and (iii) “RefSeq-f-partial”, which is a subset of RefSeq-bf, containing 342 

only part of the fungal species in our test data sets. The RefSeq-f-partial database was built to assess 343 

how the programs perform when reference databases are incomplete, for example, when dealing with 344 

species without reference genomes. Fifteen species were removed, resulting in a database that 345 

contained 15 of the 30 species in the fungal metagenome sample, and 7 of the 15 species in the 346 

metatranscriptome sample (species removed from this data set are detailed in Supplemental Table 347 

S5). Details about databases download and indexing can be found in the Supplemental Material. The 348 

nt and RefSeq-bf databases indexed to function with KMA and CCMetagen are hosted in two sites, at 349 

https://cloudstor.aarnet.edu.au/plus/s/Mp8gLimDYoLfelH (Australia) and 350 

http://www.cbs.dtu.dk/public/CGE/databases/CCMetagen/ (Denmark). 351 

 352 

 353 

Benchmarking 354 

Details about the quality control and data analyses are described in the Supplemental 355 

Materials. Metagenome classifications using Kraken2 v.2.0.6-beta, KrakenUniq v.0.5.6 and Centrifuge 356 

v.1.0.3-beta were performed using default values. The performance of the classifiers was assessed in 357 

terms of precision, recall, F1 score and CPU time. Precision was calculated with the formula: 358 

 359 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 360 
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 361 

Recall was calculated with the formula: 362 

 363 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 364 

 365 

And the F1 score, which is the harmonic average of the precision and recall, was calculated 366 

as:  367 

 368 

𝐹1 = 2	𝑥	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	´	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 369 

 370 

Precision and Recall were multiplied by 100 to indicate percentages. CPU time was 371 

calculated with GNU’s time function (user + sys). True and false positives, at several taxonomic levels 372 

(superkingdom to species), were calculated based on NCBI taxids. Only matches to organisms with 373 

valid taxids were included in the analyses. Valid but obsolete taxids (those that have changed due to 374 

nomenclature changes) were updated accordingly using the ETE toolkit (Huerta-Cepas et al. 2016). 375 

This strategy also minimizes nomenclature problems. For example: Filobasidiella neoformans is a life 376 

stage of Cryptococcus neoformans, they share a unique taxid (5207) regardless of the name 377 

attributed to the sequence in the reference database. The benchmarking scripts are available at: 378 

https://github.com/vrmarcelino/CCMetagen/tree/master/BenchmarkingTools. 379 

 380 

CCMetagen applied to real data sets 381 

 We validated the CCMetagen pipeline using two biological data sets: one defined fungal 382 

community (biological data set 1) and one set of environmental samples (biological data set 2). The 383 

fungal community was constructed by culturing, pooling and sequencing the same 15 fungal species 384 

used in the metatranscriptome simulated in silico (SRA BioProject number PRJNA521097) (Marcelino 385 

et al. 2019a). 386 

 The biological data set 2 consisted of nine metatranscriptome libraries derived from gut 387 

samples from Australian wild birds (SRA BioProject number PRJNA472212) (Wille et al. 2018). 388 

Quality control was performed as described in Marcelino et al. (2019b). 389 
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These samples were mapped to the NCBI nucleotide database using KMA with the options -390 

1t1 -mem_mode -and -apm f, and then processed with CCMetagen using default values. The results 391 

were parsed with PhyloSeq to produce a graph with relative abundances (Figure 5). A tutorial 392 

explaining the full analyses of the bird microbiome, from quality control to graphical representation 393 

with PhyloSeq, is available at https://github.com/vrmarcelino/CCMetagen/tree/master/tutorial. 394 

 395 

Data access 396 

 397 

CCMetagen is freely available from https://github.com/vrmarcelino/CCMetagen (licensed under GNU 398 

General Public License v3.0). The simulated fungal metagenome and metatranscriptome sequence is 399 

available at https://cloudstor.aarnet.edu.au/plus/s/Mp8gLimDYoLfelH 400 
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