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Abstract 

Adrenodoxin reductase, a widely conserved mitochondrial P450 protein, catalyses essential steps in steroid hormone biosynthesis and is 

highly expressed in the adrenal cortex. The yeast adrenodoxin reductase homolog, Arh1p, is involved in cytoplasmic and mitochondrial 

iron homeostasis and is required for activity of enzymes containing an Fe-S cluster. In this paper, we investigated the response of yeast to 

the loss of a single copy of ARH1, an oxidoreductase of the mitochondrial inner membrane, which is among the few mitochondrial proteins 

that is essential for viability in yeast. The phenotypic, transcriptional, proteomic, and metabolic landscape indicated that Saccharomyces 

cerevisiae successfully adapted to this loss, displaying an apparently dosage-insensitive cellular response. However, a considered 

investigation of transcriptional regulation in ARH1-impaired yeast highlighted that a significant hierarchical reorganisation occurred, 

involving the iron assimilation and tyrosine biosynthetic processes. The interconnected roles of the iron and tyrosine pathways, coupled 

with oxidative processes, are of interest beyond yeast since they are involved in dopaminergic neurodegeneration associated with 

Parkinson’s disease. The identification of similar responses in yeast suggest that this simple eukaryote could  have potential as a model 

system for investigating the regulatory mechanisms leading to the initiation and progression of early disease responses in humans. 

Introduction 

Iron is a crucial cofactor required for a number of essential cell functions for living organisms throughout the tree 

of life. It is a vital nutrient, which allows the transport of oxygen and the production of energy. Furthermore, it is 

essential for many metabolic and non-metabolic processes, including DNA repair and replication, as well as the 

regulation of gene transcription. These functions of iron are mainly based on its ability to donate electrons. Due to 

this property, iron may easily become a catalyst for reactions that facilitate the formation of free radicals. 

Therefore, iron is both essential for life and potentially toxic for the cell
1,2

. Numerous bacterial or fungal 

pathogens are highly dependent on iron supply and use different pathways to acquire iron from the environment 

or even steal it from their competitors or hosts
3,4

. Indeed, the battle between pathogenic microorganisms and 

host cells over iron has been proposed to play a critical role in infectious disease.  

 

Many cell types or organisms lack effective means to secrete or excrete iron
5
. Due to the high toxicity of free iron, 

complex cellular regulatory mechanisms ensure its adequate acquisition, transportation, utilization, and 

elimination. This leads to the manifestation of an extremely fine-tuned metabolic system
1,2,6

. Disorders associated 

with both iron overload and deficiency relate to problems in this metabolic system
5,7

. Iron deficiency is the most 

prevalent nutritional abnormality in humans, although it has not been perceived as a life-threatening disorder. 

However, iron imbalance may lead to serious concerns in higher organisms such as alterations in circadian 

behaviour, and even neurodegeneration and cognitive impairment
8
. Both iron deficiency and excess was shown 

to lead to increased oxidative stress, and this often involves mitochondrial dysfunction, as observed in aging and 

associated degenerative diseases
9
. A major fraction of the oxygen taken up by eukaryotic cells is used by the 

mitochondria, which in turn, produce a substantial amount of cellular superoxide, and accumulate iron for the 

production of haem and iron-sulphur clusters
7
. 

 

Iron-sulphur proteins are found in all life forms including archaea, bacteria and eukaryotes. Iron-sulphur clusters, 

polynuclear combinations of iron and sulphur atoms, are both structurally and functionally versatile, and are 
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found in the most ancient components of living matter
10,11

 They can access various redox states, which makes 

them ideal for electron-transfer and redox reactions. Their structural, chemical, and electronic flexibility allow 

proteins that carry these clusters to participate in numerous biological functions, including electron transfer, 

substrate binding/activation, iron/sulphur storage, regulation of gene expression, and enzymatic activity
12

. All 

iron-sulphur clusters, regardless of whether they are utilised by mitochondrial, cytoplasmic, or nuclear proteins, 

are assembled in the mitochondria. Mitochondria play a key role in iron supply and utilisation in eukaryotic 

systems involving processes that are regulated and coordinated by iron-sulphur protein biogenesis
13

. These roles 

of mitochondria regarding iron metabolism, and particularly the generation of iron-sulphur clusters, have been 

conserved across eukaryotes from yeast to humans
14

. 

 

Adrenodoxin reductase is a mitochondrial P450 flavoprotein, which catalyses essential steps in steroid hormone 

biosynthesis
15,16

. The enzyme is able to reduce a 2Fe-2S cluster protein, adrenodoxin, and was reported to be 

present in most metazoans and prokaryotes
17

. ARH1 encodes the yeast adrenodoxin reductase homolog, which is 

an oxidoreductase of the mitochondrial inner membrane. The protein is involved in cytoplasmic and 

mitochondrial iron homeostasis, and plays a role in iron-sulphur cluster formation. It is one of the few 

mitochondrial proteins that are essential for viability in yeast
18–20

. 

 

In our recent work, we investigated how yeast responded metabolically to an impairment in the function of the 

oxidoreductase encoded by ARH1. We showed that despite its essentiality, the yeast cells were able to cope with 

the loss of one copy of the gene (in an ARH1/arh1Δ hemizygote) without displaying any significant difference in 

growth rate, macronutrient utilisation, energy-associated product formation, or the sub-cellular accumulation of 

iron-species and copper characteristics. In order to benchmark our findings, we also investigated the response of 

yeast cells to the loss of a copy of YFH1, encoding the yeast frataxin homolog, which has a very similar function to 

ARH1 in iron-sulphur cluster assembly, and also of ATM1, encoding the ABC transporter that exports 

mitochondrially synthesized precursors of iron-sulphur clusters to the cytosol. Our results showed that neither a 

YFH1/yfh1Δ nor an ATM1/atm1Δ hemizygote showed any significant difference form their cognate homozygous 

wild types in their metabolic or phenotypic responses
21

.  

 

The assembly and functioning of iron-sulphur proteins that are employed outside of the mitochondria were 

reported to explain the indispensable nature of iron-sulphur cluster biogenesis for cell viability in virtually all 

eukaryotes. None of the mitochondrial iron-sulphur proteins in the yeast Saccharomyces cerevisiae, for example, 

is essential for life
13

. Most non-mitochondrial iron-sulphur proteins are involved in non-metabolic functions in the 

cell, and are therefore less likely to affect metabolic or phenotypic responses directly.  

 

In this work, we attempted to identify the non-metabolic response to the impairment of iron-sulphur biogenesis. 

We conducted this analysis at the transcriptional level, but also made use of existing proteomics data to further 

extend the analysis. The collection of diploid yeast strains hemizygous for an individual gene (a hemizygote is a 

diploid strain in which one of the two copies of a given gene has been deleted) has proved invaluable in revealing 

both gene and drug function
22,23

.  Here, we report that yeast hemizygous for the gene encoding the ortholog of 

the human adrenodoxin reductase enzyme substantially rewires its transcriptional regulation; a response not 

observed when a single copy of either of the other iron-sulphur cluster genes is deleted. 

Experimental 

Strains, cultivation conditions, and harvesting 

Heterozygous deletion mutants HO/hoΔ, ARH1/arh1Δ, ATM1/atm1Δ and YFH1/yfh1Δ of S. cerevisiae strain 

BY4743 (background: MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0) were 

used in this study, and the single-copy deletions were verified by PCR
24

. Qiagen DNeasy Blood & Tissue Kit was 

used for isolation and purification of DNA from the cell extracts as described in the manufacturer’s protocol.  

 

Three different yeast strains were grown to an OD600 of 0.62-0.83, ensuring all cultures were in their exponential 

growth phase, at 30°C in YPD medium, allowing sufficient aeration in vented-cap Erlenmeyer flasks with shaking 

(200 rpm). Sample collection was adjusted by OD600 to harvest roughly 5x10
7
 cells per cryovial sample. The cells 

were flash-frozen in liquid nitrogen, and then stored at –80°C until further processing. 

 

RNA processing and microarray analysis 
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RNA extraction on the frozen samples was carried out using the Qiagen RNeasy Mini Kit, following the protocol for 

purification of total RNA from yeast. Cells were lysed mechanically using acid-washed beads and agitation in a 

FastPrep-24 5G Homogenizer (MP Biomedicals). The samples were agitated for 6x30s with 1 min resting on ice 

between lysis intervals. Samples with A260/A230 ratios < 1.8 were processed using the Qiagen RNeasy MinElute 

Cleanup Kit to reduce presence of contaminants. 

 

Micro-volume UV-vis spectrophotometry was used for RNA quantification and purity (A260/A280) evaluation 

(NanoDrop ND-3000, Thermo Fisher Scientific Inc., U.S.A.). A microfluidics-based platform was used to check RNA 

integrity (Bioanalyzer 2200, RNA6000 Nanokit, Agilent Technologies, U.S.A.). 

 

Microarray analysis was conducted as described in the GeneChip®Expression Analysis Technical Manual (relevant 

kits, chips, and instrumentation: Affymetrix Inc., U.S.A.). Briefly, first-strand cDNA was synthesized from 

ca.100Ing of total RNA, and converted into ds DNA (GeneChip® 3’ IVT Express Kit). Biotin-labelled aRNA was 

synthesised, purified and fragmented, and 5Iμg of aRNA was loaded onto 169 format Yeast 2.0 arrays.  Following 

hybridisation, the chips were washed and stained in the GeneChip® Fluidics Station. The cartridges were stored at 

4
o
C on ice and were scanned within 24 hours of preparation on the GeneChip® Scanner 3000.  The image files 

were processed and normalised with their quality assessed by dChip software
25

. MIAME
26

 compliant raw and 

processed files can be accessed from EBI’s ArrayExpress database
27

 (Accession no: E-MTAB-7648). 

 

Data analysis 

Raw data were pre-processed prior to analysis. The dChip package was used to normalize probe intensity across 

the 12 samples to the lowest P-call percentage, and also to remove the background mismatch rate of probe 

hybridization, reducing the prevalence of false positives in the samples
25

. RMAexpress
28

 was used for background 

adjustment and quantile normalization of the data before transforming the probe intensities into log2 values. The 

normalised dataset was evaluated by a linear model that used median polish method
29

. 

  

When the student’s t-test was used for statistical analysis, the Benjamini-Hochberg test was used to control the 

False Discovery Rate (FDR) at q < 0.05. One-way ANOVA was conducted at a significance threshold of 0.05. 

Significance Analysis of Microarrays (SAM)
30,31

 was employed as the test statistic for the statistical evaluation of 

gene expression with 90
th

 percentile False Discovery Rate and 2-fold expression change as additional constraints 

on evaluation.  

 

Latent class analysis and correspondence analysis was carried out as described by Kamakura and Wedel
32

. 

Correspondence analysis was used to linearly transform the transcription factor (TF)-target gene associations 

resulting in a discrete data matrix. The threshold for discrimination was |�0.15| from the origin. Latent class 

analysis was used to classify categorical data. The classification was carried out using two approaches: the 

corrected-Akaike’s information criterion (CAIC)
33

 and log-likelihood ratio test
34

. The number of classes was 

selected based on domain-usefulness such that the highest number yielding all classes to be non-small is selected, 

where small size is described as containing less than 5% of the total sample group, i.e. the gene subset, in this 

case. This rule, which has long been used in practice as a part of the idea of domain-usefulness, has recently been 

discovered also to have some theoretical justification
35

. 

 

Princeton GO tools were employed for Gene Ontology Enrichment Analysis accessed on 07/2018
36

. The 

background list was 7166 transcripts. The significant ontology terms listed had a Bonferroni-corrected p-value of 

less than 0.01. False Discovery Rates were also calculated and those terms with q-value > 0.05 were excluded 

from further analysis. Protein expression data used for comparison was accessed from Paulo et al. 2016
37

. The 

yeast mRNA decay data was accessed from Munchel et al. 2011
38

. Spearman correlation (implemented in 

MATLAB) was used to evaluate the relationship between mRNA decay and protein expression. Transcriptional 

regulatory network interactions were accessed from YEASTRACT
39

 (access date 07/2018). The BLASTP Tool
40

 was 

used via UniPROT
41

  for the identification of sequence similarities. Human protein homology for the yeast proteins 

was accessed from Saccharomyces Genome Database
42

, and the genetic interactions for yeast were accessed 

from TheCellMap
43

 on 22/06/2018. 

Results and discussion 

Transcriptional and proteomic response of yeast to impairment in iron-sulphur cluster (ISC) machinery 
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The transcriptional response of diploid yeast to the loss of a single copy of either ARH1, ATM1 or YFH1 was 

investigated in comparison to that of a control strain (ESI). Haploinsufficiency in yeast was shown to be primarily 

caused by insufficient protein production
44

, and in the budding yeast S. cerevisiae protein abundance was shown 

to match gene copy number quantitatively
45

, demonstrating an inability to compensate for reduced gene dosage.  

All three genes under investigation in this work have key roles in the biogenesis of iron-sulphur clusters in the 

mitochondria, and their null mutants were reported to be inviable in large-scale genetic surveys
42

.  

 

Following a preliminary statistical analysis of the transcriptome data (ESI2), a supervised learning algorithm that 

relies on non-parametric statistics was selected as a suitable tool for mining this genome-wide expression dataset. 

The expression levels of 69 genes were significantly different in ARH1/arh1Δ at a confidence level of 90%, 

accompanied by a 2-fold change in expression. A significant enrichment was identified among those genes for iron 

ion transmembrane transporter activity (p-value = 0.005).  In contrast, the expression levels of only 40 and 5 

genes were different in ATM1/atm1Δ and YFH1/yfh1Δ, respectively. The YFH1/yfh1Δ subset was not significantly 

enriched for any particular biological processes or molecular functions. This could indicate that the yeast could 

successfully cope with the reduced gene dosage for YFH1; although an inviability of a null mutant would indicate 

that complete loss of functionality would not be tolerable. The genes that displayed a significant change in their 

expression in the ATM1-impaired yeast were significantly associated with ribosome biogenesis (p-value = 

1.68 
 10��), and were significantly involved in DNA-directed 5'-3' RNA polymerase activity (p-value = 0.002) 

(Fig.1, ESI).  

 

Protein levels during growth on glucose were available for 87% of the genes, whose gene expression levels were 

measured in our study. The protein levels were available for approximately the same fraction of the genes (89%) 

that were differentially expressed in response to the loss of a single copy of the iron-sulphur cluster (ISC) genes, 

allowing a consistent analysis to be made. However, there was no significant correlation between these protein 

levels and the transcript levels of the subset of differentially expressed genes (even without the 2-fold change in 

expression constraint) in these mutants (ρ = 0.11, p- value = 0.24 for ARH1/arh1Δ, and ρ = 0.33, p- value = 

3.08 
 10�� for ATM1/atm1Δ, and not applicable for YFH1/yfh1Δ due to unavailability of protein abundance 

data). This lack of correlation between the transcript and protein levels, not uncommon in yeast
46

, led us to 

investigate post-transcriptional modification events in yeast, mainly that of mRNA turnover. However, no positive 

or negative correlation was observed between protein abundance and mRNA half-lives (ρ = -0.37, p- value = 

5.76 
 10��  for ARH1/arh1Δ, and ρ = -0.33, p- value = 3. 82 
 10��  for ATM1/atm1Δ, and not applicable for 

YFH1/yfh1Δ due to unavailability of protein abundance data for the proteins encoded by the genes in that subset).  
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Fig. 1 Significance analysis of the gene expression by SAM for ARH1/arh1Δ (A), ATM1/atm1Δ (B), and for YFH1/yfh1Δ (C). 

The expected relative expression values are provided on the abscissa and the observed relative expression values are given 

on the ordinate. Note all expression values are log2 converted. The solid line denotes expected value = observed value, and 

the dashed lines denote the 90% confidence intervals after FDR correction. Positive significant genes are labelled in red and 

negative significant genes are in green, to provide a summary view of the fraction of genes whose expression was 

significantly different in these mutants. 

 

Role of the transcriptional regulation in the impairment of the ISC machinery 

The relationship between transcription factors (TFs) and their target genes was investigated to explore the 

rewiring of yeast cellular networks in response to the loss of a single copy of a gene encoding a component of the 

ISC machinery. Only two genes whose expression levels significantly changed in response to the impairment in 

ARH1 encoded TFs: IME1, and MGA1; whereas no such genes were identified in ATM1/atm1Δ and YFH1/yfh1Δ. 

Furthermore, the protein abundance levels for Ime1p and Mga1p were not captured in the proteomics dataset 

used here. Therefore, shared transcriptional regulatory patterns were identified instead for the 134-, 132-, or 6-

gene subsets that were transcriptionally responsive (significant, but without fold-change considerations) to the 

heterozygosity of ARH1, ATM1, or YFH1, respectively. These patterns were determined to be similar for the 

ARH1/arh1Δ and ATM1/atm1Δ subsets (ESI). These gene subsets and transcription profiles were then analysed 

using various TF-target gene association measures (see ESI2 for details). 
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In light of this inference, the TFs whose target gene expression profiles varied significantly in response to the 

heterozygosis of ATM1 or ARH1 were investigated solely from a functional point of view. The subset of genes 

identified in the YFH1/yfh1Δ comprised just six genes, making a systematic interpretation of the results 

problematic. Therefore, the differences and similarities observed between this subset and the others were 

excluded from further consideration (ESI). 

 

The TFs, which had a high impact on the regulation of the expression of the genes in the two subsets, were 

identified and functionally investigated for their potential effect on the observed transcriptional response. Only 7 

and 8 TFs (which we shall term ‘major controllers’) were reported to regulate the expression of more than 50% of 

the genes whose transcript levels changed significantly in ARH1/arh1Δ and ATM1/atm1Δ strains compared to the 

wild-type diploid. Six of these TFs (Ace2p, Ash1p, Cst6p, Gcn4p, Msn2p, and Rap1p) were shared between the two 

subsets, and these TFs were almost exclusively involved in regulating the transcription related to the cell cycle and 

division
42

. 

 

On average, each major controller TF had a documented association with more than 15% of the genes in each 

subset (Fig.S1B in ESI2). However, more than 25% of all yeast TFs were reported to regulate the expression of a 

greater fraction (than 15%) of the genes in their respective subsets as verified by both binding and gene 

expression data. This populated a large TF pool for either mutant; the pool comprised 51 TFs for each of 

ARH1/arh1Δ and ATM1/atm1Δ, of which 43 were shared. Despite the direct involvement of ARH1 and ATM1 in 

iron-related processes, only three TFs were identified either to regulate iron metabolism, or to require iron-

containing cofactors; Aft1p, Hap2p, and Hap4p in ARH1/arh1Δ, and Aft1p, Cad1p, and Hap2p in ATM1/atm1Δ. 

This limited inference of iron-linked regulation by transcription factors was in line with the minimal response 

observed in the expression of iron-associated genes in the transcriptome analysis. On the other hand, 27% and 

24% of these TFs were responsive to oxygen availability and oxidative stress in ARH1/arh1Δ and ATM1/atm1Δ, 

respectively.  

 

Categorical classification to identify the gene regulatory relationships 

The complete dataset was next employed in classification analysis, which is a form of clustering for categorical 

data as identified in these TF-target gene association data (ESI, ESI2). The subset of genes that displayed a 

significant change in response to the loss of a single copy of ATM1 or ARH1 were then grouped into 5 and 7 

mutually exclusive and exhaustive classes, respectively, based on their pattern of transcriptional regulatory 

responses determined by all yeast TFs acting as categorical variables in Latent Class Analysis.  

 

All classes in this analysis for the ATM1/atm1Δ strain were significantly associated with ribosomal and translation-

associated processes (p-value = 0.01), and thus did not contribute further to our initial analysis solely conducted 

on the basis of gene transcription patterns (see ESI). Furthermore, the TFs targeting these genes were 

predominantly responsive to oxidative stress (see previous section for a detailed discussion). This relationship 

between ribosomal events and oxidative stress agrees with early reports documenting ribosomal rRNA damage to 

be elevated by an increase in the intracellular level of reactive oxygen species
47

.  

 

In contrast the classes identified for the ARH1/arh1Δ yeast were discretely and significantly associated with a 

variety of different and seemingly unrelated processes (p-value = 0.01). One class was populated with genes 

involved in iron assimilation (p-value = 0.005), and another class in tyrosine biosynthesis (p-value = 0.007). 

Alterations involving iron-associated processes in response to the hemizygosity of ARH1 were not unexpected and 

were consistent with our initial review of the gene expression data. However, the involvement of tyrosine 

biosynthesis was a novel finding elucidated by latent class analysis.  

 

Another class identified by this analysis was enriched for genes involved in oxidoreductase activity (p-value = 

0.007), and yet another class included two of the three genes constituting the Rix1-complex; IPI1 and IPI3 (p-value 

= 0.0007). Members of the RNA-processing Rix1-complex were previously reported to be responsive to oxygen 

levels, particularly to hypoxia
42,48

. The highly conserved members of this complex were also haploinsufficient in 

the presence of chemical-induced oxidative stress
49

. Thus, latent class analysis identified oxidation-related gene 

targets in two different classes, which were possibly associated with the oxidation-related regulatory activity 

identified in the aforementioned TF analyses. 
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Iron and tyrosine metabolism in response to reduced  adrenodoxin levels and its potential implications for 

neurodegenerative disorders 

In order to investigate the link between iron assimilation and tyrosine biosynthesis in conjunction with oxidative 

stress, we constructed a protein interaction network in yeast. The first neighbour interactors of the proteins 

involved in iron assimilation (Ftr1p, Fet3p, Fet5p, and Gmc1p) and tyrosine biosynthesis (Aro7p, Aro8p, Aro9p, 

and Tyr1p) were identified and the crosstalk between the two networks was determined. Among the shared first-

neighbour interactors, only one protein was known to be associated with oxidative stress in yeast, Hsp104p. This 

heat shock protein has been reported to function as a disaggregase, that assists the refolding and reactivation of 

previously denatured, aggregated proteins
42

 (Fig.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Crosstalk between iron assimilation and tyrosine biosynthesis in yeast. The protein-protein interaction 

network was constructed between the genes encoding the proteins involved in iron assimilation and tyrosine 

biosynthesis, encircled in blue colour. The first neighbours with a role implicated in oxidative stress are encircled 

in red. The dashed line indicates that the first neighbour does not establish a cross talk between the processes 

while the solid line indicates the gene encoding the cross-talk protein. 

 

None of the genes encoding the iron assimilation or tyrosine biosynthesis proteins that were identified in this 

study are homologous to human genes that were known to be implicated in Parkinson’s disease. However, some 

functional associations exist. An important disease marker, alpha-synuclein, was shown to inhibit the retrograde 

recycling of the yeast Fet3p/Ftr1p heterodimer at low external iron concentrations
50

. Aro8p and Aro9p were 

recently identified as the major kynurenine aminotransferases in yeast, catalysing the deamination of kynurenine 

to kynurenic acid
51

. Kynurenic acid was reported to have a role in interfering with dopaminergic 

neurotransmission, highlighting its relevance for Parkinson’s disease
52

. The disorder was reported to be 

accompanied by abnormalities in the kynurenine pathway with extended associations implicated by defects in 

respiratory complex I in the mitochondria
53,54

; the pathway intermediates were even suggested as plasma 

biomarker candidates for the disease
55

.   Furthermore, iron and tyrosine are two metabolites that have been 

strongly linked with Parkinson’s disease. Parkinson’s patients preferentially lose the dopamine-producing neurons 

in their midbrain, and consequently have low dopamine availability
56

. Patients with the disorder also have 

reduced levels of norepinephrine
57

; L-DOPA supplementation, a standard treatment for Parkinson’s patients, 
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lowers the norepinephrine level even further. Tyrosine is converted to L-DOPA; the precursor for the 

neurotransmitter, dopamine through the catalytic action of the iron-binding tyrosine hydroxylase
58

. Dopamine, in 

turn, acts as the main precursor for norepinephrine
59

. Dietary supplements  of amino acids, including tyrosine, 

have been given to Parkinson’s patients to address the complications caused by treatment with L-DOPA
60

.  

 

A characteristic feature of the Parkinson’s brain is the substantial accumulation of iron. Although it is not yet 

understood clearly whether iron accumulation is the cause or the consequence of the disorder, there is evidence 

that the neurodegeneration could be initiated by the potent redox couple formed by iron and dopamine itself
61

, 

leading to substantial oxidative stress. Whether this is the case or not, it is clear that our yeast model replicates 

the metabolic fingerprint of this neurodegenerative disorder in this genetically and physiologically malleable 

simple eukaryote. 

 

The re-wiring of the regulation of gene transcription in the ARH1/arh1Δ yeast hemizygote mirrors the metabolic 

response exhibited in Parkinson’s disease. On a genetic basis, the role of the tyrosine pathway was particularly 

interesting in this context. Although mitochondrial iron metabolism
14

 and many different types of oxidative stress 

response
62,63

 are highly conserved across species, yeast lacks the tyrosine hydroxylase enzyme, which would 

catalyse the first step in the synthesis of catecholamines including dopamine and norepinephrine. The human 

tyrosine hydroxylase shares ca. 35% similarity with two proteins of the closely related yeast, Zygosaccharomyces 

rouxii. These have more than 20% sequence similarity to a number of S. cerevisiae proteins, of which Flo9p, 

Flo11p, and Hkr1p are particularly interesting due to their role in calcium-associated and aggregation-related 

processes
42

 (see ESI2 for detailed analysis).  

Conclusions 

In this work, we investigated the transcriptional and gene regulatory response of diploid yeast to the loss of a 

single copy of one of the genes that play essential roles in the iron-sulphur cluster machinery: ARH1, ATM1, or 

YFH1. The transcriptional response and the governing gene regulatory events were very limited for the 

YFH1/yfh1Δ mutant, indicating that yeast could cope with the loss of a single copy of this gene relatively 

successfully. A modest response, coupling ribosomal processes with oxidative stress, was observed for the 

ATM1/atm1Δ cells. This novel association, uncovered by latent class analysis, was the only significant response of 

diploid yeast to the loss of a single copy of ATM1. In contrast, the response of diploid yeast to the deletion of a 

single copy of ARH1 involved a greater range of biological processes than was the case for the other two 

hemizygous mutants, and included tyrosine biosynthesis, iron assimilation, and the oxidative stress response. 

These three processes are substantial contributors to the cellular phenotype of Parkinson’s disease and this 

suggests that the yeast ARH1/arh1Δ hemizygote recapitulate the disease phenotype. Although it is not yet clear 

how, and to what extent, haploinsufficiency is known to be involved in human hereditary disease
44

. Furthermore, 

the yeast Saccharomyces cerevisiae has long been employed as a model system for both understanding cellular 

mechanisms in, and discovering potential drugs for treating, Parkinson’s disease
64–67

. Therefore, our findings 

emphasise the potential for exploiting yeast, specifically those mechanisms involving adrenodoxin reductase 

homolog, as a model cellular system for investigating the onset and early progression of Parkinson’s disease. 
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