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Abstract 

We present KnowEnG, a free-to-use computational system for analysis of genomics data sets, 

designed to accelerate biomedical discovery. It includes tools for popular bioinformatics tasks 

such as gene prioritization, sample clustering, gene set analysis and expression signature 

analysis. The system offers ‘knowledge-guided’ data-mining and machine learning algorithms, 

where user-provided data are analyzed in light of prior information about genes, aggregated from 

numerous knowledge-bases and encoded in a massive ‘Knowledge Network’. KnowEnG adheres 

to ‘FAIR’ principles: its tools are easily portable to diverse computing environments, run on the 

cloud for scalable and cost-effective execution of compute-intensive and data-intensive 

algorithms, and are interoperable with other computing platforms. They are made available 

through multiple access modes including a web-portal, and include specialized visualization 

modules. We present use cases and re-analysis of published cancer data sets using KnowEnG 

tools and demonstrate its potential value in democratization of advanced tools for the modern 

genomics era. 

 

Introduction 

The rapid growth of genomics data sets1 and efforts to consolidate diverse data sets into common 

portals2 have created an urgent need today for software frameworks that can be easily applied to 

these genomic ‘big data’ to extract biological and medical insights from them3. Here, we present 

‘KnowEnG’ (Knowledge Engine for Genomics, pronounced ‘knowing’), a cloud-based engine that 
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provides a suite of powerful and easy-to-use machine-learning tools for analysis of genomics data 

sets. These tools, also referred to as ‘pipelines’, are geared towards data sets represented as 

spreadsheets or tables (genes x samples) that record typical genomic profiles such as gene 

expression, mutation counts, etc. for a collection of samples, at the resolution of individual genes. 

The pipelines help identify biologically meaningful patterns in the provided spreadsheet data, 

through ab initio analysis as well as by contextualizing with prior knowledge. Here, we 

demonstrate the capabilities of KnowEnG by using it for common bioinformatics analyses such 

as patient stratification, gene prioritization, gene set characterization and signature analysis on 

two major data sets in cancer genomics4,5, and reproducing key results of the original studies as 

well as gleaning new biological insights. In doing so, we hope to highlight both the sophisticated 

level of analysis possible and the ease-of-use with which multiple pipelines can be invoked, 

individually as well as in combination, to generate a multi-faceted narrative of the insights that the 

data have to offer. 

 

Diverse computing environments for KnowEnG: The genomics computing infrastructure of the 

future has to be adapted to the diverse ecosystem of data sets and tools that will continue to 

flourish in genomic research. In particular, tools must be ‘findable, accessible, interoperable and 

reusable’6, i.e., comply with the ‘FAIR’ principles that guide the modern vision of biological data 

science. In recognition of these principles, software components of the KnowEnG system are 

packaged using state-of-the-art technology7 that makes them highly portable and amenable to 

scalable execution in varying computing environments. A convenient way to access the system 

is through a web portal that links to a KnowEnG server (Supplementary Note SN1) running on 

Amazon Web Services (AWS). A user can upload their genomics data set as a spreadsheet and 

then execute available pipelines (Supplementary Note SN2 and Figure 1A, B). Often, the results 

of one KnowEnG pipeline can be further analyzed using another pipeline, and the system 

facilitates such ‘handover’ between pipelines (Figure 1D). For added security and control, users 

may also create a personal instance of the KnowEnG server and web portal using their AWS 

accounts (Supplementary Note SN3). This design feature can help meet challenges of heavy 

computing loads faced by a public analytics server. Computationally savvy users may invoke the 

pipelines and avail of additional functionalities through Jupyter notebooks8 from a dedicated 

KnowEnG server. A third mode of access, created for cancer researchers, is via the NCI Cancer 

Genomics Cloud Resource built by Seven Bridges (SB-CGC)9, where users may directly access 

large cancer data sets, such as those generated by the NCI TCGA program10, and analyze them 

using KnowEnG pipelines without transferring the data from AWS. Through these varied access 
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modes, KnowEnG facilitates accessibility, interoperability and reusability of its tools, marking a 

significant step towards realizing the ‘FAIR’ vision.   

 

Knowledge Network-guided analysis: An important feature of KnowEnG pipelines is that they can 

incorporate large-scale prior knowledge about genes into analyses of the user’s data set. A basic 

form of such ‘knowledge-guided’ analysis is already common, where the researcher performs 

statistical analysis of an experimental data set and then interprets the results in the light of prior 

knowledge from publicly available gene annotation repositories such as Gene Ontology (GO)11, 

Reactome12, etc. KnowEnG makes this analytic process more rigorous by adapting its statistical 

tools to be directly guided by the vast data in such public repositories. It also breaks the logistical 

barriers associated with utilizing large databases of prior knowledge, by co-locating its 

‘knowledge-guided analysis’ tools with a diverse knowledgebase compiled from numerous 

popular repositories. The knowledgebase is encoded in a massive heterogeneous network called 

the ‘Knowledge Network’, whose nodes are genes/proteins and whose edges represent 

properties (e.g., pathway membership) and mutual relationships (e.g., protein-protein interaction)  

of the nodes (Figure 1C). The network represents annotations of 41 different types from 20 

species and 13 different data sources, and includes 476M edges, 405K gene nodes, and 178K 

property nodes; the network is regularly updated via a ‘one-click’ internal system (Supplementary 

Method SM1). Users typically select the annotation type that is most relevant for guiding their 

analysis (Supplementary Note SN4), in the course of launching a pipeline. The Knowledge 

Network is also available as a stand-alone resource that allows sub-networks associated with a 

knowledge type to be retrieved (Supplementary Note SN5).  

 

Here, we present the major functionalities, features and interfaces of the KnowEnG system in the 

context of two previously published and influential cancer data sets. The scope of KnowEnG 

analytics goes far beyond cancer analysis however, with the system supporting analysis of users’ 

genomics data from any of ~20 model organisms and its tools being applicable to any data set 

comprising gene-level measurements or scores for a collection of samples.  

 
Results 

Case study: Clustering of pan-cancer data  

As a first demonstration of the analytic capabilities of KnowEnG, we describe how the ‘Sample 

Clustering’ pipeline can be used to group genomic profiles in a knowledge-guided manner. 

Clustering is one of the most widely used tools in bioinformatics13 and can help identify sub-groups 
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of samples that represent distinct biological or pathological states14; patient stratification in cancer, 

where subtypes are defined based on molecular markers15, is a prime example. The same 

clustering tools are often applied to different types of genomic profiles, including gene expression, 

mutation counts, copy number mutations, etc4. However, clustering of somatic mutation profiles 

of cancer patients presents a significant obstacle, since each profile is sparse (a minuscule 

fraction of genomic loci are mutated) and has little direct similarity to other profiles. As an example 

of a data set that presents this challenge, we worked with somatic mutation profiles of 3276 tumor 

samples spanning 12 cancer types (Supplementary Method SM2 ) from the ‘pancan12’ data set 

generated by the TCGA consortium4. (This large data set provides a natural ‘ground truth’, viz., 

tumor type, for assessing clustering methods.) We first used the ‘standard’ mode of KnowEnG’s 

Sample Clustering pipeline, viz., Hierarchical Clustering, in six different algorithmic configurations, 

to identify 14 clusters (so as to match that in the original publication4) of tumor samples based on 

their somatic mutations. (The standard mode of this pipeline also offers K-means clustering.) This 

failed to produce meaningful clusters, and almost every clustering result exhibited strong 

‘resolution bias’16, with one cluster comprising over 90% of the samples (Supplementary Method 

SM3 and Supplementary Table SM3.ST1(A)). The sole exception was clustering with Jaccard 

similarity and complete linkage17, and even here the largest cluster had over 70% of the samples; 

we will refer to this below as the standard clustering. This initial analysis illustrates the challenge 

in clustering somatic mutation profiles: due to their high dimensionality and sparsity, biologically 

related profiles often do not harbor shared mutations and are not grouped together18, ultimately 

leading to many small and one or few large clusters.  

 

Knowledge-guided clustering of mutation profiles: Knowledge-guided clustering powered by the 

Knowledge Network offers a possible solution to the problem just noted. Here, prior knowledge of 

gene-gene relationships encoded in the network is used to recognize when somatic mutations in 

different genes may be functionally related, thus allowing more subtle forms of similarity between 

mutation profiles to be exploited in grouping patients. The knowledge-guided option of the Sample 

Clustering pipeline (Figure 2A) implements the ‘Network-based Stratification’ (NBS) algorithm of 

Hofree et al.18, where a random walk method makes patient mutation profiles less sparse by 

borrowing information from the Knowledge Network before the actual clustering step. We used 

knowledge-guided clustering with the HumanNet Integrated network (‘hnInt’)19 as prior knowledge 

to group patients into 14 clusters. (Note: All of the main analyses reported in this manuscript can 

be easily reproduced on the KnowEnG web server by following simple instructions described in 

Supplementary Note SN6.) This yielded more size-balanced clusters; the largest cluster 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2019. ; https://doi.org/10.1101/642124doi: bioRxiv preprint 

https://doi.org/10.1101/642124
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

included 30% of the 3,276 patients. To test if patient groups identified from mutation profiles are 

tied to their phenotypic characteristics, we performed Kaplan-Meier survival analysis (Figure 2B). 

A log-rank test revealed highly significant distinction across the clusters in terms of survival 

probabilities (p-value 3.7E-33), which was clearly better than that observed in the standard 

clustering (p-value 7.4E-10, Supplementary Figure SM3.SF4). Notably, the original clustering 

analysis of mutation profiles by Hoadley et al.4 was also knowledge-guided, relying on mutations 

in similar pathways to group related samples, and survival analysis of their original sample 

clusters produced similarly significant survival distinction (p-value 4.3E-29, Supplementary 

Figure SM3.ST6). The KnowEnG Sample Clustering pipeline, while producing comparable 

results in terms of survival distinction among clusters, stands out for its ease-of-use compared to 

executing the multi-step methods of the original analysis. For instance, the user avoids download 

and harmonization of prior knowledge, installation, and configuration of multiple software, data 

transformations between steps, and possibly arranging for computing resources capable of 

compute-intensive steps such as bootstrap sampling (explained below).  

 

Delving deeper into the patient clusters obtained above, we asked whether the clusters 

recapitulate the tumor types of patients or whether they reveal new structures in the data. To this 

end, we calculated the adjusted rand index (ARI)20 between the clusters and tumor types and 

repeated the process for other approaches to sample clustering, including the multi-omics Cluster-

Of-Cluster-Assignment (COCA) clustering reported in Hoadley et al.4 (Figure 2C). Interestingly, 

while there is a high concordance between tumor type and the COCA cluster labels of Hoadley 

et al.4 (ARI = 0.82), the same is not true for NBS-based clusters from the KnowEnG pipeline (ARI 

= 0.13) or for the pathway-based clustering of mutation profiles in the original study (ARI = 0.13). 

In other words, knowledge-guided clustering finds groups of patient mutation profiles that have 

strong correspondence with survival characteristics yet do not simply track tumor types, 

suggesting alternative levels of molecular similarity. We explored this possibility in detail 

(Supplementary Note SN7), and found the clusters to be characterized by mutations in genes 

from specific and distinct pathways, even when they are mixed in terms of tumor type 

representation. 

 

Clustering of multi-omics data: The standard clustering pipeline in KnowEnG may be applied to 

any type of spreadsheet data to cluster a collection of samples, while the knowledge-guided 

clustering pipeline may be used on any gene-level spreadsheet, where rows represent genes. 

We showcase this capability by performing ‘multi-omics clustering’ of the same cohort of patients 
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as above. A major advantage of multi-omics profiling of patients is that their mutual relationships 

and hidden group structures revealed by each data type can be consolidated into a more 

integrative, higher-level clustering that is more informative than any one type of profile alone. This 

was demonstrated by Hoadley et al.4 through their ‘COCA’ (Clustering of Cluster Assignments) 

method. Mimicking their approach, we first clustered the above pan-cancer cohort of patients 

based on their gene expression, methylation, copy number variation, or protein abundance 

profiles (Supplementary Method SM3, Supplementary Table SM3.ST1(D)) separately, using 

standard clustering. (Knowledge-guided clustering may also be used for all of these profiles 

except methylation, which is not a gene-level data set.) In addition, we considered our knowledge-

guided clustering of mutation data reported above and the miRNA clustering from the original 

publication4, thus arriving at six different ways to partition the cohort into clusters. Each such 

clustering assigns a cluster identifier to a patient, and we can thus describe the multi-omics 

profiles of the patient as a succinct ‘meta-profile’ of six cluster identifiers. We then used the 

standard clustering pipeline on these meta-profiles, arriving at 13 clusters (again mimicking the 

original published analysis4) that capture the six different omics data sets on the same patients. 

For this step, we employed the ‘bootstrap clustering’ option of the sample clustering pipeline, that 

typically yields more robust clustering21; the ease of employing this powerful feature is another 

example of value added by a cloud-based infrastructure. The steps where different clustering 

results were combined into common profiles require manipulations with multiple spreadsheets, 

each being the result of a separate cluster. These steps, as well as several other common matrix 

operations, are facilitated by KnowEnG through its so-called ‘mini pipelines’ that are available as 

notebooks in a Jupyter environment (Supplementary Method SM4). 

 

Interactive visualization: Results of the above multi-omics cluster analysis were visualized via the 

‘Spreadsheet Visualizer’ module of KnowEnG (Figure 2E), which in addition to displaying multiple 

spreadsheets as a ‘heat map’, allows users to simultaneously visualize various other properties 

of samples (e.g., cluster assignments provided by COCA, selected clinical annotations such as 

age, survival months, and primary disease type), offers different ways of sorting, filtering and 

grouping the data, and provides useful descriptive statistics such as histograms, in an interactive 

manner. The interactive visualization also allows us to easily perform survival analysis of the 

displayed clusters, and we used this feature to find that the new multi-omics clusters are strongly 

concordant with tumor type (ARI = 0.72) and exhibit differences in survival probabilities (p-value 

1.0E-150, Figure 2D, Supplementary Method SM5) far more prominently than the mutation-only 

analyses had revealed. The Spreadsheet Visualizer is a powerful data exploration and preliminary 
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analysis tool in its own right (see Supplementary Note SN8 for details) and can be utilized 

independently of the clustering pipeline.  

 

Clustering for patient stratification: As an illustration of how the Sample Clustering pipeline may 

be used for patient subtyping15, we next clustered breast cancer patients in the METABRIC 

dataset22 based on genes related to the epithelial to mesenchymal (EMT) transition, which is a 

process involved in metastasis. Following the approach in Emad et al.23, we clustered patients 

into two groups based on the expression of their EMT-related genes (Supplementary Method 

SM6). While standard mode of Sample Clustering did not result in clusters with distinct survival 

probabilities, the knowledge-guided mode achieved significant Kaplan Meier log-rank p-values 

using either the STRING24 text mining interaction network (‘sText’) (p = 3.1E-4) or the HumanNet 

‘hnInt’ network (p = 7.6E-4) (Supplementary Figures SM6.SF3 and SM6.SF4). 

 

Case study: Gene Prioritization for tumor types 

A routinely conducted analysis of high-throughput omics profiles is in the determination of genes 

associated with particular phenotypic conditions or biological processes of interest. Discovery of 

differentially expressed genes25 by contrasting transcriptomic profiles before and after treatment 

or in case versus control experiments, or of genes whose expression correlates with a numeric 

phenotype such as drug response26 are prime examples. The Gene Prioritization pipeline in 

KnowEnG offers this functionality, given a spreadsheet of omics data (genes x samples) and a 

‘phenotype spreadsheet’ (phenotypes x samples) that represents one or more phenotypic labels 

for each sample in the omics spreadsheet. As a simple demonstration of this pipeline, we  

analyzed expression data from tumor samples in the pancan12 data set introduced above, 

comparing each tumor type with all others using a t-test to identify significant differences in 

individual gene expression between the groups; this is the standard version of the pipeline (Figure 

3A, Supplementary Method SM7).  

 

Knowledge-guided gene prioritization: KnowEnG also offers a knowledge-guided mode of this 

pipeline, where the ProGENI algorithm of Emad et al.27 is used to incorporate a network encoding 

prior knowledge into the identification of phenotype-related genes (Figure 3A), using random 

walk-based techniques similar to those used in the NBS clustering approach18. We had previously 

tested ProGENI on the task of prioritizing drug response-related genes. Through systematic 

benchmarking, experimental validations and literature surveys we showed that it identifies 

phenotype-related genes more accurately compared to simple statistical methods as well as 
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machine learning methods that do not utilize prior knowledge28. We now applied this algorithm, 

via the knowledge-guided gene prioritization pipeline, to identify top genes associated with each 

tumor type, based on expression data (Figure 3B, Supplementary Method SM7). (KnowEnG 

allows this analysis to be performed for all tumor types through one simple operation, rather than 

repeat it for each tumor type separately.)  

 

Gene prioritization finds driver genes: For an independent assessment of the above results, we 

compared the top 100 genes for each tumor type with drivers of that cancer as cataloged in the 

IntOGen database29 based on mutation and gene fusion data (Figure 3C). We observed overlaps 

between the two lists; for example, in head and neck squamous cell carcinoma (HNSCC) six of 

the highly prioritized genes are known drivers (Fisher’s exact test p-value 8.2E-4, Supplementary 

Figure SM8.SF1). A similar assessment of genes reported by the standard pipeline (without 

knowledge-guidance) revealed fewer overlaps with respective driver sets for all but two tumor 

types (Figure 3C). Often, common driver genes were identified by both versions of the pipeline, 

e.g., GATA3 for breast cancer (BRCA), but in many cases the knowledge-guided version reported 

known drivers that were missed by the standard pipeline, e.g., FOXA1 for BRCA, NRAS, and 

KRAS for acute myeloid leukemia (AML), and CDH1, CTNNB1 and EGFR for HNSCC. (ESR1, a 

well known marker of BRCA30, was ranked in the top 1.2% of all genes for BRCA, but ranked 

much worse for other tumor types.) Similar conclusions were reached when we repeated the 

assessment using a larger external set of tumor type drivers, based on both IntOGen and 

COSMIC databases29,31 (Supplementary Method SM7).  

 

Functional enrichment of prioritized genes: To gain further insights into the highly ranked genes 

reported for each tumor type in the above analysis, we subjected them to functional enrichment 

analysis through the Gene Set Characterization pipeline, whose standard version uses the 

Fisher’s exact test to assess the enrichment of a gene set for pre-specified annotations. This 

revealed various interesting pathways and Gene Ontology terms as being significantly associated 

with each tumor type (Supplementary Method SM8). For instance, glioblastoma (GBM)-related 

genes found by ProGENI were significantly associated with receptor proteins in the presynaptic 

active zone and excitatory synapse, whose altered expression can enhance gliomas ability to 

grow and survive32 (Bonferroni corrected p-value 6.0E-3). Similarly, Acute Myeloid Leukemia 

(AML)-related genes were enriched for platelet activation, shown to be related to blast 

proliferation33 (Bonferroni corrected p-value 2.0E-6). The extent to which significant functional 

properties can be associated with a gene set extracted by genomics analyses is one measure of 
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the utility of that gene set34. Thus, we summarized the results of gene set characterization by 

noting the most statistically significant functional enrichment (of genes prioritized) for each tumor 

type. We noted that when the same process was repeated using genes reported by the standard 

gene prioritization pipeline the functional enrichments tended to be less prominent (Figure 3D), 

thus providing further evidence of the value of knowledge-guided gene prioritization. The same 

conclusion was reached when a different network (STRING text mining) was used in gene 

prioritization instead of the HumanNet integrated network (Supplementary Method SM8).   

 

Pan-cancer signature from prioritized genes: Sets of genes of particular relevance to a tumor type 

are often used as a ‘signature’ of that tumor, i.e., a representative gene set that captures much of 

the diagnostic or prognostic value of the entire expression profile. The PAM50 signature of breast 

cancer is a prime example15, being used for patient stratification based on expression of a small 

set of genes. We asked if the tumor-associated genes prioritized above for each tumor type 

together form a similar signature with prognostic value in a pan-cancer context. Indeed, we 

observed that pan-cancer subtypes obtained from clustering only the expression of the tumor-

associated genes were just as predictive of survival (Kaplan Meier p-value 3.8E-175) as the 

above-mentioned clusters based on entire expression profiles (p-value 1.2E-169) (see 

Supplementary Note SN9). This finding was robust to the use of different networks (or no 

network) in the gene prioritization step.  

 

Case study: Signature Analysis and Gene Set Characterization on a third-party system 

Our next case study makes use of a fourth pipeline – Signature Analysis (Figure 4A) – to study 

a transcriptomic data set of Esophageal Squamous Cell Carcinoma (ESCC) samples5, and also 

showcases how KnowEnG tools can be invoked on computing infrastructures external to the 

platform (Figure 4B). While the KnowEnG web-portal offers a flexible graphical user interface, 

advanced users performing bioinformatics analysis on a different computing framework may 

prefer to avail of KnowEnG pipelines on that external framework directly, without tedious transfer 

of data, intermediate results or code from one system to another.  

 

Interoperability: KnowEnG currently offers such seamless interoperability with the Seven Bridges 

Cancer Genomics Cloud (SB-CGC), which provides researchers with secure access to public 

data sets such as TCGA and TARGET. We used SB-CGC to access RNA-seq data for the 

previously reported ESCC tumor samples5, and created a transcriptomic spreadsheet (genes x 

samples) for further analysis with KnowEnG pipelines in the SB-CGC environment (Figure 4B, 
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Supplementary Method SM9). This is made possible by the publication of KnowEnG pipelines 

as native workflows on the SB-CGC, with simple graphical interfaces, and creates opportunities 

for synergistic use of functionalities offered by these two powerful genomics computing platforms. 

(External availability of KnowEnG pipelines includes seamless access to the massive Knowledge 

Network that supports knowledge-guided analysis.) Interoperability is an important tenet of the 

emerging vision of computing infrastructures of the future. It was achieved by using two emerging 

technologies – Docker containers7 to make the underlying software of each pipeline portable and 

Common Workflow Language (CWL)35 to provide a standardized description of the pipeline 

(Supplementary Note SN10). This alternative mode of KnowEnG usage also facilitates 

reproducibility and reusability; for instance, users may share their project on SB-CGC with 

collaborators. Thus, by ensuring interoperability and reusability, in addition to accessibility and 

findability already offered by the cloud-based web platform, the KnowEnG-CGC joint framework 

takes a major step towards the realization of the ‘FAIR’ principles of modern data science.  

 

Signature analysis for patient subtyping: Operating within the SB-CGC framework, we performed 

a signature analysis of 79 ESCC patients as reported in the original TCGA publication. Signature 

analysis36 is a widely used method in cancer informatics and has been used for various tasks 

such as identifying subtypes15, characterizing purity of tumor samples37, determining the 

abundance of immune cells in tumor microenvironment38, characterizing transitions involved in 

the invasion-metastasis cascade23, etc. Here, given a spreadsheet of transcriptomic profiles of a 

cohort of patients, and a second spreadsheet of pre-determined expression signatures, the 

pipeline finds the closest matching signature for each patient (Figure 4A). This often allows 

existing insights about the signature to shed light on clinical characteristics of the patient based 

on their molecular profile. Following in original publication, we matched ESCC samples to 

signatures representing four subtypes of lung squamous cell carcinoma (LUSC)39, since the two 

cancers are anatomically adjacent and previously established subtypes of LUSC may be relevant 

to ESCC as well (Supplementary Method SM10). We noted that one cluster of ESCC patients 

(‘ESCC1’, identified in the original publication) mostly (65%) resembled the classical subtype of 

LUSC, while the second main cluster (‘ESCC2’) mostly (63%) matched the basal subtype of LUSC 

(Figure 4C), and fewer samples matched the primitive and secretory subtypes. The 

correspondence discovered between ab initio detected ESCC subtypes and previously reported 

LUSC subtypes is generally consistent with the observations of the original TCGA esophageal 

carcinoma analysis, who note that tumors matching the classical expression subtype also had 

similar somatic alterations to the subtype and were associated with poor prognosis and 
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chemotherapeutic resistance. To highlight the convenience of co-localizing the analysis workflows 

with the data on the SB-CGC, we reran the analysis by simply substituting an alternate TCGA 

dataset of LUSC tumor samples, again finding the classical subtype (40%) to be the most 

prevalent (Figure 4D).  

 

Pathway analysis of subtype-associated genes: Having categorized ESCC patients into one of 

four subtypes using signature analysis, we next used the standard gene prioritization pipeline to 

identify genes associated with each subtype, and subjected the resulting subtype-associated 

gene lists (Supplementary Method SM11) to further analysis using the gene set characterization 

pipeline introduced above. We now used the knowledge-guided version of this pipeline, which 

instead of performing the traditional ‘enrichment test’ between sets40, uses a random-walk 

algorithm with the user-provided gene set as ‘restart nodes’, to find property nodes of the 

Knowledge Network that are most related to the given gene set (Figure 5A). This class of 

algorithms has been successfully used to quantify the relationship between network nodes in a 

variety of domains such as web mining41 and social network analysis42. The KnowEnG pipeline 

uses an implementation called ‘DRaWR’ 43, the main advantage of which compared to enrichment 

tests is that it examines not only properties with which the given genes are annotated, but also 

the properties with which genes related to the given genes are annotated (Supplementary 

Method SM11). We have previously used DRaWR to characterize gene sets in Drosophila 

development43 and cancer44. Here, we used the DRaWR-based knowledge-guided gene set 

characterization pipeline with the HumanNet Integrated network19 as the underlying network to 

identify, for ESCC subtype-related genes, the most related pathways in the Enrichr Pathways 

Collection45. (The pipeline offers several options for the network as well as the properties to be 

ranked, see Supplementary Method SM1.) As a point of contrast, we also analyzed the gene 

sets with the standard version of the pipeline that uses the traditional Hypergeometric test 

approach46. Figure 5C tabulates 12 discovered pathway associations for ESCC subtypes that 

were reported by the DRaWR-based version of the pipeline, but not by the standard version. Even 

though these associations do not meet the traditional criterion of significant set overlap, there is 

support in the literature for seven of the 12 associations. Moreover, the top-ranked association 

was between basal subtype of ESCC and the gastric cancer network, which is credible given the 

close relationship between ESCC and gastric cancer (GCA), which are anatomically adjacent and 

share several risk factors47. Surprisingly, this association was not detected by the enrichment test 

performed in the standard pipeline. Another interesting example is the primitive subtype being 

linked to FOXM1 transcription factor network, but only by the DRaWR-based pipeline. FOXM1 
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has been found to be related to ESCC progression48 and to be a potential drug target; our finding 

of a specific association with the primitive subtype of ESCC suggests that the tumor subtype may 

be an important factor to consider in its therapeutic significance. We also found several subtype-

pathway associations reported by both versions of the pipeline (Figure 5B). For instance, both 

the basal and classical subtypes were associated with NRF2 pathway49, the secretory subtype 

was linked to Syndecan-1 mediated signaling event50, and the primitive subtype to oxidation by 

Cytochromes P45051. Six of the 13 such associations found by enrichment-based as well as 

DRaWR-based gene set characterization had circumstantial evidence in the literature.  

 

In summary, this case study illustrates how different KnowEnG pipelines, in this case, beginning 

with signature analysis and followed by gene prioritization and gene set characterization, can be 

used in a workflow to not only relate patient profiles to previously reported cancer subtypes but 

also to glean novel insights about genes and pathways differentiating patients matched to different 

subtypes. We performed these analyses on a system external to KnowEnG (i.e., Seven Bridges 

CGC), but the same workflow may be executed on the KnowEnG platform as well, and the 

interface facilitates easy ‘stringing’ of multiple pipelines to enable such workflows. 

 

Discussion 

KnowEnG is an analysis engine designed and implemented with the needs and trends of modern 

genomics research in mind. It embodies some of the most powerful ideas to have emerged in the 

field over the last decade, including knowledge-guided analysis, cloud-based storage and 

computing, machine learning and network mining algorithms, and the ‘FAIR’ principles for broader 

impact. KnowEnG draws inspiration from existing analytic tools and systems, such as 

geWorkBench52, GenePattern53, GeneMANIA54, etc., and attempts to combine some of their 

strengths and fill key gaps. For instance, a tool that offers powerful knowledge-guided analytics 

may be available mainly as a desktop system, with an online version of limited functionality and 

scalability. On the other hand, some tools provide scalable cloud-based and/or web-based 

execution but lack knowledge-guided analytical capabilities or only offer analysis of gene sets 

rather than matrices of omics data. Thus, a joint emphasis on knowledge-guided analysis of rich, 

spreadsheet-format data sets as well as full-strength online-accessibility and interoperability 

stands out as a hallmark of the KnowEnG system. Similarly, while tools such as Clustergrammer55 

and shinyheatmap56 offer convenient means for visualization of spreadsheets, akin to KnowEnG’s 

Spreadsheet Visualizer module, the unique strength of KnowEnG comes from combining the 

power of interactive visualization with strong analytics. Popular web-based platforms such as 
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cBioPortal57, Genomic Data Commons (GDC)2 and the UCSC Cancer Genome Browser58 also 

offer useful online analysis of spreadsheet data, but these are typically intended for data sets 

stored on those portals. In contrast, the main target data for KnowEnG tools are those provided 

by the researcher, either by direct upload or by selection from an external repository such as SB-

CGC.  

 

KnowEnG also offers a vision of genomic computing that is complementary to the dominant 

paradigm where software packages (e.g., in R or python) are installed on the user’s computer 

and executed locally. The current paradigm is convenient as long as data sets predominantly 

reside locally, but with the on-going movement towards massive data sets in the public domain59 

and a clear need for moving tools to co-locate with these data, we expect the alternative paradigm 

embraced by KnowEnG to be increasingly relevant. Its main platform provides a convenient way 

to analyze the user’s uploaded spreadsheets while exploiting massive knowledge-bases encoded 

in the Knowledge Network, while its interoperability with major cloud-based platforms such as 

Seven Bridges CGC showcases the advantages of tools moving to data sources while maintaining 

the convenient ‘illusion’ of local computation. Finally, we note that while the case studies 

presented above are focused on cancer informatics, the tools of KnowEnG are applicable to a 

broad array of genomics data sets from a number of different species. 

 

Methods 

The details of the datasets and KnowEnG analysis pipelines used in this article are fully described 

in the Supplementary Methods. The Supplementary Methods also includes additional 

interpretations for each analyses as well as all of the non-default run parameters needed to 

reproduce the results. Many subsections contain links to additional resources where the actual 

code, containers, or compute servers can be found. Additional information about the components 

of the KnowEnG platform and several related ad hoc analyses are also described in detail in the 

Supplementary Notes.  

 

Data Availability  

The datasets analyzed during this study are public Cancer Genome Atlas (TCGA) datasets 

available from the UCSC Cancer Genome Browser58 or the Seven Bridges Cancer Genomics 

Cloud9. The data and parameters for the primary analyses are available in our GitHub repository 

[https://github.com/KnowEnG/quickstart-demos/tree/master/publication_data/blatti_et_al_2019] 

(more details in Supplementary Note SN6). 
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(A)  KnowEnG Platform Workflow (B)  KnowEnG Analysis Pipelines

(C)  KnowEnG Knowledge Network

(D)  KnowEnG Pipeline Handover

1  Upload Data

KnowEnG pipelines are able to 
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Figure 1: Overview of KnowEnG. (A) KnowEnG: portal and system for genomic analysis on the 
Cloud. (B) Analytical functionalities are organized as ‘pipelines’ for common tasks such as 
clustering, gene prioritization, gene set analysis and signature analysis. Each pipeline offers 
various options to customize the analysis, including use of prior knowledge. (C) Knowledge 
Network represents prior knowledge that may be used during analysis. Nodes represent genes 
and biological properties, while edges represent either annotations of gene properties or 
gene-gene relationships. Sources of information are shown on the right. (D) Output of one pipeline 
may be used as input for another pipeline through a convenient ‘handover’ mechanism in the 
KnowEnG portal, facilitating deeper and multi-faceted analysis of user’s data.
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(A)  Comparison of Standard vs. Knowledge-guided Sample Clustering (C)  Comparison of Clusterings

Figure 2: Sample Clustering. (A) Knowledge-guided Sample Clustering, illustrated in the context of somatic mutation profiles of cancer patients. Since mutations are rare, two patients may 
not have mutations to the same gene(s) and their mutual similarity will be modest. In the knowledge-guided mode, similarities between patient profiles are detected not only if the same 
genes are mutated but also if genes located proximally on a network are mutated; this ‘relaxed’ notion of mutation profile similarity leads to improved clustering. (B) Kaplan-Meier survival 
analysis of clusters from HumanNet-guided clustering of somatic mutation profiles. Each of 14 reported clusters is plotted as a separate survival curve, and the p-value of the multivariate 
log rank test is displayed. (C) Concordance between different clustering approaches, using Adjusted Rand Index (ARI). Three of these approaches use the Sample Clustering (‘sc’) pipeline, 
with HumanNet (‘hnNet’), STRING text-mining (‘sText’) or no network (‘noNet’) for guidance. Two clustering approaches are reproductions from the Hoadley et al. (‘tcga_mut’ obtained from 
mutation data, and ‘tcga_coca’ obtained from multi-omics data using COCA). The sixth clustering (‘disease’) is simply a grouping of patients by tumor type. (D) Kaplan-Meier survival 
analysis of 13 COCA clusters in pan cancer multi-omics data. Users may click the clock icon next to cluster assignments to access this display, which uses the current grouping criterion 
(configurable) for survival analysis. (E) Sample Clustering of pan cancer multi-omics profiles, displayed by the Spreadsheet Visualizer module. Patient profiles are grouped by overall 
cluster assignment using COCA. The top heatmap (blue) shows cluster assignments based on individual omics data types (‘expr’: expression, ‘RPPA’: proteomic,  ‘CNV’: copy number 
variation, ‘methyl’: methylation, ‘miRNA’: microRNA). The heatmaps below show CNV data for select genes (middle) and mutation data for select genes (bottom), for the same patients. 
Users can configure the number of rows to display for each data source, the statistical criteria for selecting rows and their sorting order. The grouping criteria for samples (COCA cluster 
assignments here) can also be configured. User-selected clinical annotations of patients (primary disease in this view; color bar second from top) may also be displayed. 
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Figure 3  (Gene Prioritization) 
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Figure 3: Gene Prioritization Pipeline. (A) In standard mode, each gene’s expression is tested for association with phenotypic labels, e.g., with a t-test. In the knowledge-guided mode 
(ProGENI algorithm [GP]), each gene’s expression is first transformed by taking into account expression levels of its network neighbors, and these ‘network-smoothed’ expression values 
are tested for association with phenotype. The resulting ranking of genes is subjected to second phase of network-based smoothing to obtain the final ranking. (B) Visualization of 
results from the Gene Prioritization pipeline, used here to identify top genes associated with each tumor type (based on expression data). Users may choose to analyze and visualize 
results for multiple phenotypes together, and configure how many top genes per phenotype the report should include. (C) Known driver genes for each tumor type that are highly 
prioritized by standard and/or knowledge-guided modes of Gene Prioritization. (D) Comparison between tumor type-related genes identified using the Gene Prioritization pipeline in 
standard mode (‘GP_noNet’) or knowledge-guided mode using HumanNet (‘GP_hnInt’), based on their enrichment for GO terms. The axes represent the negative logarithm (base 10) of 
p-value of enrichment between the set of highly prioritized genes (from either method) for a tumor type and the most enriched GO category for that set. 
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Figure 4: Signature Analysis Pipeline. (A) Each user-uploaded expression profile (sample) is matched against expression profiles in a pre-determined collection (signatures) and match 
scores for all sample-signature pairs are reported by the pipeline.  (B) Signature Analysis and other KnowEnG pipelines can be executed seamlessly on the third party platform of Seven 
Bridges Cancer Genomics Cloud (CGC) that hosts a large repository of cancer data and associated tools. The pipelines are published on CGC as a native workflow and the Knowledge 
Network is transferred ‘under the hood’ from the KnowEnG Cloud when needed by a pipeline. (C) Signature analysis of 79 ESCC samples, distributed into three subgroups, matched 
against four LUSC signatures (subtypes) using Spearman’s Correlation Coefficient. (D) Signature analysis of 551 LUSC samples available on the CGC, matched against four LUSC 
signatures.
Figure 5: Gene Set Characterization Pipeline. (A) Common approaches to gene set characterization (GSC) examine the overlap between a user-provided gene set (e.g., genes A,D,E) and 
genes in a pathway (e.g., A,D,B in pathway P1). In the knowledge network-guided mode (algorithm DRaWR), the association between two gene sets is based not only on direct overlap 
between them but also on network-based proximity between them. (B) LUSC subtype-associated pathways found exclusively with network-guided GSC pipeline using DRaWR. 
(C) Pathways associated with LUSC subtypes found by standard as well as network-guided GSC pipelines.
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