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Abstract 

Pattern similarity analyses are increasingly used to characterize coding properties of brain regions, but relatively few have 

focused on cognitive control processes in FrontoParietal regions. Here, we use the Human Connectome Project (HCP) N-

back task fMRI dataset to examine individual differences and genetic influences on the coding of working memory load 

(0-back, 2-back) and perceptual category (Face, Place). Participants were grouped into 105 MZ (monozygotic) twin, 78 

DZ (dizygotic) twin, 99 non-twin sibling, and 100 unrelated pairs. Activation pattern similarity was used to test the 

hypothesis that FrontoParietal regions would have higher similarity for same load conditions, while Visual regions would 

have higher similarity in same perceptual category conditions. Results confirmed this highly robust regional double 

dissociation in neural coding, which also predicted individual differences in behavioral performance. In pair-based 

analyses, anatomically-selective genetic relatedness effects were observed: relatedness predicted greater activation pattern 

similarity in FrontoParietal only for load coding, and in Visual only for perceptual coding. Further, in related pairs, the 

similarity of load coding in FrontoParietal regions was uniquely associated with behavioral performance. Together, these 

results highlight the power of task fMRI pattern similarity analyses for detecting key coding and heritability features of 

brain regions. 

 

 

Introduction 

 A current focus of recent cognitive neuroscience research has been to understand the functional specializations 

associated with brain networks, rather than focal brain regions. One network that has received a great deal of research 

attention is the frontoparietal network (FPN), based on a strong theoretical consensus that this network plays a critical role 

in higher cognitive functions such as working memory and executive control (Michael W Cole & Schneider, 2007; 

Duncan, 2010; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). Consequently, a key goal has been to determine 

whether FPN functionality in higher cognition can be understood in terms of the specific information that is being coded 

within this network. Yet progress in understanding the specific coding properties associated with the FPN has been 

especially challenging, for a number of reasons. One is related to an influential view of FPN, which postulates that this 

brain network is critical for higher cognition precisely because it has a highly flexible coding scheme, that is not fixed, but 

rather adapts to current task demands (Assem, Glasser, Van Essen, & Duncan, 2019; Duncan, 2001). A second reason is 

that the FPN is a brain network which seems to strongly reflect individual differences in cognitive functions and abilities. 

Indeed, a key characteristic of the cognitive functions attributed to the FPN, such as working memory and executive 

control, is that they are dominated by individual variation (Kane & Engle, 2002). Likewise, brain imaging studies have 

repeatedly shown that the FPN is the brain network most robustly associated with individual variation in higher cognitive 

functions (M. W Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Michael W Cole et al., 2013; Jung & Haier, 2007; 
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Kane & Engle, 2002). Consequently, it may be the case that understanding representational coding in the FPN needs to 

incorporate and account for such individual differences.  

 Thankfully, advances in cognitive neuroscience techniques have pointed to promising methods for investigating 

representational coding and individual differences in brain regions such as the FPN. Multivariate pattern analysis (MVPA) 

approaches may be particularly suitable for addressing such questions, given that they enable examination of information 

encoded in a distributed fashion, such as in large-scale brain networks. Prior work has used MVPA to demonstrate that 

information related to working memory and executive control, such as task rules, can be decoded from activation patterns 

within the FPN (Bode & Haynes, 2009; Michael W Cole, Etzel, Zacks, Schneider, & Braver, 2011; Etzel, Cole, Zacks, 

Kay, & Braver, 2016; Reverberi, Görgen, & Haynes, 2012; Waskom, Kumaran, Gordon, Rissman, & Wagner, 2014; 

Woolgar, Hampshire, Thompson, & Duncan, 2011; Woolgar, Thompson, Bor, & Duncan, 2011; Zhang, Kriegeskorte, 

Carlin, & Rowe, 2013). Moreover, we have recently shown that individual differences in FPN coding can predict 

variability in behavioral performance in executive control tasks (Etzel et al., 2016). A particular type of MVPA, pattern 

similarity analysis, also referred to as correlational MVPA (Hendriks, Daniels, Pegado, & de Beeck, 2017) or 

representational similarity analysis (Kriegeskorte, Goebel, & Bandettini, 2006; Nili et al., 2014), may be particularly 

appropriate for examination of individual differences in FPN coding, since it provides a direct measurement of the 

similarity of activation patterns, both between individuals and within individuals across tasks. Although pattern similarity 

approaches have been less frequently applied to research on the FPN and executive control, one recent study did 

demonstrate a tight coupling between idiosyncratic activation patterns within the lateral prefrontal cortex and specific 

attentional control strategies and task performance (Lee & Geng, 2017). 

 Another well-established experimental and methodological approach for exploiting individual differences in brain 

activation is the examination of twin or sibling similarity in task activation patterns, which suggest underlying genetic 

contributions to cognitive function. The primary logic underlying such studies is the assumption that if individual 

differences in brain activation patterns are genetically encoded, then they should be similar across related individuals, and 

highest in monozygotic (identical; MZ) twins, since they, on average, share 100% of their segregating loci. Indeed, the 

standard logic of the “twin design” is to directly compare the similarity of brain activation in MZ and dizygotic (fraternal; 

DZ) twins, since differences provide a direct estimate of the heritability of brain activation patterns, under certain 

assumptions (Polderman et al., 2015). A number of brain imaging studies have been conducted using twin designs, 

including some that have focused on working memory and executive control (Blokland et al., 2011, 2017; Koten et al., 

2009; Matthews et al., 2007). This work has demonstrated that at least some proportion of the FPN activation variability 

that is generally presumed to be idiosyncratic is in fact heritable, and thus a meaningful component of individual 

differences. An exemplar of this type of research is the work by Blokland and colleagues using a large-sample dataset 

from the Queensland Twin Imaging Study (Blokland et al., 2008, 2011, 2017). In a series of studies, these researchers 

used whole-brain genetic modeling techniques to demonstrate significant heritability effects (averaging 33% of variance) 

on brain activation patterns evoked during N-back task performance, which were primarily observed in FPN regions.  

 However, much of this previous work has focused on describing brain activity with univariate statistics: analyzing 

voxels individually (e.g., (Blokland et al., 2011)) or averaging across voxels within regions of interest (ROIs; e.g., 

(Blokland et al., 2008)). A limitation of this approach is that it is unable to detect patterns spanning multiple voxels. This 

is problematic because, as was alluded to above, the neural encoding of cognitive control-related representations is 

standardly thought to occur within such multivariate and distributed patterns of activity. Consequently, univariate 

approaches may miss some of the key dimensions of individual difference that may be present in distributed FPN activity 

patterns. A few neuroimaging studies have utilized multivariate approaches to test for heritability effects in twin designs 

(Pinel et al., 2015; Polk, Park, Smith, & Park, 2007). In this work, the key approach is to examine the relative similarity of 

activation patterns in MZ twins, relative to both DZ twins and unrelated individuals. In a first study of this type, Polk et al. 

(2007) showed that pattern similarity was reliably higher in members of MZ twin pairs within occipitotemporal regions 

when processing face and place stimuli. In a follow-up study by Pinel et al. (2015), this finding was confirmed within a 

face region, and was further found to differentiate from univariate approaches, which were not sensitive to a significant 

MZ similarity effect in this same region. This aspect of the Pinel et al. (2015) findings suggests that multivariate 
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approaches may have potentially greater statistical and inferential power for detecting the heritability component of 

individual differences. Nevertheless, to our knowledge, no prior studies have used multivariate approaches to estimate 

heritability and other familial effects and individual differences within FPN regions, through twin-based designs.  

 Another related question refers to the functional-anatomic specificity of twin-based multivariate pattern similarity 

effects. Although the prior studies focusing on occipitotemporal regions have shown the potential power of multivariate 

approaches for detecting twin similarity effects in perceptual coding, other brain regions were not tested, so the anatomic 

specificity of genetically-based pattern similarity for the same perceptual categories (i.e., faces and places) was not 

evaluated. In other words, although it is commonly assumed that the multivariate pattern similarity effects occur 

preferentially in the brain regions thought to be involved in perceptual coding, i.e., occipitotemporal regions, this 

assumption has not been tested directly, by comparison against other brain regions that would not be thought to mediate 

such coding (e.g., FPN). Conversely, in studies examining FPN twin pattern similarity effects, it would be important to 

test whether such effects preferentially occur in conjunction with task conditions that do involve FPN coding, such as 

working memory and executive control.  

 A final limitation of the prior work is that it has not provided strong tests of whether activation pattern similarity 

effects are functionally relevant, for example, by linking them to behavioral performance. In particular, if activation 

pattern similarity reflects the fidelity or quality of representational coding, then individual differences in activation pattern 

similarity should predict variation in behavioral performance. Moreover, twin pairs showing higher activation pattern 

similarity (i.e., with each other) should also be more likely to have better task performance. This prediction derives from 

the assumption that activation pattern dissimilarity reflects, in some part, noisiness in representational coding – since by 

definition noisy representations should be uncorrelated across individuals, whereas optimal representations should be 

more similar among related pairs.  

 In the current study, we systematically tested each of these predictions, addressing limitations in the prior work. 

Specifically, we exploited the large size and family-based structure of the Human Connectome Project (HCP, (Van Essen 

et al., 2012)) dataset to investigate individual differences and twin similarity in neural representational coding. We 

focused on two brain networks for which the prior literature suggests the most clear-cut predictions of functional 

specialization and dissociability: the FPN and a contrasting Visual occipitotemporal network. We took advantage of the 

richness of the N-back task fMRI within the HCP to examine representational coding of working memory (WM) load and 

perceptual category. In the HCP, participants performed the N-back under high (2-back) and low load (0-back) conditions 

with multiple categories of image stimuli, including faces and places. Neural coding related to working memory load 

should result in higher activation pattern similarity across conditions that have the same WM load but different perceptual 

categories (e.g., 2-back Face and 2-back Place) compared to conditions that have different WM loads (e.g., 2-back Place 

and 0-back Place). In the same manner, similarity-based approaches can be used to test for anatomical specificity, since 

WM load-based coding should be present in FPN but not visual occipitotemporal brain regions; conversely, perceptual 

category coding should be present in visual occipitotemporal brain regions but not FPN. As a first step of analysis, we 

tested for double dissociability of neural coding to validate the pattern similarity analysis approach as a means of 

addressing individual differences questions within the FPN.   

After establishing such effects, the second set of analyses tested the hypothesis that pattern similarity in MZ twins 

would be greater than in relatives that are less genetically similar (i.e., DZ twins and non-twin sibling pairs) and further, 

within unrelated pairs who also do not share other familial influences (e.g., shared environment). Even more critically, we 

provide a novel test of the anatomical specificity present in this pattern as well, such that FPN would exhibit high pattern 

similarity among twins selectively for load-based coding, whereas in visual occipitotemporal regions high twin-based 

pattern similarity would be selectively present for perceptual category coding. Finally, we examined whether variability in 

pattern similarity was functionally meaningful, in the sense of predicting better N-back task performance, and moreover 

whether twin pair-based variation could uniquely predict performance over and above individual variation. To preview, 

our findings strongly confirmed each of these predictions, providing a clear base of support for the idea that FPN 

activation patterns reflect functionally specific coding of WM-related information, while also incorporating a substantial 

degree of both individual and genetically-related variation.  
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Materials & Methods 

Dataset and Participants 

 This work used functional images, demographic information, and behavioral performance measures from the 

Human Connectome Project (HCP, http://humanconnectome.org/) (Van Essen et al., 2012). We included a total of 764 

participants (382 pairs) from the 1200 subjects release, selected to form four groups of paired people: monozygotic twins 

(MZ; 105 twin pairs), dizygotic (DZ, 78 twin pairs), non-twin siblings (SIB, 99 pairs); and unrelated people (UNR, 100 

pairs). Only twins with genomically-verified zygosity (as of March 2017) were included, and twin status was assigned 

based on this information, rather than self-report. Only same-sex pairs were included in each group. MZ and DZ twin 

pairs are necessarily of the same age (though sometimes scanned several months apart); pairs of non-twin siblings and 

unrelated people were selected to be within 3 years of age at the time of scanning. Only full siblings (same mother and 

father) were included in SIB; unrelated people did not share either a mother or a father by their self-report. No person was 

included in more than one group (i.e., a person would not be paired with their twin in the MZ group and someone else in 

the UNR group). 

 All analyses were performed using R version 3.1.3 (R Development Core Team, 2015), with WRS (Wilcox, 2017) 

and DescTools package functions for robust statistical tests. Trimmed (at .1) means and standard errors are reported unless 

otherwise specified. Code and input data for replicating the figures and analyses is in the Supplemental and available at 

the Open Science Foundation, https://osf.io/p6msu/.  

 

Task and Data Processing 

 We used functional images from the HCP working memory task fMRI dataset, which is a blocked version of the 

N-back task (Barch et al., 2013). Briefly, task stimuli consisted of visual images (faces, places, tools, and body parts), 

with each block composed of a single category of images, performed with either 0-back load (judge whether the currently 

presented image matches the target image shown at the beginning of the block) or 2-back load (judge whether the 

currently presented image matches the one shown two trials back). The task was presented in two imaging runs, each of 

which had eight task blocks, one block for each combination of load and stimulus category (Barch et al., 2013). Our 

analyses began with the parameter estimate images (second-level FSL COPEs (Smith et al., 2004)) included in the HCP 

1200 subjects release. Briefly, these COPEs are from GLMs performed after the images went through the HCP Minimal 

Preprocessing Pipelines, which included (among other steps) MNI atlas transformation, surface projection, and surface 

parcel constrained 2 mm FWHM smoothing (Glasser et al., 2013).  

 Here, we focus on two distinct cognitive dimensions: perceptual category processing and working memory load 

processing. In the HCP working memory task, perceptual category processing varied with which type of image was used 

in a block, while working memory load processing varied with whether the block was 0-back or 2-back (higher load for 2-

back). To focus on these processes in a balanced 2x2 design we included only face and place blocks in our analysis, with 

four parameter estimate images of interest for each person: 0-back Face, 2-back Face, 0-back Place, and 2-back Place. N-

back load, face, and place image processing have been extensively studied, allowing clear-cut a priori predictions 

regarding the brain regions likely to be relevant. Specifically, we assumed that perceptual coding of perceptual category 

would occur within the ventral occipitotemporal visual network (Haxby et al., 2001) with fairly consistent patterns across 

individuals; conversely, coding of cognitive task goals and working memory load were assumed to occur within the 

frontoparietal control network (M. W Cole et al., 2012; Michael W Cole & Schneider, 2007; Owen, McMillan, Laird, & 

Bullmore, 2005; Vincent et al., 2008), and also be more idiosyncratic (highly impacted by individual differences). 

 As we could make strong expectations of which brain regions would be relevant for these cognitive processing 

components (the FPN and visual occipitotemporal networks), and since the goal of the current investigations was to 

explore signal strength and heritability patterns, rather than to isolate more anatomically localized brain regions (the 

question of anatomic specificity is an interesting one that we address briefly below, but a thorough investigation is beyond 

the scope of the current work), we employed a network-based analytic strategy. Specifically, we used the Gordon cortical 
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parcellation scheme (Gordon et al., 2016) to anatomically identify the key regions of interest (ROIs) within the FPN and 

visual occipitotemporal networks. Following the terminology of this scheme, we hereafter refer to the specific sets of 

vertices that define these ROIs as FrontoParietal and Visual “communities”, rather than networks, reserving the term FPN 

to refer to the more generalized (i.e., not tied to a specific parcellation scheme) definition of this functional brain network.   

 The Gordon parcellation was released aligned to the HCP preprocessed images, making it convenient, while also 

unbiased with respect to our primary analyses. The two communities include brain regions that are generally considered 

relevant for working memory load and perceptual category processing (Figure 1, lower left). All vertices falling within 

each of these communities were included in the analyses; no further feature selection was performed. This resulted in, for 

FrontoParietal, 831 vertices in the left hemisphere and 1418 in the right hemisphere; for Visual, 3084 vertices on the left 

and 3689 on the right. Analyses were performed in each hemisphere separately, and then averaged over hemisphere. 

 

Load and Category Index Scores for Pattern Similarity Quantification 

 Pattern similarity approaches provide a means of quantifying the relative degree of similarity between activation 

patterns exhibited in different conditions, within brain regions of interest. For this study, our hypotheses concerned the 

relative similarity of vertex-level activity patterns between different task conditions that shared either the same perceptual 

Category (e.g., 0-back Face and 2-back Face) or the same working memory Load (e.g., 2-back Place and 2-back Face). 

Specifically, we expected that similarity related to Category would be higher in Visual than FrontoParietal, whereas 

similarity related to Load would be higher in FrontoParietal than Visual. We measured pattern similarity between 

conditions using the Pearson correlation statistic, following a common approach used in prior analyses (Haxby et al., 

2001; Polk et al., 2007). Note that Pearson correlation is insensitive to additive and proportional translations: it ignores 

differences in the across-vertices mean value of each example, but will detect similarly-shaped vectors (e.g., higher values 

in vertex 2 than vertex 1) (Romesburg, 2004). Accordingly, no transformations (e.g., normalization) were made to the 

parameter estimate images: correlation was calculated using the HCP-released COPE value for each ROI vertex. 

 We conducted two sets of pattern similarity analyses, the first within individual participants (Figure 1), and the 

second within paired participants (e.g., a pair of MZ co-twins, Figure 2). In both types of analyses, the correlations can be 

arranged into matrices, as is the standard approach in Representational Similarity Analysis (RSA, (Kriegeskorte, Mur, & 

Bandettini, 2008; Nili et al., 2014)). Given the four conditions, six correlations are possible within each individual (0-back 

Face with 2-back Face, 0-back Face with 0-back Place, etc.), forming symmetric similarity matrices, while sixteen unique 

correlations are possible within each participant pair (0-back Face in one person with 2-back Face of their co-twin, etc.). 

The appearance of the similarity matrices themselves can be useful, as can be defining a statistic to describe the degree to 

which particular information coding schemes are reflected in each matrix. Reference Matrices illustrate the expected 

appearance for each particular type of information coding; the Reference Matrices for Load and Category coding for 

individuals are shown in Figure 1 and for paired participants in Figure 2. There are multiple approaches for calculating 

how well each observed RSA matrix matches a reference; here we computed a difference score by subtracting the mean of 

matrix cells specifying the task conditions that were predicted to be less correlated (marked with – in Figures 1 and 2) 

from the mean of cells for conditions that were predicted to be more correlated (marked +). This difference-based 

quantification method is sometimes described as applying a contrast, with reference matrix cells weighted to sum to zero 

(e.g., (Oedekoven, Keidel, Berens, & Bird, 2017)).  

 It is clear how to construct the Category reference matrices for both the individual and pairwise analyses: images 

of the same category should be more similar than images from different categories, with no expectation that the two image 

categories (Face and Place) would have different activation strength in these large communities. This equivalence does 

not hold for Load, however: within FrontoParietal the mean level of activation (i.e., a univariate statistic) generally 

increases as working memory load increases (although not a focus of the current work, we briefly explore these types of 

univariate activation effects in S5.2). Further, the HCP used a 0-back manipulation, which likely differs from the 2-back 

in more aspects than working memory load alone (i.e., 0-back and 2-back are likely to differ more than 2-back and 4-back 

would differ). It thus seems reasonable that we should only expect the similarity of two 2-back load conditions to be 

greater than the similarity of two conditions that differ in load. Restricting the Load quantification to 2-back conditions is 
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not a perfect solution, however, because it unbalances the reference matrices, i.e., some cells are omitted from the Load 

quantification that are included in the Category quantification. Given this uncertainty regarding the best way to quantify 

Load, we settled on a conservative approach, including both 0-back and 2-back trials in the main analyses (as shown in 

Figures 1 and 2), but also conducting pairwise analyses including only 2-back trials for comparison. Thankfully, as 

described under Results, the primary findings were the same with both analysis, but did show evidence of greater 

sensitivity when only including 2-back trials. 

 

 

 
Figure 1. Illustration of the method of quantifying similarity within each individual participant. Starting at lower left and moving 

clockwise, we analyzed vertices within the Gordon FrontoParietal and Visual communities (Gordon et al., 2016). The values were 

extracted for each vertex from the parameter estimate images (COPEs, as released by the HCP), one vector for each of the four 

conditions of interest. The Pearson correlation between all pairs of these vectors was calculated, and arranged in the form of a 

similarity matrix; upper right. Two matrices, one for each community, were made for each participant. Finally, the Load and 

Category information in each matrix was quantified by subtracting the average of the cells marked with – from the average of the cells 

marked with + in the Reference Matrices, resulting in four scores for each participant.  
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Figure 2. Illustration of the method of quantifying similarity of paired participants. The imaging data (parameter estimates) for each 

participant was extracted for each of the four conditions and two communities, as in Figure 1. The similarity matrix for each 

participant pair was constructed as Pearson correlations of all possible condition combinations between the two participants (e.g., 2-

back Place of Person 2 correlated with 2-back Face of Person 1). Note that, unlike the similarity matrices for each individual 

participant, these matrices are not symmetric, and the diagonal is not 1. Finally, the Load and Category information in each matrix 

was quantified by subtracting the average of the cells marked with – from the average of the cells marked with + in the Reference 

Matrices, resulting in four scores for each pair of participants. 

 

Results 

Behavioral Performance and Heritability  

 We first report behavioral task performance to validate expected patterns, both across the entire group, and in 

terms of heritability effects. N-back working memory performance was quantified in terms of d’ (Hautus, 1995; Pallier, 

2002), proportion correct, and median reaction time (ms, calculated from correct trials only). First, we compared 

performance across the four participant groups (MZ, DZ, SIB, UNR), collapsing across condition (Table 1). The groups 

were not predicted to differ in performance, and in fact this was primarily the case. Groups did not differ in d’ (p=.08) or 

RT (p=.1), although DZ twins did show evidence of slightly better performance (p=.02, measured with proportion correct 

and t1way, a robust ANOVA (Wilcox, 2017); S1.1a). Next, we verified the presence of a significant load effect (poorer 

performance on 2-back relative to 0-back; p<.001 for all three measures). Again, there was no significant interaction with 

subject group or perceptual category (robust ANOVA; S1.1a). There was, however, a significant main effect of category 

(p=.038 for proportion correct, p<.001 for d’ and RT), such that responses were faster and more accurate for Face trials 

(relative to Place).  

 Pairs were expected to show higher similarity as genetic similarity increased; thus, the three groups of related 

individuals (MZ, DZ, SIB) were predicted to have more similar performance than the unrelated pairs (UNR; see S5.1 for a 

control analysis in which UNR pairs were matched to have similar performance). Likewise, if genetic factors make a 

strong contribution to cognitive task performance, the MZ pairs would be predicted to show the strongest within-trait 

correlations. As shown in Table 2, we did find that all three related groups showed stronger similarity than the unrelated 

pairs for proportion correct and d’. The same trend was present for RT, but was only significant when comparing MZ 
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twins to unrelated pairs. In all N-back performance measures, similarity was numerically highest for MZ twin pairs, but 

was not significantly different from the DZ or SIB pairs.   

 A parallel way to reveal the same point is through classic heritability modeling, which enables estimates of the 

proportion of variance that is genetic in origin. Using the classical twin model, as implemented with ACE structure (where 

A refers to additive genetic, C to common familial environment, and E to individual-specific environment; the 

correlations did not suggest the role of non-additive genetic factors)(Evans, Gillespie, & Martin, 2002), we estimated 

these parameters for the N-back behavioral measures. The best-fitting model by Akaike’s Information Criterion (AIC) 

was one in which A and E significantly contributed to variance in these measures, with heritability estimates in expected 

ranges (.36-.44) and statistically significant when estimates of common environment were constrained to zero, without 

any deterioration of fit (S1.6). These estimates are similar to what has been observed in prior heritability analyses of the 

N-back task (Blokland et al., 2008). We next examined the brain activity data to determine whether estimation of genetic 

factors could be detected with similar, if not higher, sensitivity and specificity than the associated behavioral measures.    

 

Table 1. Mean {standard error} of behavioral measures, all subjects combined, calculated from trials with the indicated conditions. 

Distributions and subject group separated results shown in S1.1. 

 Face, Place 

0-back, 2-back 

Face, Place 

0-back 

Face, Place 

2-back 

Face 

0-back, 2-back 

Place 

0-back, 2-back 

Proportion Correct .92 {.003} .954 {.003} .896 {.003} .926 {.003} .918 {.003} 

d’ 2.6 {.04} 3.01 {.04} 2.23 {.04} 2.62 {.04} 2.44 {.04} 

Median RT 799.8 {4.8} 700 {4.5} 921.4 {5.8} 787.7 {5.1} 810.3 {5.1} 

 

 

Table 2. Pearson correlation between the paired people in each subject group on the behavioral performance measures. p-values (in 

parentheses) were calculated with hc4wtest, a robust regression test for R2 different than zero (Wilcox, 2017), and uncorrected for 

multiple comparisons. Scatterplots and regression lines are in S1.2. Significantly different pairwise correlations within each row (i.e., 

on each measure) are indicated by shared superscripts, with p < .0083 (Bonferroni correction of .05 for 6 comparisons) as the 

significance threshold. All pairwise comparison p-values are listed in S1.2, and were calculated by twohc4cor (Wilcox, 2017). The 

astute reader will note negative correlations among the UNR pairs, which unexpectedly reached statistical significance for some of 

the measures. We believe the observed negative correlations reflect a sampling anomaly, as a larger set of unrelated pairings was 

quite close to the expected zero correlation (S1.5). Regardless, this does not seriously influence our key analyses or interpretations, 

which center on neural pattern similarity relationships among related pairs. 

 MZ DZ SIB UNR 

Proportion Correct .44 (p<.001)a .14 (p=.13)b .36 (p<.001)c -.32 (p=.004)a,b,c 

d’ .43 (p<.001)a .25 (p=.03)b .32 (p<.001)c -.38 (p=.002)a,b,c 

Median RT .34 (p<.001)a .17 (p=.062) .11 (p=.388) -.07 (p=.4)a 

 

 

Anatomical Specificity of Activation Similarity Patterns: Analyses in individuals 

 The first analyses were conducted to establish sufficient power to detect heritability and validate that pattern 

similarity analysis methods were sufficiently sensitive to demonstrate the expected functional and anatomic specificity. 

We first considered which conditions should have more similar activation patterns for the two types of information 

coding: if working memory load is coded in a brain network, then conditions sharing the same load should exhibit similar 

activation patterns (0-back Face and 0-back Place; 2-back Face and 2-back Place), while if perceptual category is coded, 

conditions sharing the same category should be more similar (0-back Face and 2-back Face; 0-back Place and 2-back 

Place). We expected that the FrontoParietal community would show more evidence of load-related than category-related 

similarity, with the reverse profile in the Visual community. Following the conventions of pattern similarity analysis, 

these load- and category-related similarity predictions are shown as Reference Matrices in Figure 1. Next, correlations 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/642397doi: bioRxiv preprint 

https://doi.org/10.1101/642397
http://creativecommons.org/licenses/by-nc/4.0/


9 

 

among the six pairwise combinations of the four parameter estimate images were calculated for each community within 

each person, examples of which are in Figure 3 and S2.1. Visual inspection of individuals’ matrices suggest a clear 

difference between the communities: the FrontoParietal matrices tend to resemble the Load reference, while the Visual 

tend to resemble the Category reference. This impression was evaluated numerically by quantifying the Load and 

Category information in each individual’s Visual and FrontoParietal matrices, calculating differences according to the 

reference matrices (Figure 1), which provides four scores for each participant: FrontoParietal Load, FrontoParietal 

Category, Visual Load, and Visual Category.  

 The distribution of the four scores (Figure 4, S2.3) provides a clear indication of anatomical and functional 

specificity: in the FrontoParietal community, the quantification scores were significantly higher for Load than Category 

(p<.001), whereas in the Visual community the reverse pattern was present (Category > Load, p<.001). These patterns 

reflect a highly robust double dissociation (Community by Information Coding interaction, p<.001), supporting the notion 

of specificity in FrontoParietal as well as Visual (all pairwise contrasts also significant). Moreover, the prior analyses 

included all participants, but the double dissociation is highly significant within each separate participant group (MZ, DZ, 

SIB, UNR) as well (S2.3). In an exploratory follow-up analysis we tested for the same dissociation, but across the whole 

brain within each individual parcel, rather than only the two communities (S2.6). The parcel-level results were quite 

consistent with the community-level results, showing that Category > Load effects were primarily observed in Visual 

parcels, while Load > Category effects were most robust in FrontoParietal, DorsalAttention, and Default Mode parcels. 

Moreover, no individual parcels had effects stronger than what we observed at the community level. 

 Although the community-based double dissociation was highly robust at the group level, there was also clear 

individual variation in the quantification scores. If this variability reflects functionally meaningful individual differences 

in brain coding of relevant task dimensions, then it should also be predictive of individual differences in behavioral task 

performance. To examine this question, we used N-back d’ as the behavioral measure (collapsed across Load and 

Category). The analysis strongly confirmed the hypothesis of functional significance, as highly selective brain-behavior 

relationships were observed (Figure 5). Specifically, the Load score was positively correlated in the FrontoParietal 

community (r=.31, p <.001), such that individuals showing a higher score (higher fidelity of load-based coding) had better 

N-back performance. Yet in the Visual community, the reverse pattern was present, with Load score correlating 

negatively with performance (r=-.19, p<.001), such that stronger Load coding predicted poorer N-back performance. On 

the other hand, Category scores were somewhat more weakly correlated with behavioral performance, and also showed 

the opposite profile (i.e., negative correlation for FrontoParietal, r=-.15, p<.001; positive correlation for Visual, r=.27, 

p<.001).  

 Although each of these correlations indicate high brain-behavior selectivity, they also suggest the possibility that 

all four scores are independently predictive of N-back performance. On the other hand, it seems likely that Load-based 

coding might be the most strongly associated with performance in the N-back, given the presumed dependence of the task 

on WM processes. To examine this issue, the data were submitted to a multiple regression analysis, with behavioral 

performance as the outcome variable, and all four quantification scores as potential predictor variables. This analysis 

confirmed that both Load scores were independently predictive of performance, with FrontoParietal Load positively 

predictive (beta=.32, p<.001) and Visual Load negatively predictive (beta=-.18, p=.0036). However, with all four 

predictors in the model, although explaining 16% of task variation, neither of the Category indices made independent 

contributions to predicting N-back task performance (FrontoParietal p=.4, Visual p=.1; full results in S2.5). Together, 

these results converge on the interpretation that individuals exhibiting strong Load coding in FrontoParietal regions will 

tend to have better N-back performance, while those showing strong Load coding in Visual regions will have poorer 

performance.  
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Figure 3. Similarity matrices for the two communities in four representative individuals. Additional examples are in Results 

Supplement 2, section S2.1, and group averages shown in S2.2. Note that the FrontoParietal matrices tend to resemble the Load 

Reference (Figure 1), while the Visual matrices tend to resemble the Category Reference, a tendency confirmed by the distribution of 

quantification scores (Figure 4). 

  

  
Figure 4. Distribution of Load and Category quantification scores for individuals’ matrices, by community. The Load quantification 

scores tend to be higher than Category in FrontoParietal, but the reverse in Visual. Boxplots for participants by subject group are 

shown in S2.3. 
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Figure 5. Relationship between individual behavioral performance (d’) and matrix quantification for Load and Category. Bands are 

.95 confidence intervals for the regression line, calculated with lsfitci (Wilcox, 2017). Statistics by subject group are in S2.4.  

 

Genetic Influences on Activation Pattern Similarity: Analyses in Pairs 

 After establishing the validity and utility of pattern similarity analysis for examining anatomically selective 

patterns of individual difference in neural coding, the second set of analyses examined the similarity of brain activation 

patterns in pairs of related and unrelated individuals. These analyses were conducted to provide a stronger and more novel 

test of the hypothesis that task-specific activation patterns (e.g., in the FPN) are genetically influenced and reflect 

individual differences. Adapting the approach used above, we again created pattern similarity matrices, but now computed 

the similarity of paired individuals, to quantify the degree to which activation in one member of the pair matches the 

other. Specifically, activation pattern similarity was again measured with Pearson correlation, but computed for all sixteen 

pairwise combinations of the four parameter estimate images across individuals (e.g., the 0-back Face of one twin to the 

2-back Face of their co-twin; Figure 2). Example matrices for one pair of people from each group are in Figure 6; 

additional examples and group-level average matrices are provided in S3.1. The appearance of these pairwise matrices 

(Figure 6) is broadly similar to the matrices for individuals (Figure 3): highest correlations in the lower right (cells sharing 

2-back Load) in FrontoParietal, but a checkerboard pattern (higher correlation for cells sharing Category) in Visual.  

 Unlike the matrices for individuals described previously, the pairwise matrices are not symmetric, and so the 

diagonal is meaningful, containing the across-person within-condition correlations for each of the four matched conditions 

(e.g., 0-back Face in one twin with 0-back Face of their co-twin). These values along the diagonal, when contrasted across 

MZ, DZ, SIB and UNR, provide evidence of heritability of the condition, and parallel the type of analyses conducted by 

Polk et al. (2007) and Pinel et al. (2015). However, in these prior studies, analyses were restricted to visual 

occipitotemporal regions. Here, we were able to not only test for replication (with a much larger sample size), but also to 

extend these previous findings to FrontoParietal regions and to WM-related conditions. Replicating prior results, we found 

significantly greater Visual activation pattern similarity in MZ twins than DZ twins, non-twin siblings (SIB), and 

unrelated people (Figure 7; p<.001 in all pairwise t-tests, S3.2). However, unlike the prior work, we also found that the 

DZ and SIB pairs showed significantly higher pattern similarity than UNR pairs, even though the latter were also matched 

on age and gender (the significance holds even if unrelated people are matched on behavioral performance; S5.1). No 

significant differences between DZ and non-twin SIB pairs were found in any comparison (indicating an absence of 

special twin environmental effects). The stronger participant group effects in our study are likely due to the increased 

power and precision provided by the larger sample sizes: 105 MZ and 78 DZ twin (with an additional 99 SIB) pairs versus 

11 MZ and 11 DZ twin pairs in (Polk et al., 2007) and 16 MZ and 13 DZ twin pairs in Pinel et al. (2015). 

 Although Polk et al. (2007) and Pinel et al. (2015) only examined visual occipitotemporal ROIs, we carried out 

the analysis in the FrontoParietal community as well (Figure 7, S3.2). Parallel findings emerged: within FrontoParietal, 

pairwise t-tests also showed significantly greater similarity in MZ twins than DZ twins, SIB, and UNR (p<.001), and 

likewise greater similarity among DZ and SIB pairs relative to UNR (but again no differences between DZ and SIB). The 

exception to this pattern was in the 0-back Face condition, in which only the difference between MZ and UNR had 

p<.001. The reduced similarity in FrontoParietal for 0-back load is unsurprising, as we expected FrontoParietal activation 

to increase with cognitive load. In a parallel heritability analysis, shown in S3.4, we found that activation in the 
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FrontoParietal community was more greatly attributable to individual-specific environmental effects than the Visual 

community, as indexed by the overall lower MZ similarity and consequent estimates of E (e2 ranged from .41 to .49 for 

Visual vs. .75 to .87 for FrontoParietal). In addition, while familial effects (genetic and common environment, estimated 

as 1-e2) were more pronounced for the Visual than FrontoParietal community, the extent to which additive genetic factors 

(i.e., heritability) influenced similarity in both communities was equivalent (a2 ranged from .05 to .16) such that the 

increased familial correlation in the Visual community was primarily due to stronger effects of common environment (c2 

ranged from .38 to .41 for Visual vs. .04 to .10 for FrontoParietal).  

 Together, these findings replicate and extend the work of Polk et al. (2007) and Pinel et al. (2015), by 

demonstrating a clear role for heritable factors that are present in activation patterns not only within occipitotemporal 

visual regions, but also in frontoparietal regions related to working memory and executive control. Moreover, the results 

provide convincing evidence that FrontoParietal activation pattern similarity effects are dominated by genetic factors, with 

very little influence of shared environment or other confounding demographic factors (age, gender, etc.).  

 

 
Figure 6. Similarity matrices for the two communities in four paired people. More examples and the group averages are in S3.1. As in 

the Figure 3 matrices for individuals, these pairwise similarity matrices tend to resemble the Category Reference (Figure 2) when 

calculated from Visual activation patterns, but the Load when calculated in FrontoParietal. The resemblance and correlations are 

strongest in the MZ and DZ pairs, with little similarity seen in UNR FrontoParietal. 
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Figure 7. Mean similarity of matched conditions (Figure 6 matrix diagonals) in the FrontoParietal and Visual communities. Error 

bars are standard error of the mean (SEM). Horizontal lines indicate bars that significantly (p <.0083, Bonferroni correction of .05 

for 6 comparisons) differ in a robust t-test. The full dataset and statistics are shown in S3.2.  

 

Genetic, Anatomic, and Task Specificity in Pairwise Activation Similarity Patterns 

 Although the analyses reported above were useful for extending the findings of Polk et al. (2007) and Pinel et al. 

(2015), and for confirming that activation pattern similarity approaches can be used to estimate heritability effects, they do 

not exploit the full power of the methodology, because they only use the diagonals of the similarity matrices (correlation 

between pairs of individuals on matched conditions). The alternative (RSA-style) approach quantifies how well the full 

similarity matrix for each participant pair conforms to the reference matrices (Figure 2), and consequently, provides a 

more sensitive test of whether pairwise similarity is preferentially strong for a particular representational coding scheme 

(Load or Category). Moreover, this approach avoids the confounds inherent in correlating conditions of the same type 

(e.g., if two participants are found to have similar activation patterns for 2-back Place, it could be due either to the shared 

Load or the shared Category). Consequently, we next computed the pairwise Load and Category quantification scores in 

each of the two communities (Visual, FrontoParietal), for paired participants of all four types (MZ, DZ, SIB, UNR).  

 The pairwise Load and Category quantification scores showed a high degree of anatomic specificity. In 

FrontoParietal, Load scores were significantly greater than Category in all subject groups (p<.001; Figure 8 and S4.1). 

Conversely, in Visual, Category scores were much greater than Load in all subject groups (p<.001). Importantly, although 

this double dissociation is of the same form as observed in the individual analyses, it reflects an independent measure of 

task coding specificity. In particular, the pairwise scores reflect selective activation pattern similarity between individuals: 

a high Load quantification score in FrontoParietal indicates that the two individuals’ activation patterns are more similar 

when the WM load is the same (e.g., 2-back Face in one person and 2-back Place in their twin) than when the WM load is 

different (e.g., 2-back Face in one person and 0-back Face in their twin).  

 Moreover, this coding specificity also showed clear effects of pair group: most prominent in MZ twins, least in 

UNR individuals (and the same pattern of results was found even when selecting UNR pairs in which the pair members 

were matched on behavioral performance; S5.1b). Interestingly, these imaging results show genetic similarity effects 

similar to the analyses of behavioral performance. Using robust ANOVAs to test for an influence of subject group within 

each of the four combinations of Community and Quantification yielded highly significant effects for Load in 

FrontoParietal (F=5.6, p=.001; S4.1b) and Category in Visual (F=35.5, p<.001), but not for Category in FrontoParietal 

(F=2.2, p=.093). Using post-hoc tests to explore these significant models, Load in FrontoParietal showed not only MZ > 

UNR (p<.001), but also MZ > SIB (p<.001) and MZ > DZ (p=.015). Likewise, Category in Visual showed MZ greater 

than all three other groups (p<.001); further, DZ and SIB were significantly greater than UNR (p<.001). There was no hint 
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of a significant difference between DZ and SIB in either model (both ps>.3), suggesting that environmental factors unique 

to twins have a minimal impact on the similarity of brain activation patterns. However, the DZ/SIB scores were more 

similar to the MZ scores than would be expected if heritable factors alone were responsible for their similarity, indicating 

the role of common environmental effects on the scores for both communities. Together, these results suggest that brain 

activation pattern similarity measures are robustly heritable, influenced by familial environmental factors, and are 

observed most clearly when taking into account the task coding present in the particular brain area (weaker genetic 

relatedness effects were found for Category in FrontoParietal and Load in Visual).  

 We also examined similarity effects when quantifying Load with only 2-back trials in the reference matrix (S4.1), 

suspecting the greater activation occurring during the high WM load condition would make activation pattern similarity in 

twins, if present, more pronounced (though at the possible cost of increased quantification score variance, since twelve 

cells go into the calculation instead of all sixteen). Indeed, the finding of Load greater than Category in FrontoParietal but 

Category greater than Load in Visual was also present when using only 2-back trials for Load quantification (S4.1a). The 

robust ANOVAs found a stronger effect of subject group in FrontoParietal with 2-back Load (F=7.1, p<.001), but no 

effect in Visual for 2-back Load (F=.6, p=.62, S4.1b). Conversely, if only 0-back trials are used for Load quantification 

there is no effect of subject group in either Community (S4.1b). An alternative interpretation of these results is that they 

are primarily driven by activation differences across conditions, e.g., a univariate increase in activation during the high 

load condition could cause an apparent increase in similarity. To investigate this possibility, we compared the mean 

activation in each pair of participants but found no load-related relationships (i.e., high mean FrontoParietal 2-back 

activation in one person does not predict high activation in their co-twin; S5.2c). Together, these results underscore the 

idea that these similarity measures are most clearly identifying genetic relatedness effects when the task coding dimension 

matches the functionality of the particular brain network.  

 

 
Figure 8. Distribution of pairwise Load and Category quantification scores, by Community. Load quantification scores are higher 

than Category in FrontoParietal, but lower in Visual. A robust pairwise t-test was performed within each community and subject 

group, as listed at the bottom of each plot (YuenTTest, trim=0.1; S4.1a). The full dataset is shown in Figure 9; one MZ FrontoParietal 

Category outlier at -0.18 not shown. 

 

Brain-Behavior Relationships in Pairwise Activation Similarity Patterns 

 The above set of analyses confirm the presence of heritability effects in BOLD activity, while using a multivariate 

pattern similarity approach. A test of the functional relevance of these pairwise scores is whether they, like the individual 

scores, are related to behavioral performance. Figure 9 shows the quantification scores for all participant pairs, with pairs 

ordered by behavioral performance (mean d’). Behavioral performance clearly explains some of the variability: pairwise 

quantification scores tend to increase as performance increases. Note that these results again showed a high degree of 

specificity: in FrontoParietal, the correlation between Load and behavioral performance was significant in all related pairs 

(MZ, DZ, SIB, p≤.002) but was not significant for UNR pairs (p=.1); likewise, there was no association for any group 
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when using the Category instead of the Load score (all p>.2). In contrast, within Visual, the correlation between Category 

and performance was significant for MZ and DZ twins (p<.005) and marginally so for SIB and UNR pairs (p<.025), but 

much less convincing when using Load instead of Category for quantification (Figure 9, S4.2). The anatomic and task 

dependent relationship with behavioral performance is even more striking when using only 2-back trials for Load 

quantification, but absent if only 0-back trials are used (S4.3). However, the MZ correlation was not significantly greater 

than the DZ or SIB correlations (which did not differ from each other: e.g. for 2-back trials for Load in the FrontoParietal 

community: rMZ=.46, rDZ=.49, rSIB=.43) suggesting that the relationship between behavioral performance and 

variability in BOLD activity might be due to common environmental rather than heritable factors. 

 Given the similarity of these patterns to what was observed when using the individual, rather than pairwise scores, 

one possible concern is that the correlations between the pairwise scores and behavior are purely a reflection of shared 

variance with the individual scores. To test for this possibility, we conducted multiple regression analyses, predicting the 

pairwise score with not only behavioral performance (from each member of the pair separately) but also with the 

individual quantification scores from the pair members (S4.4). The results were again specific: in FrontoParietal, the 

pairwise Load quantification scores tended to be associated with behavioral performance, even after including the 

individual quantification scores as predictors. This pattern was most strongly present for MZ twins (β=.33, p<.001 for 

including twin 1’s d’; β=.14, p=.14 for twin 2’s d’; S4.4), but with similar trends in the DZ and SIB pairs as well. Model 

comparison reinforced this impression of the usefulness of including all four predictors in the multiple regression: the full 

model (d’ for person 1 of pair, d’ for person 2 of pair, quantification score for person 1, quantification score for person 2) 

outperformed the model with the individual quantification scores only (p<.001 for MZ; p=.06 for DZ; p=.098 for SIB). 

The difference is even more striking when only 2-back trials are used for Load quantification: the full model 

outperformed the quantification scores-only model at p <.001 for MZ; p=.0017 for DZ; p<.001 for SIB. The findings are 

dramatically different in Visual: after accounting for the individual Category quantification scores, there was no additional 

 
Figure 9. Pairwise quantification scores, arranging participant pairs along the x-axis in order of increasing behavioral 

performance within each subject group (d’ averaged over the two participants; pairs with missing performance for either member 

omitted). The best performing pair is at the right of each subject group, so higher performance is associated with higher 

quantification scores. Listed r and p values are from correlating quantification scores against the behavioral performance rank 

ordering; S4.3 and the main text give correlations against the mean d’. S4.2 has versions of this figure unsorted by behavioral 

performance and with different Load quantification. S5.1c has this figure for a group of unrelated participants chosen to have 

similar behavioral performance. 
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relationship between N-back task performance and the pairwise scores in any of the subject groups. A final control 

analysis (S5.2c) also included the mean (i.e., univariate) FrontoParietal and Visual activation, treating the condition 

difference contrasts (2-back – 0-back and Place – Face) as additional predictor variables in the multiple regression, to 

determine whether the above effects could be explained by the presence of mean activation differences between the 

conditions. Yet even with the univariate predictors included in the model, the FrontoParietal Load pairwise quantification 

score was still found to be associated with N-back behavioral performance, suggesting that this association could not be 

fully explained by pairwise similarity in load-related univariate activation levels. 

 Together, these findings strongly underscore the selective utility of FrontoParietal regions as functional markers 

of WM load-based coding and of the variability in such load-based coding both in individuals and related pairs. Thus, 

better N-back task performance is predicted both for individuals that show stronger evidence of selective Load coding, 

and additionally, for related pairs that show greater similarity in their Load coding patterns. Conversely, neither Visual 

regions nor variation in stimulus-based coding can serve as equivalent predictors of performance, which again reinforces 

the selective importance of FrontoParietal Load coding to N-back performance.  

 

 

Discussion 

 The primary goal of this study was to test whether multivariate pattern similarity approaches could provide 

increased sensitivity and leverage for revealing the neural coding properties, individual differences, and genetic similarity 

effects present within the frontoparietal network (FPN). In this regard, the results provide compelling support along four 

different dimensions. First, we found clear evidence of functional anatomic specialization, such that while visual 

occipitotemporal cortex was selectively sensitive to similarity effects related to perceptual category (face, place), the FPN 

was selectively sensitive to similarity effects related to working memory (WM) load, a higher-order cognitive dimension 

strongly related to executive function and cognitive control. Second, pattern similarity indices in FPN showed clear 

evidence of systematic individual variation, and moreover, these individual differences were strongly associated with task 

performance, such that individuals exhibiting stronger selectivity to WM load coding also performed better on the N-back 

task. Third, we found that pattern similarity indices could be used to clearly reveal a gradient of genetic relatedness, such 

that identical (MZ) twins showed the strongest levels of selective pattern similarity to WM load in the FPN, with lower, 

but still significant degrees of similarity found among pairs showing 50% genetic relatedness (i.e., fraternal/DZ twins and 

siblings). Finally, we identified a new metric for quantifying “pairwise” variation, in that genetically related pairs 

showing greater degrees of selective similarity for WM load coding in FPN also had uniquely better N-back performance. 

Taken together, the results strongly reinforce the coding specificity principle, in demonstrating that FPN shows unique 

coding properties that are both sensitive to multiple dimensions of variation (individual, genetic) and also functionally 

relevant for task performance. We next describe further implications of the present results, as well as their relationship to 

prior work. 

 

Neural Coding of WM Load in FPN 

 The current results are consistent with a large neuroimaging literature indicating the importance of the FPN in 

WM and executive control functions (Braver & Ruge, 2006; Niendam et al., 2012; Rottschy et al., 2012). However, the 

current work extends beyond much of this prior literature, which has tended to rely on univariate measures of FPN 

involvement in WM. Indeed, in prior work, the focus has typically been on demonstrating increased or decreased FPN 

activity as a function of WM load, or other relevant variables, such as the type of information being maintained, updating 

or manipulation requirements, and distractor-related interference. By contrast, multivariate approaches shift the focus to 

the pattern of activity, potentially providing greater traction regarding how WM load is represented in the FPN. In 

particular, multivariate approaches can provide information regarding the WM-related content being coded by a region, 

even when the mean (i.e., univariate) level of activity may not change or be sufficiently sensitive (Harrison & Tong, 2009; 

Riggall & Postle, 2012; Serences, Ester, Vogel, & Awh, 2009). In the current study, we specifically employed 

multivariate pattern similarity techniques to demonstrate that the structure of activation similarity or dissimilarity across 
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WM conditions can also be informative. For example, here we demonstrated that FPN regions show significantly greater 

activation similarity in conditions that share the same WM load, even when the content of information being maintained 

can change, relative to posterior occipitotemporal regions. Moreover, we established that such similarity metrics are 

functionally important, in that they may reflect how well WM load information is represented in an individual (or pair of 

individuals), as this information appears to predict more accurate task performance.  

 Although the current study highlights the potential of pattern similarity approaches for testing questions regarding 

WM, executive control, and FPN function, it should be clear that this work represents just an initial step, and indeed the 

questions being asked in the current study were cast at a relatively coarse grain. For example, the current study focused on 

just the N-back task, with only two levels of WM load, and relied on block-related measures of activity. However, 

because pattern similarity analyses are eminently flexible, the approach could be easily extended to compare various WM 

task paradigms, to focus on different load levels, or to utilize event-related designs, which would enable a more fine-

grained focus on various within-trial events (encoding, delay, probe decisions) and/or activity dynamics within the trial 

(King & Dehaene, 2014). Such extensions are likely to be highly fruitful, and could be used to resolve important questions 

raised by the current work, such as the finding that the similarity structure of the 0-back seemed different from the 2-back. 

By examining other load levels (e.g., 1-back, 3-back) it could be better determined whether there are qualitative 

differences that make some load levels more distinct from others (e.g., 2-back and 3-back may be more similar to each 

other than they are to 0-back or 1-back). Indeed, although there is a growing literature utilizing MVPA decoding 

approaches within the domain of WM and cognitive control (D’Esposito & Postle, 2015), the use of pattern similarity 

measures is still sparse in this domain, relative to its adoption in other cognitive domains, such as perceptual coding 

(Chikazoe, Lee, Kriegeskorte, & Anderson, 2014; Kriegeskorte et al., 2008) and episodic memory (Dimsdale-Zucker & 

Ranganath, 2018; LaRocque et al., 2013; Xue et al., 2010). We hope that the utility of the pattern similarity approach 

demonstrated here will encourage other researchers to begin applying it to a broader range of questions in WM and 

executive control. 

 

Neuroimaging of Individual Differences 

 Within cognitive neuroscience there has been steadily increasing interest in using neural measures to better 

capture and characterize individual differences (Braver, Cole, & Yarkoni, 2010; Cooper, Jackson, Barch, & Braver, 2019; 

Gordon et al., 2017; Gratton et al., 2018; Satterthwaite, Xia, & Bassett, 2018). This focus on individual differences has 

partly been driven by the advent of large-scale neuroimaging studies, which are optimized for sensitivity to detect reliable 

individual variation (Cooper et al., 2019). Indeed, a primary rationale and goal of the HCP was to define individual 

variation in the human connectome (Van Essen et al., 2012). The success the HCP and others like it have led to a great 

deal of excitement around the concepts of personalized neuroscience (Satterthwaite et al., 2018) and “connectome 

fingerprinting” (Finn et al., 2015). Yet much of the recent excitement around individual difference-focused datasets such 

as the HCP, has been on characterizing individual differences from resting-state functional connectivity (rsFC), and under 

task-free states (Gratton et al., 2018; Tavor et al., 2016) rather than on task-based fMRI activation patterns. 

 The current findings illustrate some of the unique advantages of task-based fMRI patterns in terms of detecting 

functional and anatomic specificity of individual variation. In particular, a key finding was that individual differences 

were found to be dependent on task context. Within the FPN, the individual differences in activation patterns that 

predicted task performance were selective to coding of WM load; individual differences in the coding of perceptual 

category in FPN had no relationship to task performance. Conversely, when looking at visual regions, the strength of WM 

load coding negatively predicted performance, such that individuals with strong coding of WM load in Visual tended to 

have poorer task performance. These context-specific individual differences patterns also highlight the utility of pattern 

similarity approaches for understanding the nature of individual variation. The findings reinforce the notion that it is the 

coding specificity of FPN and visual regions that is functionally critical for optimal task performance. In other words, the 

findings demonstrate that it was the individuals showing the strongest functional specificity – coding WM load only in 

FPN and perceptual category only in visual regions – who exhibited the best performance. This relationship should only 

be present if coding specificity is functionally relevant for task performance. Together, this work suggests that computing 
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pattern similarity-based quantification scores that compare alternate coding schemes could be a powerful approach for 

revealing individual differences. Future work is needed, though, to demonstrate that such approaches could also work well 

in other domains. For example, in the HCP Gambling task, quantification scores could be computed to identify reward or 

punishment coding and determine whether individual differences in coding scores might predict functionally relevant 

behavioral indices (e.g., trait reward or punishment sensitivity).  

 

Genetic Relatedness Effects 

 The current approach represents a departure from the standard methods used in genetic neuroimaging analyses, in 

which univariate measures of ROI or voxel-based activation contrasts are tested for genetic correlation and subsequent 

statistical modeling of heritability. Instead, the method used here to identify potential genetic relatedness was one that 

harnessed potentially more powerful multivariate pattern similarity approaches. Although such approaches have rarely 

been used in this literature, they may be particularly well-suited for analyses of genetic relatedness. The key hypothesis is 

that, if influenced by genetic factors, then activation pattern similarity in paired individuals should track their degree of 

genetic similarity (i.e., relatedness: MZ > DZ and non-twin siblings > unrelated). The utility of the pattern similarity 

approach for identifying heritability in brain activation was first demonstrated by Polk et al. (2007), in a study focused on 

perceptual category coding in visual regions, with similar findings obtained by Pinel et al., (2015).  

 The current findings replicate this earlier work, but also extend it in important ways. Specifically, by harnessing 

the large sample size of the HCP, we were able to confirm the robustness of heritability effects, with clear evidence of MZ 

> DZ in both Visual and FrontoParietal. However, due to our considerably larger sample size and ability to combine data 

on DZ twins and non-twin SIBs, we were able to obtain a more precise estimate of common environmental influence. 

While our MZ correlations were similar to those reported by Pinel et al., (2015), our DZ and SIB correlations were nearly 

double their estimate, resulting in fairly robust estimates of common environment (see extended discussion in S3.5). Thus, 

even though our estimates of individual-specific environment approximate those reported by Pinel et al. (2015), familial 

similarity for Visual was due to genetic and common environment in our study. In contrast, Polk et al. (2007) reported 

higher MZ and DZ similarity than the current study or the work of Pinel et al. (2015), supporting the role of common 

environmental effects in addition to heritable influences, but underestimating the role of individual-specific environmental 

factors. 

 Potentially the most important methodological advance of our work over by Polk et al. (2007) and Pinel et al. 

(2015) is that we evaluated pattern similarity effects in paired individuals across a full set of task conditions, rather than 

restricting analyses to matched conditions. This extension of the pattern similarity approach enables construction of a full 

similarity matrix, similar to the representational similarity analysis (RSA) popularized by Kriegeskorte et al. (2008). In 

this approach the observed similarity matrix can be compared against theoretically-specified reference matrices to 

compute quantification scores, which can then be used to test between alternative coding models. Importantly, 

quantification scores incorporate the similarity of the twin pair members when they are performing the same task (as is 

usual, such as the estimation of cross-pair within-task correlations in genetic modeling (Neale & Maes, 2002)), but also 

the similarity when they are performing different tasks (e.g., one pair member performing 2-back Face and the other 

performing 2-back Place; cross-pair cross-task correlations).  

 The RSA-style quantification score approach may be a more reliable and sensitive way of revealing familial 

effects than even found in the prior studies adopting pattern similarity analyses. The power of this approach was most 

clearly demonstrated in the direct comparison of genetic relatedness influences on pairwise quantification scores in Visual 

and FrontoParietal, as these clearly indicated the specificity of observed heritability effects (Figure 8). In particular, 

although Visual quantification scores showed evidence for heritability in perceptual coding (i.e., scores showing a MZ > 

DZ, SIB > UNR pattern), these regions showed no evidence of heritability with regard to WM coding. Conversely, 

FrontoParietal quantification scores indicated heritability effects on WM coding, replicating prior results (Blokland et al., 

2008, 2011), but showed no evidence for heritability with regard to perceptual coding. Thus, the current findings make a 

stronger case for the functional-anatomic specificity of heritability effects than has been observed in prior genetic 
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neuroimaging studies examining the FPN. Such findings of functional-anatomic specificity would not be possible in 

genetically-informed studies that are solely focused on task-free states or do not manipulate task context.   

 

Quantifying “Pairwise” Variation 

 A novel advantage of the pattern similarity approach used here is that it produces a unique quantification score for 

each twin pair, rather than treating each twin as an individual observation. We demonstrated that this pairwise measure is 

functionally important, in that it was reliably associated with task performance. Critically, that the pair-related predictive 

effects were unique; i.e., over and above the variance explained by individual quantification scores. While not 

implemented in the current analysis, it would even be possible to estimate the statistical significance of the quantification 

score for a given twin pair by creating null distributions from the estimated similarity of each member with unrelated 

members of the dataset (e.g., comparing the differences in pairwise Load quantification scores when a given individual is 

paired with their co-twin relative to when they are paired to a set of unrelated individuals). 

 The brain-behavior relationships uncovered using the pairwise quantification scores are compelling and 

provocative in their implications. Specifically, we observed that genetically related pairs showing more similarity to each 

other (greater FrontoParietal Load quantification), also tended to show better N-back task performance. However, this 

observation leads to an additional question: why might such a pattern be present? Although our interpretation remains 

speculative, we suggest that it might be due to the combination of two factors: 1) “sharper” or higher fidelity task coding 

patterns in high performing individuals; and 2) increased anatomic or functional similarity among related individuals. 

With regard to the first factor, it is generally assumed that people with higher task performance are more focused and 

engaged with the task, and our own prior work provides initial evidence that stronger and more distinct task coding 

patterns would be expected in these individuals (Etzel et al., 2016). If we assume this first factor to be correct, we might 

then also expect that high performing individuals would have activation patterns that would tend to be similar (at the 

vertex level) to their twin or non-twin sibling. In particular, we speculate that genetically related individuals would be 

more likely to show similar activation patterns to each other when both are coding task-relevant variables, such as WM 

load, in an optimal (i.e., veridical) manner. Logically, there are far more ways to perform a task poorly (e.g., not 

attending, forgetting the stimulus, confusion about the instructions) than there are to perform it well. Thus, it is more 

likely that a pair of related individuals will show high similarity to each other when both have an optimal coding of WM 

load. Note that we are not claiming that related individuals (or twins) are more likely to show higher fidelity or less noisy 

task coding patterns in general, but that similarity of activation patterns can be used as an additional way to identify 

individuals that are likely to show stronger coding of relevant task variables.  

It is also noteworthy that the relationship between behavioral performance and activation similarity in MZ twin 

pairs did not significantly differ from DZ pairs or SIBs, suggesting that while familial effects play a role, they are more 

likely to be of an environmental nature. Under the equal environments assumption (Robert Plomin, Willerman, & Loehlin, 

1976), MZ and DZ twins (and in our case, SIBs) share some environmental factors to the same extent. Our initial twin 

analyses of d’ did not support the role of shared environment (S1.6), but it is plausible that the detection of shared 

environment, while underpowered in the univariate model, was better estimated when examined in the context of brain-

behavior relationships. Such common environmental influences may reflect the impact of socioeconomic status and 

parental educational achievement, which are known to impact executive functioning (Hackman & Farah, 2009; Noble et 

al., 2015), and which may have resulted in twins (both MZ and DZ) and siblings being exposed to similar educational 

opportunities. As academic achievement is heritable (Cesarini & Visscher, 2017), common environmental estimates in 

such instances may be upwardly biased in the presence of undetected positive and passive gene-common environment 

covariance (rAC; i.e., parental educational achievement and executive functioning creates the educational environment 

that the twins are passively exposed to via neighborhood and school choice (Verhulst & Hatemi, 2013)). Undetected 

assortative mating can also inflate estimates of common environment and there is considerable support for primary 

assortment for intelligence (Coventry & Keller, 2005; R. Plomin & Deary, 2015). Alternatively, we might posit that, given 

the complexity of these multivariate correlational indices, we were underpowered to tease apart genetic and environmental 

sources of familial similarity. Another possibility is that the equal environments assumption is not met, but a sensible test 
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of that hypothesis was not possible in this sample of adult twins (which was still of small size for such genetic modeling), 

particularly given the potentially complex multivariate relationships (e.g., parsing these relationships in twins whose self-

reported zygosity diverged from their genomically-determined zygosity). 

 

Limitations and Future Directions  

 In the current work we purposely restricted the primary analyses to two large communities (FrontoParietal and 

Visual) and a 2x2 condition subset (0-back/2-back x Face/Place) of a single task (the N-back), to allow for clear 

predictions regarding the functional specialization of each brain region. We were thus able to establish the validity and 

utility of activation pattern similarity approaches, which were then more fully investigated using novel pairwise analyses. 

However, the clarity gained with these restrictions necessarily means that the findings were limited to the two 

communities investigated, rather than sampling the whole brain. Likewise, by restricting the analysis to whole 

communities, rather than the individual parcels of which they are composed, the results provide information related only 

to a very macro level of brain organization. In supplemental analyses, we took an initial step towards addressing these 

limitations, by conducting a whole-brain investigation of effects at the level of individual parcels. These analyses were 

largely supportive and convergent with the primary results. In particular, they confirmed that perceptual category coding 

was almost exclusively restricted to occipitotemporal cortex parcels within the Visual community. In contrast, working 

memory load coding was more widely distributed, but confirmed to be present in individual parcels of the FrontoParietal 

community, with additional strong coding found in parcels assigned to the Dorsal Attention and Default Mode 

communities. However, the parcel-level results also supported the choice of focusing our primary analysis at the macro 

level, as no individual parcel showed effects that were stronger than the two communities. Although it was outside of the 

scope of the current work to explore the optimal spatial scale and distributed vs. focal nature of observed activation 

pattern similarity effects, a more systematic investigation of this issue would seem to be a valuable direction for future 

work. 

 A second purposeful restriction of focus in the current study was to investigate the validity and utility of 

multivariate pattern similarity approaches for addressing questions of functional specialization, individual differences, and 

genetic similarity in the FPN, but without directly benchmarking these approaches against more standard univariate (i.e., 

activation level) analyses. Thus, it is important to be clear that we do not make strong claims regarding the superiority of 

multivariate approaches relative to univariate ones, only that they appear to have important potential that heretofore has 

not been fully exploited. Indeed, many questions remain as to the exact relationship of multivariate and univariate 

findings. Although fully exploring these relationships was beyond the scope of the current study, we did conduct some 

initial control analyses, to address a potential alternative interpretation of the results, which was that the observed genetic 

pair-based similarity effects and brain-behavior relationships could be fully explained by univariate activation differences 

among relevant task conditions in the FPN (e.g., 2-back > 0-back activity). Our analyses do convincingly rule out this 

explanation, since at the spatial scale of FrontoParietal and Visual communities, univariate activation levels were not 

significantly correlated among genetically related pairs. Likewise, even when including univariate (i.e., mean-ROI) 

activation differences among task conditions in the regression model, pattern similarity in related pairs was still uniquely 

associated with N-back task performance. Nevertheless, additional work needs to be done to better understand the 

boundary conditions under which univariate activity levels might contribute to multivariate pattern similarity effects, or 

when each technique may be preferable. 

 As mentioned above, even within the HCP there are a larger set of tasks beyond the N-back from which to explore 

individual differences and genetic effects. Based on the coding specificity principle, we would expect that these effects 

would each show a distinctive pattern of anatomic localization that is task context dependent. In other words, the coding 

specificity principle would suggest that FPN regions would only be sensitive to individual differences and genetic effects 

in task contexts related to WM and executive control (e.g., Relational Processing), but not in far different contexts (e.g., 

Motor, Emotion).  

 Additionally, with the exception of the behavioral data, for which we used ACE models, we computed 

quantitative estimates of heritability using simple adaptations of the Falconer equations. It seems possible that more 
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sophisticated statistical analyses could be used to estimate heritability components using the full variance-covariance 

structure of the activation similarity matrices, along with other techniques, such as structural equation modeling. In 

particular, the estimates of cross-task cross-pair correlations (e.g., 2-back Face and 2-back Place compared to 2-back Face 

and 0-back Place) could provide a stronger basis for disentangling genetic from environmental contributions to activation 

patterns. Thus, another target for future work would be to more fully integrate pattern similarity analyses into heritability 

models.  

 The use of pairwise quantification scores opens the door for other types of genetic analyses. For example, one 

could examine the role of individual genome-wide significant variants and polygenic liability scores to WM function in 

quantification scores. Another possibility would be to contrast concordant and discordant MZ twin pairs (i.e., high vs. low 

pairwise quantification scores) to identify the role of individual-specific environmental factors, such as epigenetic 

signatures. Indeed, this work suggests a potential subdomain of genetic neuroimaging focused at the level of individual 

twin pairs, using quantification scores as a functionally relevant biomarker metric with which to subdivide and classify 

pairs. However, much still needs to be learned regarding the sensitivity of the quantification scores to the many different 

factors that can impact the BOLD signal (e.g., physiological, task, acquisition), for which simulation and modeling may 

prove valuable. We suspect that the quantification score approach may be especially rich for disentangling these different 

contributors, such as by describing characteristic pairwise similarity matrices (e.g., universally high correlation may 

indicate a dominant non-neural contribution). Yet even given this acknowledged early state of knowledge regarding the 

sources of activation pattern similarity, the results presented here highlight the utility and promise of adopting such 

approaches for the investigation of task coding properties, individual differences, and genetic effects within the FPN and 

other brain regions. We hope that future research will extend the current investigations in fruitful directions. 
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