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Abstract 

Sequential sampling models such as the drift diffusion model have a long tradition in research 

on perceptual decision-making, but mounting evidence suggests that these models can 

account for response time distributions that arise during reinforcement learning and value-

based decision-making. Building on this previous work, we implemented the drift diffusion 

model as the choice rule in inter-temporal choice (temporal discounting) and risky choice 

(probability discounting) using a hierarchical Bayesian estimation scheme. We validated our 

approach in data from nine patients with focal lesions to the ventromedial prefrontal cortex / 

medial orbitofrontal cortex (vmPFC/mOFC) and nineteen age- and education-matched 

controls. Choice model parameters estimated via standard softmax action selection were 

reliably reproduced using the drift diffusion model as the choice rule, both for temporal 

discounting and risky choice. Model comparison revealed that, for both tasks, the data were 

best accounted for by a variant of the drift diffusion model including a non-linear mapping 

from value-differences to trial-wise drift rates. Posterior predictive checks of the winning 

models revealed a reasonably good fit to individual participants reaction time distributions. 

We then applied this modeling framework and 1) reproduced our previous results regarding 

temporal discounting in vmPFC/mOFC patients and 2) showed in a previously unpublished 

data set on risky choice that vmPFC/mOFC patients exhibit increased risk-taking relative to 

controls. Analyses of diffusion model parameters revealed that vmPFC/mOFC damage 

abolished neither value sensitivity nor asymptote of the drift rate. Rather, it substantially 

increased non-decision times and reduced response caution during risky choice. Our results 

highlight that novel insights can be gained from applying sequential sampling models in 

studies of inter-temporal and risky decision-making in cognitive neuroscience.   
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Introduction 

Understanding the neuro-cognitive mechanisms underlying decision-making and 

reinforcement learning1–3 has potential implications for many neurological and psychiatric 

disorders associated with maladaptive choice behavior4–6. Modeling work in value-based 

decision-making and reinforcement learning often relies on simple logistic (softmax) 

functions7,8 to link model-based decision values to observed (often binary) choices. In 

contrast, in perceptual decision-making, sequential sampling models such as the drift 

diffusion model (DDM) that not only account for the observed choices but also for the full 

reaction time (RT) distributions have a long tradition9–11. Recent work in reinforcement 

learning12–15, inter-temporal choice16,17 and simple value-based choice18–21 has shown that 

sequential sampling models can be successfully applied in these domains.  

In the DDM, decisions arise from a noisy evidence accumulation process that 

terminates as the accumulated evidence reaches one of usually two response boundaries9. In 

cases when there is an objectively correct response such as during perceptual decision-

making, the upper boundary typically codes correct responses and the lower boundary codes 

errors, a coding scheme henceforth referred to as accuracy coding. In its simplest form, the 

DDM has four free parameters: the boundary separation parameter 𝛼 governs how much 

evidence is required before committing to a decision. In accuracy coding, the boundary 

separation parameter therefore reflects the speed-accuracy trade-off: a lower boundary 

separation leads to faster but more error-prone responses, whereas a greater boundary 

separation leads to slower but more accurate responses. The drift rate parameter v determines 

the mean rate of evidence accumulation during a trial. For accuracy coding, a greater drift rate 

reflects a greater rate of evidence accumulation and thus faster and more accurate responding. 

In contrast, a drift rate of zero would indicate chance level performance, as the evidence 

accumulation process would have an equal likelihood of terminating at the correct or error 

boundaries (for a neutral bias). Finally, the starting point or bias parameter z determines the 

starting point of the evidence accumulation process in units of the boundary separation, and 

the non-decision time 𝜏 reflects components of the reaction time related to stimulus encoding 

and/or response preparation that are unrelated to the evidence accumulation process.  The 

DDM can account for a wide range of experimental effects on RT distributions during simple 

choices9. 

Recent studies on reinforcement learning have similarly used accuracy coding when 

fitting the DDM14,15 to describe how choices and RT distributions relate to learned action 

values. In these studies, the upper boundary was defined as a selection of the stimulus with 
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the objectively better reinforcement rate, and the lower boundary as a selection of the 

objectively inferior stimulus. However, while in perceptual decision tasks all information 

required to make a correct response is in principle available to the participant on any given 

trial, this is not necessarily the case in reinforcement learning. Here, a correct evaluation of 

the optimal stimulus depends also on the experienced reinforcement history. For situations 

without an objectively correct response, DDM boundaries have sometimes been coded in a 

way that reflects the degree to which choices are consistent with e.g. preference ratings18 or 

monetary bids22 collected before the decision phase. Accuracy in such a scenario then 

corresponds to choice consistency. However, this approach is not feasible when the goal is to 

use the DDM to estimate the very preferences that in this approach are used to implement 

accuracy coding. Alternatively, one could abandon the idea of “accuracy” altogether. This is 

the approach that was taken in the present study. Instead of accuracy coding, we used a 

stimulus coding scheme, such that each boundary in the DDM corresponds to a different 

choice category, e.g. “face” vs. “house” in a perceptual decision task, “choice of the risky 

option” vs. “choice of the safe option” in a risky choice setting. This also allows one to 

estimate a response bias towards one of the decision boundaries. 

The application of sequential sampling models such as the DDM has several potential 

advantages over traditional softmax7 choice rules. First, including RT data during model 

estimation may improve both the reliability of the estimated parameters12 and parameter 

recovery13, thereby leading to more robust estimates. Second, taking into account the full RT 

distributions can reveal additional information regarding the dynamics of decision 

processes14,15. This is of potential interest, in particular in the context of maladaptive 

behaviors in clinical populations14,23–26 but also when the goal is to more fully account for how 

decisions arise on a neural level10. 

In the present case study, we focus on a brain region that has long been implicated in 

decision-making, reward-based learning and impulse regulation27,28, the ventromedial 

prefrontal / medial orbitofrontal cortex (vmPFC/mOFC). Performance impairments on the 

Iowa Gambling Task are well replicated in vmPFC/mOFC patients27,29,30. Damage to 

vmPFC/mOFC also increases temporal discounting31,32 (but see33) and risk-taking34–36, impairs 

reward-based learning37–39 and has been linked to inconsistent choice behavior40–42. Meta-

analyses of functional neuroimaging studies strongly implicate this region in reward 

valuation43,44. Based on these observations, we reasoned that vmPFC/mOFC damage might 

also render RTs during decision-making less dependent on value. In the context of the DDM, 

this could be reflected in changes in the value-dependency of the drift rate v. In contrast, more 
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general impairments in the processing of decision options, response execution and/or 

preparation would be reflected in changes in the non-decision time. Interestingly, however, 

one previous model-free analysis in vmPFC/mOFC patients revealed a similar modulation of 

RTs by value in patients and controls41.  

The present study therefore had the following aims. The first aim was a validation of 

the applicability of the DDM as a choice rule in the context of inter-temporal and risky 

choice. To this end, we first performed a model comparison of variants of the DDM in a data 

set of nine vmPFC/mOFC lesion patients and nineteen controls and performed a number of 

model validation tests. Second, since recent work on reinforcement learning suggested that 

the mapping from value differences to trial-wise drift rates might be non-linear15 rather than 

linear14, we compared these different variants of the DDM in our data and ran posterior 

predictive checks on the winning DDM models to explore the degree to which the observed 

RT distributions could be accounted for by the best-fitting models. Third, we re-analyzed 

previously published temporal discounting data in controls and vmPFC/mOFC lesion patients 

to examine the degree to which our previously reported model-free analyses31 could be 

reproduced using a hierarchical Bayesian model-based analysis with the DDM as the choice 

rule. Fourth, we used the same modeling framework to analyze previously unpublished data 

from a risky decision-making task in the same lesion patients and controls to examine whether 

risk taking in the absence of a learning requirement is increased following vmPFC/mOFC 

damage. Finally, we explored changes in choice dynamics as revealed by DDM parameters as 

a result of vmPFC/mOFC lesions.  
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Figure 1. Lesion overlap in the vmPFC/mOFC lesion patient group reproduced from Peters & 
D’Esposito (2016)31. The color code reflects the number of patients with overlapping lesions 
in each voxel. 
 

Methods 
Procedure 

We report data from two value-based decision-making tasks: one previously unpublished data 

from a risky-choice task and one previously published data set from a temporal discounting 

task (see below for task details). Data were acquired in nine patients with focal lesions that 

included medial orbitofrontal cortex and nineteen healthy age- and education-matched 

controls. The temporal discounting task was always performed first, followed by the risky 

choice task. 

For a detailed account of etiology and socio-demographic information for all 

participants, the reader is referred to our previous paper31. For convenience, we reproduce the 

lesion overlap plot from our previous paper in Figure 1.  All participants gave informed 

written consent, and the study procedure was approved by the local institutional review board 

of the University of California, Berkeley, USA. 

 

Temporal discounting task. Here participants performed 224 trials of an inter-temporal choice 

task involving a series of choices between smaller-but-sooner (SS) and larger-but-later (LL) 

rewards. On half the trials, the SS reward was available immediately (now condition), 

whereas on the other half of the trials, the SS reward was available only after a 30d delay (not 

now condition). In the now condition, the SS reward consisted of $10 available immediately 

and LL rewards consisted of all combinations of fourteen reward amounts (10.1, 10.2, 10.5, 

11, 12, 15, 18, 20, 30, 40, 70, 100, 130, 150 dollars) and seven delays (1, 3, 5, 8, 14, 30, 60 

days). Trials for the not now condition where identical, with the exception that an additional 

delay of 30 days was added to both options, such that in not now trials, the SS reward was 

always associated with a 30 day delay, and LL reward delays ranged from 31 to 91 days. 

Trials were presented in randomized order and with a randomized assignment of options to 

the left/right side of the screen. Options remained on the screen until a response was logged.  

2 
 
4 
 
6 
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 Lesion overlap (n) 
x =       -23              -13               -3                  3               13               23   
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Risky choice task. Here participants made a total of 112 choices between a certain (100% 

probability) $10 reward and larger-but-riskier options. The risky options consisted of all 

combinations of sixteen reward amounts (10.1, 10.2, 10.5, 11, 12, 15, 18, 20, 25, 30, 40, 50, 

70, 100, 130, 150 dollars) and seven probabilities (10%, 17%, 28%, 54%, 84%, 96%, 99%). 

Trials were presented in randomized order and with a randomized assignment of options to 

the left/right side of the screen. As in the temporal discounting task, options remained on the 

screen until a response was logged. 

 

Participants were instructed that all choices from the two tasks were potentially behaviorally 

relevant. A single trial was pseudo-randomly selected following completion of both tasks, and 

participants received their choice from that trial as a cash bonus.   

 

Temporal discounting model 

Based on previous work on the effect of SS immediacy on discounting behavior 45,46, we 

hypothesized discounting to be hyperbolic relative to the soonest available reward. Previous 

studies31,46 fitted separate discount rate parameters to trials with immediate vs. delayed SS 

rewards. Here we extended this approach by instead fitting a single k-parameter (reflecting 

discounting in the now condition), and a subject-specific shift parameter s modeling the 

reduction in log(k) in the not now condition as compared to the now condition: 

𝑆𝑉(𝐿𝐿)! =
𝐴!

1+ exp (𝑘 − 𝐼! ∗ 𝑠) ∗ 𝐼𝑅𝐼!
       (1) 

Here, SV is the subjective discounted value of the delayed rewards, A is the amount of the LL 

reward on trial t, k is the subject specific discount rate for now trials in log-space, I is an 

indicator variable coding the condition (0 for now trials, 1 for not now trials), s is a subject-

specific shift in log(k) between now and not-now conditions and IRI is the inter-reward-

interval on trial t. Note that this model corresponds to the elimination-by-aspects model of 

Green et al. 45. 

 

Risky choice model 

Here we applied a simple one-parameter probability discounting model47,48, where discounting 

is hyperbolic over the odds-against-winning the gamble: 

𝑆𝑉(𝑟𝑖𝑠𝑘𝑦!) =
𝐴!

1+ exp (ℎ) ∗ 𝜃!
,𝑤𝑖𝑡ℎ 𝜃! =

1− 𝑝!
𝑝!

       (2) 
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Here SV is the subjective discounted value of the risky reward, A is the reward amount on 

trial t and 𝜃 is the odds-against winning the gamble. The probability discount rate h (again 

fitted in log-space) models the degree of value discounting over probabilities. We also fit the 

data with a two-parameter model that includes separate parameters for the curvature and 

elevation of the probability weighting function 49–51. However, when fitting a 2-parameter 

model at the single subject level, in a number of individual cases the posterior distributions of 

the curvature and/or elevation parameters did not have a clear peak or a clearly Gaussian 

shape, suggesting that we likely did not have adequate coverage of the probability and amount 

dimensions to reliably dissociate these different components of risk preferences. For this 

reason we opted for the simpler single-parameter hyperbolic model instead.  

Softmax choice rule 

Standard softmax action selection models the probability of choosing the LL reward (or the 

risky option) on trial t as: 

𝑃(𝐿𝐿)! =
𝑒!∗!"(!!!)

𝑒!∗!"(!!!) + 𝑒!∗!"(!!!)
       (3) 

Here, SV is the subjective value of the LL reward according to Eq. 1 (or the risky reward 

according to Eq. 2) and 𝛽 is an inverse temperature parameter, modeling choice stochasticity 

(for 𝛽 = 0, choices are random and as 𝛽 increases, choices become more dependent on the 

option values). 

 

Drift diffusion choice rule 

For the DDMs, we build on earlier work in reinforcement learning14,15 and inter-temporal 

choice13,16. Specifically, we replaced the softmax action selection rule (see previous section) 

with the drift diffusion model as the choice rule, using the Wiener module52 for the JAGS 

software package53. In contrast to previous reinforcement learning approaches14,15 that used 

accuracy coding for the boundary definitions, we here used stimulus coding, such that the 

lower boundary (0) was defined as a selection of the SS reward (or the 100% option in the 

case of risky choice), and the upper boundary (1) as selection of the LL reward (or the risky 

option in the case of risky choice). This is because we were explicitly interested in modeling a 

bias towards SS vs. LL options. RTs for choices towards the lower boundary were multiplied 

by -1 prior to estimation.  

We initially used absolute RT cut-offs for trial exclusion14 such that 0.4s < RT < 10s. 

However, when using such an absolute cut-off, single fast outlier trials can still force the non-

decision-time to adjust to accommodate these observations, which can lead to a massive 
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negative impact on model fit at the individual-subject level. This is also what we observed in 

two participants when plotting posterior predictive checks from hierarchical models with 

absolute cut-offs. For this reason, we instead excluded for each participant the slowest and 

fastest 2.5% of trials from analysis, which eliminated the problem. The reaction time on trial t 

is then distributed according to the Wiener first passage time (WFPT): 

𝑅𝑇!~𝑤𝑓𝑝𝑡 𝛼, 𝜏, 𝑧, 𝑣        (4) 

Here, 𝛼 is the boundary separation (modeling response caution / the speed-accuracy trade-

off), z is the starting point of the diffusion process (modeling a bias towards one of the 

decision boundaries), 𝜏  is the non-decision time (reflecting perceptual and/or response 

preparation processes unrelated to the evidence accumulation process) and v is the drift rate 

(reflecting the rate of evidence accumulation). Note that in the JAGS implementation of the 

Wiener model52, the starting point z is coded in relative terms and takes on values between 0 

and 1. That is, z = .5 reflects no bias, z >.5 reflects a bias towards the upper boundary, and z 

<.5 a bias towards the lower boundary. 

In a first step, we fit a null model (DDM0) that included no value modulation. That is, 

the null model for both the temporal discounting and risky choice data had four free 

parameters (𝛼, 𝜏, v, and z) that for each participant were constant across trials. Next, to link 

the diffusion process to the valuation models (Eq. 1, Eq., 2), we compared two previously 

proposed functions linking trial-by-trial variability in the drift rate v to value differences. 

First, we used a linear mapping as proposed by Pedersen et al. (2017)14: 

𝑣! = 𝑣!"#$$ ∗ 𝑆𝑉 𝐿𝐿! − 𝑆𝑉 𝑆𝑆!        5  

Here, vcoeff is a free parameter that maps value differences onto the drift rate v and 

simultaneously transforms value differences to the appropriate scale of the DDM14. This 

implementation naturally gives rise to the effect that highest conflict (when values are highly 

similar) would be expected to be associated with a drift rate close to zero. For positive values 

of vcoeff, as SV(SS) increases over SV(LL), the drift rate becomes more negative, reflecting 

evidence accumulation towards the negative (SS) boundary. The reverse is the case as SV(LL) 

increases over SV(SS). For the risky choice models, SV(LL) was replaced with SV(risky), and 

SV(SS) with SV(safe). Second, we also applied an additional non-linear transformation of the 

scaled value differences via the S-shaped function suggested by Fontanesi et al. (2019) 15: 

𝑣! = 𝑆 𝑣!"#$$ ∗ 𝑆𝑉 𝐿𝐿! − 𝑆𝑉(𝑆𝑆!)        (6) 

𝑆 𝑚 =
2 ∗ 𝑣!"#
1+ 𝑒!! − 𝑣!"#       (7) 
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S is a sigmoid function centered at 0 with slope m and asymptote ± vmax. Again, effects of 

choice difficulty on the drift rate naturally arise: for highest decision conflict when 

𝑆𝑉 𝑆𝑆 = 𝑆𝑉(𝐿𝐿), the drift rate would again be zero, whereas for larger value differences, v 

increases up to a maximum of ±vmax. Table 1 provides an overview of the parameters of the 

DDMS model. 

 
Table 1. Overview of the parameters of the DDMS models  
Parameter DDMS: Temporal discounting DDMS: Risk taking 
α Boundary separation 
τ Non-decision-time 
z Bias (>.5: LL, <.5: SS) Bias (>.5: risky, <.5: safe) 
νcoeff Drift rate: value-difference slope 
νmax Drift rate: maximum 
log(k) Discount rate now-trials - 
shiftlog(k) Discount rate reduction not-now trials - 
log(h) - Probability discount rate 
 

Hierarchical Bayesian models 

We used the following model-building procedure. In a first step, models were fit at the single-

subject level. After validating that reasonably good fits could be obtained for single-subject 

data (by ensuring that 𝑅 statistic was in an acceptable range of 0.99 ≤ 𝑅 ≤ 1.01 and the 

posterior distributions were clearly peaked and centered at reasonable parameter values) we 

re-fit all models using a hierarchical framework with separate group-level distributions for 

controls and mOFC patients. We again assessed chain convergence such that values of 

0.99 ≤ 𝑅 ≤ 1.01 were considered acceptable for all group- and individual-level parameters. 

For the group-level hyperparameters, we used uninformative priors (e.g. uniform distributions 

for means defined over sensible ranges, gamma distributions for precision). All model code is 

available on the Open Science Framework (https://osf.io/5rwcu/). 

 

Model estimation and comparison 

All models were fit using Markov Chain Monte Carlo (MCMC) as implemented in JAGS53 

with the matjags interface (https://github.com/msteyvers/matjags) for Matlab © (The 

Mathworks) and the JAGS Wiener package52. For each model, we ran two chains with a burn-

in period of 50k samples and thinning of 2. 10k further samples were then retained for 

analysis. Chain convergence was assessed via the 𝑅 statistic, where we considered 0.99 ≤

𝑅 ≤ 1.01 as acceptable values. Relative model comparison was performed via the Deviance 

Information Criterion (DIC), where lower values indicate a better fit54. 
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Posterior predictive checks 

Because a superior relative model fit does not necessarily mean that the winning model 

captures key aspects of the data, we additionally performed posterior predictive checks. To 

this end, during model estimation, we simulated 10k full datasets from the hierarchical 

models, based on the posterior distribution of the parameters. Model predicted RTs for a 

random sample of 1k of these simulated data sets were then smoothed via non-parametric 

density estimation in Matlab (ksdensity.m) and overlaid on the observed RT distributions for 

each individual participant.  

 

Analysis of group differences 

To characterize group differences, we show posterior distributions for all parameters, as well 

as 85% and 95% highest density intervals for the difference distributions of the group 

posteriors. We furthermore report Bayes Factors for directional effects14,55 based on these 

difference distributions as 𝐵𝐹 = 𝑖/(1− 𝑖) were i is the integral of the posterior distribution 

from 0 to +∞, which we estimated via non-parametric kernel density estimation in Matlab 

(ksdensity.m). Following common criteria56, Bayes Factors > 3 are considered positive 

evidence, and Bayes Factors > 12 are considered strong evidence. Bayes Factors < 0.33 are 

likewise interpreted as evidence in favor of the alternative model. Finally, we report 

standardized measures of effect size (Cohen’s d) which we calculated based on the mean 

posterior distributions of the group means and the pooled standard deviations across groups, 

which we calculated using the means of the group posterior distributions for the precision 

 

Data availability 

Trial-wise behavioral data of all participants are available from the first author upon request. 

 

Code availability 

JAGS model code for all models is available on the Open Science Framework 

(https://osf.io/5rwcu/). 

 
Results 

Model comparison 

We first compared the fit of two previously proposed DDM models with linear (DDMlin, see 

Eq. 5)14 and non-linear (DDMS, see Eq. 6 and Eq. 7)15 value-dependent drift-rate scaling in 
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terms of the deviance information criterion (DIC)54. For comparison we also included a null 

model (DDM0) with constant drift rate, that is, a model without value modulation. For both 

temporal discounting data (Table 2) and risky choice / probability discounting data (Table 3), 

the non-linear drift rate scaling models outperformed linear scaling, and both models fit the 

data better than the DDM0. 

 

 
Table 2. Model comparison of drift diffusion models of temporal discounting. The 
hyperbolic+shift value function (see Eq. 1) corresponds to hyperbolic discounting in the now 
condition, and a shift parameter that models the decrease in discounting between the now and 
not now conditions. 
Model Value scaling Value function DIC Rank 
DDM0 - - 20889 3 
DDMlin Linear Hyperbolic+Shift 19523 2 
DDMS Sigmoid Hyperbolic+Shift 16845 1 
 

Table 3. Model comparison of drift diffusion models of risky choice. The hyperbolic value 
function (see Eq. 2) corresponds to hyperbolic discounting over the odds-against-winning the 
gamble. 
Model Value scaling Value function DIC Rank 
DDM0 - - 11477 3 
DDMlin Linear Hyperbolic 10281 2 
DDMS Sigmoid Hyperbolic 9204.2 1 
 
 
Posterior predictive checks 

While a relative model comparison is helpful to select among a set of candidate models, it is 

nonetheless important to verify that the winning model captures the overall pattern in the data, 

which we assessed via posterior predictive checks (see methods section). We plot posterior 

predictive checks for the reaction time distribution of each individual participant. Figures 2 

and 3 show smoothed individual-participant RT distributions simulated from the posterior of 

the winning hierarchical models (DDMS) overlaid on the observed single-subject RT 

distributions for temporal discounting (Figure 2) and risky choice / probability discounting 

(Figure 3). As can be seen, the DDMS provided a reasonable account of the observed RT 

distributions. However, RTs for SS choices were slightly underestimated in both groups 
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Figure 2. Posterior predictive plots of the drift diffusion temporal discounting model with 
non-linear value scaling of the drift rate (DDMS) for all participants (red – mOFC patients, 
blue – controls). Histograms depict the observed RT distributions for each participant. The 
solid lines are smoothed histograms of the model predicted RT distributions from 1000 
individual subject data sets simulated from the posterior of the winning hierarchical model. 
RTs for smaller-sooner choices are plotted as negative, whereas RTs for larger-later choices 
are plotted as positive. The x-axes are adjusted to cover the range of observed RTs for each 
participant. 
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Figure 3. Posterior predictive plots of the drift diffusion probability discounting / risky choice 
model with non-linear value scaling of the drift rate (DDMS) for all participants (red – mOFC 
patients, blue – controls). Histograms depict the observed RT distributions for each 
participant. The solid lines are smoothed histograms of the model predicted RT distributions 
from 1000 individual subject data sets simulated from the posterior of the winning 
hierarchical model. RTs for choices of the safe option are plotted as negative, whereas RTs 
for risky choices are plotted as positive. The x-axes are adjusted to cover the range of 
observed RTs for each participant. 
 
 We next checked the degree to which the best-fitting models predicted participants’ 

binary choices. To test this, we used each participant’s mean posterior parameters from the 

hierarchical model to calculate model predicted choices, and compared these to the observed 

choices. Median accuracy was >.90 for all tasks and groups (see Table 4), suggesting that the 

best-fitting hierarchical models captured individual choices similarly well in both groups and 

tasks. 
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Table 4. Median (range) of the proportion of correctly predicted binary choices of the DDMS 
for each task and group. 

 DDMS: Temporal discounting DDMS: Risk taking 
mOFC patients .92 (.89-.99) .92 (.84-.98) 
Controls  .91 (.84-.99) .91 (.82-.99) 

 
Model validation 

With the drift diffusion model as the choice rule, we introduced additional complexity, as 

softmax action selection typically only has a single free parameter (𝛽). Therefore, we next 

examined the correspondence of choice model parameters (i.e. log(k)now, shiftlog(k)  and log(h)) 

between models estimated using softmax vs. DDMS choice rules. One would not expect 

preferences as reflected in these parameters to differ systematically as a function of whether 

only binary choices are fitted (softmax) or whether both choices and reaction times are jointly 

fitted (DDMS). A convergence between the estimated parameters from the two choice rules 

would therefore strengthen confidence in the applicability of the DDM in the context of the 

present tasks.  

 
Figure 4. Consistency of model parameters for temporal discounting (TD: a/b) and 
probability discounting (PD, c) between softmax and DDMS choice rules. Scatter plots 
(controls: blue, mOFC patients: red) show model parameters estimated via a standard softmax 
choice rule (x-axis) vs. parameters estimated via a drift diffusion model choice rule with non-
linear drift rate scaling (DDMS, y-axis). a) Temporal discounting log(discount rate) for now 
trials. b) Shift in log(k) between now and not now trials). c) Probability discounting 
log(discount rate). 
 

To this end, we extracted the mean single-subject parameter estimates for log(k)now (the 

hyperbolic discount rate in the now condition of the temporal discounting task, Eq. 1), 

shiftlog(k) (the parameter modeling the reduction in discounting between now and not now 

conditions in the temporal discounting task, Eq. 1) and log(h) (reflecting the degree of 

discounting of value over probabilities, Eq. 2) from the hierarchical fits of the two winning 

DDMS models as well as from the hierarchical fits using standard softmax action selection. 

Figure 4 shows scatter plots of mean single-subject parameters estimated via softmax vs. via 
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DDMS. Correlations were very high between the different choice rules (temporal discounting: 

log(k)now r=.93, shiftlog(k) r=.91; risky choice/probability discounting: log(h) r=.98). Since the 

correlation for shiftlog(k) appeared to be somewhat inflated by the extreme datapoints of the 

mOFC patients, we re-ran the correlation only in the control group. Here, the correlation was 

lower but still robust (r=.52). Together, these analyses confirm that parameters estimated via 

softmax modeling of binary choices can be reliably reproduced when jointly fitting choices 

and RTs via the DDMS. 

Along similar lines, we next checked estimated DDM parameter against model-free 

RT statistics (minimum and median RT). The non-decision time 𝜏 captures RT components 

unrelated to the evidence accumulation process, and therefore reflects individual differences 

related to e.g. perceptual processing of the decision options and/or response preparation and 

execution. That is, for 𝜏  one would predict positive correlations in particular with the 

minimum RT, and to a lesser extent with median RT. As expected, correlations of 𝜏 with 

minimum and median RT where significant and more pronounced for minimum RT (Figure 

5a,c: temporal discounting rminRT=.95, rmedianRT=.69; Figure 5b,d: probability discounting 

rminRT=.92, rmedianRT=.54). 

 

 
Figure 5. Scatter plots (controls: blue, mOFC patients: red) showing correlations between 
model-based non-decision time from the best fitting DDMS models (x-axis) and minimum RT 
(a/b) and median RT (c/d) for temporal discounting (a/c) and risky choice / proability 
discounting (b/d).  
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Figure 6. Scatter plots (controls: blue, mOFC patients: red) showing correlations between 
model-based boundary separation parameter from the best fitting DDMS models (x-axis) and 
minimum RT (a/b) and median RT (c/d) for temporal discounting (a/c) and risky choice / 
proability discounting (b/d).  
 

The boundary separation parameter 𝛼  on the other hand reflects the threshold that the 

accumulated evidence needs to exceed before participants commit to a decision. Again one 

would expect positive correlations with minimum and median RT, but a more pronounced 

association with median RT. This is exactly what we observed (Figure 6a,c: temporal 

discounting rminRT=.71, rmedianRT=.94; Figure 6b,d: probability discounting rminRT=.67, 

rmedianRT=.88). 

 
Figure 7. Modeling results for the DDMS temporal discounting model. Top row: posterior 
distributions of the parameter group means for controls (blue) and mOFC patients (red). 
Bottom row: Posterior group differences (mOFC patients – controls) for each parameter. 
Solid horizontal lines indicate highest density intervals (HDI, thick lines: 85% HDI, thin 
lines: 95% HDI). 
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Comparison to previous model-free analyses in mOFC patients 

We have previously reported that temporal discounting in mOFC lesion patients is more 

affected by the immediacy of SS rewards than in controls31. Our previous analysis revealed 

this both via an analysis of the area-under-the-curve of the empirical discounting function57 

and by a direct comparison of preference reversals between groups. To further validate the 

applicability of the DDM in the context of temporal discounting, we next examined whether 

these effects could be reproduced via the hierarchical DDMS. Figure 7 plots the group-level 

posterior distributions of parameter means for all seven parameters, where we for the 

purposes of comparison to our previous results first focus on log(k)now (the discount rate in the 

baseline now condition, see Figure 7f) and shiftlog(k) (the parameter modeling the decrease in 

discounting in not now trials as compared to now trials, see Figure 7g). The analysis of 

directional between-subject effects revealed a numerical increase in log(k)now in the mOFC 

patient group (Figure 7f, Table 5) and strong evidence for a substantially greater difference in 

discounting between now and not now trials in the mOFC patient group (Figure 7g, Table 3). 

This shows that our results based on model-free summary measures of discounting behavior 

following mOFC lesions31 could be reproduced via a hierarchical Bayesian estimation scheme 

with the DDMS as the choice rule. 

 

Table 5. Summary of group differences in model parameters. For each parameter and task, 
we report the mean difference in the group-level posterios (Mdiff: patients – controls) and 
Bayes Factors testing for directional effects14,55. Bayes Factors <.33 indicate evidence for a 
reduction in the patient group, whereas Bayes Factors  >3 indicate evidence for an increase in 
the patient group (see Methods section). Standardized effect sizes (Cohen’s d) were calculated 
based on the posterior group-level estimates of mean and precision (see methods section). 
Model parameter Temporal discounting Probability Discounting  
 Mdiff d BF Mdiff d BF 
Boundary 
separation (α) -.012 -.013 1.03 -.368 -.42 .203 

Non decision time 
(τ) .184 .44 4.39 .166 .35 3.52 

Starting point / 
bias (z) -.025 -.49 .196 .017 .28 2.55 

Drift rate v (max) -.184 -.26 .647 -.027 -.075 .739 
Drift rate v (coeff) 3.14 1.11 7.43 .033 .63 2.49 
Log(k)now .734 .33 2.85 - - - 
Shiftlog(k) .529 2.22 69.9 - - - 
Log(h) - - - -.447 -.28 .278 
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Figure 8. Modeling results for the DDMS risky choice model. See Figure 7 for details. 
 
Risk-taking in vmPFC/mOFC patients 

Risk-taking on the probability discounting task was quantified via the probability discounting 

parameter log(h), where higher values indicate a greater discounting of value over 

probabilities. There was some evidence for a smaller log(h) in vmPFC/mOFC patients (Figure 

8f, Table 5), reflecting a relative increase in risk-taking (reduced value discounting over 

probabilities) as compared to controls. 

 

Effects of mOFC lesions on diffusion model parameters 

Finally, we examined the diffusion model parameters of the DDMS models in greater detail. 

First, there was evidence for substantially longer non-decision times in the vmPFC/mOFC 

patient group for both tasks (see Table 5 and Figures 7b, 8b). These effects amounted to on 

average 184ms for temporal discounting and 166ms for risky choice. Second, the group 

differences observed for the starting point (bias) parameter largely mirrored group differences 

observed for discounting behavior. For temporal discounting, controls exhibited a more 

pronounced bias towards the LL boundary than vmPFC/mOFC patients, who exhibited a 

largely neutral bias here. For risky choice, controls showed a bias that was numerically shifted 

towards the safe-option compared to vmPFC/mOFC patients. Third, posterior distributions for 

the boundary separation parameter (alpha) in temporal discounting showed high overlap and 

the difference distribution was centered at 0 (Figure 7a). In contrast, for risky choice, there 

was evidence for a reduced boundary separation in the vmPFC/mOFC patients (Figure 8a, 

Table 3).   

In the DDMS, two components of the drift rate can be dissociated: the asymptote of the 

drift rate scaling function (vmax), that is, the maximum drift rate that is approached as value 

differences increase, and the slope of the sigmoid (vcoeff). In both tasks, there was no evidence 

for a group difference in vmax (see Table 5 and Figures 7d, 8d) and both difference 

distributions were centered at 0. Across tasks and groups, the value scaling parameter for the 
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drift rate (vcoeff) was generally > 0, reflecting a robust positive effect of value differences on 

the rate of evidence accumulation (see Figure 7d, 8d). Interestingly, the drift rate slope 

parameter (vcoeff) was increased in the vmPFC/mOFC patients for both tasks, an effect that was 

substantial for the temporal discounting data. Here, the posterior distribution also had a much 

higher variance compared to the control group. This was driven by 4/9 vmPFC/mOFC 

patients who had vcoeff estimates that fell substantially beyond the values observed in controls 

and in the remaining patients (mean vcoeff estimates: P1: 17.89, P3: 8.32, P4: 3.38, P5: 4.70). 

These extreme cases included the patient with the lowest discount rate (P1 log(k)now : -10.53) 

and the patient with the second highest discount rate (P4 log(k)now : -2.28). 
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Discussion 

We compared different choice rules for modeling inter-temporal and risky choice / probability 

discounting in healthy controls and patients with vmPFC/mOFC lesions. For each task we 

examined a standard softmax action selection function and three variants of the drift diffusion 

model (DDM). Across tasks, the data were better accounted for by a DDM with a non-linear 

mapping of value differences onto the drift rate (DDMS) than by a DDM with linear mapping 

(DDMlin) or a null model without any value modulation (DDM0). In a series of further model 

checks, we verified 1) the consistency between choice model parameters estimated via the 

DDMS as compared to a standard softmax choice rule, 2) the correspondence between 

observed RT distributions and RT distributions simulated from the posterior distributions 

(posterior predictive checks) for each individual participant and 3) the expected associations 

between the DDM parameters non-decision time and boundary separation and non-parametric 

RT measures. We then used the DDMs to reproduce our previous results on temporal 

discounting in patients with vmPFC/mOFC lesions31, to characterize risk-taking behavior in 

these patients, and to explore group differences in diffusion model parameters across tasks. 

 Previous studies have successfully incorporated RTs in the modeling of value-based 

decision-making, e.g. via the linear ballistic accumulator model16 or linear regression13. Here 

we build on recent work in reinforcement learning12,14,15 and examined the degree to which the 

drift diffusion model could be used as the choice rule in temporal discounting and risky 

choice. In line with a recent model comparison in reinforcement learning15, our model 

comparison of linear vs. non-linear value scaling revealed a superior fit of the DDM with non-

linear (sigmoid) value scaling both for temporal discounting and risky choice data. Posterior 

predictive checks of the winning models revealed a reasonably good fit to the observed RT 

distributions of most individual participants. However, in a few participants, models tended to 

underestimate RTs for choices towards the lower boundary, and this was perhaps most 

evident in the case of the risky choice data in some of the vmPFC/mOFC patients.  

 One advantage of hierarchical Bayesian parameter estimation is that robust model fits 

can be obtained with fewer data points than are typically required for maximum likelihood 

estimation58,59, and this is also the case for the drift diffusion model58. The reason is that in 

contrast to obtaining single-subject point estimates of parameters (as in maximum likelihood 

estimation), in hierarchical Bayesian estimation, the group-level distribution of parameters 

constrains and informs the parameters estimated for each participant. One consequence of this 

is shrinkage59 or partial pooling, such that in a hierarchical model individual parameter 

estimates tend to be drawn towards the group mean. While this can improve the predictive 
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accuracy of parameters, there is the possibility that meaningful between-subjects variability is 

removed60. Nonetheless, we believe that for situations with limited data per subject58, which is 

a particular issue in studies involving lesion patients, the hierarchical Bayesian estimation 

approach is most appropriate.  

We examined variants of the DDM in tasks where they have not been applied 

previously (although other sequential sampling models have16). We therefore ran a number of 

additional analyses to validate our modeling results. First, we checked whether discount rates 

estimated via softmax and via the DDMS showed robust correlations. They did. Although this 

might at first glance seem like an obvious result, it is nonetheless reassuring that parameter 

estimates obtained via standard methods can be reliably reproduced using the DDMS. Along 

similar lines, we checked the correlation of non-decision time and boundary separation 

parameters from the DDMS with model-free RT summary statistics. Again, we observed the 

expected associations (Figure 6,7), suggesting that the results obtained via the DDMS are 

valid. Finally, our analysis of the DDMS for temporal discounting reproduced our previous 

model-free results in vmPFC/mOFC patients31: discounting behavior following 

vmPFC/mOFC damage was substantially more affected by SS reward immediacy than in 

controls, which in the present modeling scheme was reflected in a substantially increased 

shiftlog(k) parameter in the vmPFC/mOFC patient group. Together, these observations 

strengthen our confidence in the validity of using the DDM as the choice rule in inter-

temporal and risky choice. 

The stimulus coding scheme that we adopted here differs from accuracy coding as 

implemented in recent applications of the DDM to reinforcement learning14,15, with 

implications for the interpretation of the DDM parameters. First, the drift rate v in the present 

coding scheme (as reflected in vmax and vcoeff) can be interpreted along similar lines as in 

classical perceptual decision-making tasks: it reflects the rate of evidence accumulation. In 

stimulus coding, however, higher drift rates do not directly correspond to better performance 

(as is the case in accuracy coding), because there is no objectively correct response. Instead 

the drift rate parameters reflect a participant’s overall sensitivity to value differences, similar 

to inverse temperature parameters in softmax models. Second, in accuracy coding, the 

boundary separation 𝛼 governs the speed-accuracy trade-off9, such that a larger boundary 

separation corresponds to a focus on accuracy rather than speed. In the absence of “accuracy”, 

boundary separation in stimulus coding reflects similarly the amount of evidence required to 

commit to a decision, but here response caution10 might be a more appropriate term. Finally, 

adopting stimulus coding allowed us to estimate a starting point (bias) parameter. In all cases, 
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the estimated bias parameters were relatively close to 0.5 (a neutral bias). Nonetheless, the 

group differences in bias that we observed for each task mirrored the results for the choice 

model parameters. That is, the group that displayed a preference for one option as reflected in 

the discount rate parameter (e.g. LL rewards in the case of controls) also exhibited a response 

bias towards that decision boundary.  

 Our results also provide novel insights into the role of the vmPFC/mOFC in decision-

making. Using a model-based analysis, we show that value-differences exert a similar (if not 

stronger) effect on trial-wise drift rates in vmPFC/mOFC patients compared to controls, 

whereas the maximum drift rate vmax was of similar magnitude in the two groups. This is in 

line with an earlier report showing reduced preference consistency but no changes in overall 

RTs or the value-modulation of RTs in vmPFC/mOFC patients41. If one considers the 

overwhelming evidence of neuroimaging studies showing a prominent role of the 

vmPFC/mOFC in reward valuation43,44, it is nonetheless striking that lesions to this region do 

not negatively impact the value-sensitivity of the evidence accumulation process during 

value-based decision-making. Our data are therefore more compatible with the idea that 

vmPFC/mOFC, likely in interaction with other regions61,62, plays a role in self-control, such 

that lesions shift preferences towards options with a greater short-term appeal. Previous work 

has suggested that damage to vmPFC/mOFC might decrease the temporal stability of value 

representations, leading to inconsistent preferences40–42. There was no evidence in the present 

data that the lesion patients’ decisions were more “noisy” or “erratic”. Similar to a previous 

study on temporal discounting32, choice consistency was high such that the best-fitting DDMS 

accounted for about 90% of choices in both groups and tasks. Together with the intact value 

modulation of the drift rate, this suggests that value representations on a given trial41 and 

throughout the course of testing sessions were relatively stable in both groups. In contrast, 

results from both tasks revealed a substantial increase in non-decision times in the patient 

group. Together, these observations suggest that vmPFC/mOFC lesions lead to a slowing of 

more basic perceptual and/or response-related processes during value-based decision-making, 

while leaving the effects of value-differences on the evidence accumulation process strikingly 

intact.  

  Previous studies have shown increases in risky decision-making following 

vmPFC/mOFC damage34,36. Our finding of attenuated discounting over probabilities in 

vmPFC/mOFC patients is consistent with these previous results. However, our model-based 

analysis revealed an additional effect: lesion patients also exhibited reduced response caution 

during risky choice, reflected in a reduced boundary separation parameter. In contrast, this 
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was not observed for temporal discounting. This suggests that risk taking in vmPFC/mOFC 

patients might not only be driven by altered preferences, but also by more premature 

responding.  

Taken together, our results demonstrate the feasibility of using the drift diffusion 

model as the choice rule in the context of inter-temporal and risky decision-making. Model 

comparison revealed that a variant of the DDM that included a non-linear drift rate 

modulation provided the best fit to the data. We further show that choice model parameters 

estimated via the DDM show a close correspondence to parameters estimated via standard 

methods. Finally, the application of a sequential sampling model revealed additional insights: 

while the value-dependency of the evidence accumulation process was strikingly unaffected 

by vmPFC/mOFC damage, we observed a slowing of non-decision times both in temporal 

discounting and risky choice, with implications for models of decision-making. This 

modeling framework might provide further insights, e.g. when studying mechanisms 

underlying context-dependent changes in decision-making63–66 or impairments in decision-

making in psychiatric67 and neurological disorders6. 
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