
Tsuyuzaki et al.

METHOD

Benchmarking principal component analysis for
large-scale single-cell RNA-sequencing
Koki Tsuyuzaki1, Hiroyuki Sato2, Kenta Sato1,3 and Itoshi Nikaido1,4*

*Correspondence:

itoshi.nikaido@riken.jp
1Laboratory for Bioinformatics

Research, RIKEN Center for

Biosystems Dynamics Research,

Japan

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

Principal component analysis (PCA) is an essential method for analyzing
single-cell RNA-seq (scRNA-seq) dataset but for large-scale scRNA-seq datasets,
the computation consumes a long time and large memory space.

In this work, we review the existing fast and memory-efficient PCA algorithms
and implementations and evaluate their practical application to large-scale
scRNA-seq dataset. Our benchmark showed that some PCA algorithms based on
Krylov subspace and randomized singular value decomposition are fast,
memory-efficient, and accurate than the other algorithms. Considering the
difference of computational environment of users and developers, we also
developed the guideline to select the appropriate PCA implementations.

Keywords: Single-cell RNA-seq; Cellular heterogeneity; Dimension reduction;
Principal component analysis; Online/Incremental algorithm; Out-of-core; R;
Python; Julia

Background
Owing to the emergence of single-cell RNA sequencing (scRNA-seq) technologies [1],

many types of cellular heterogeneity have been examined. For example, cellular

subpopulations consisting of tissues [2–6], rare cells and stem cell niches [7], contin-

uous gene expression change related to cell cycle [8], spatial coordinates [9–11], and

difference of differentiation maturity [12, 13] have been captured by many scRNA-

seq studies. Since the measurement of cellular heterogeneity highly depends on

the number of cells measured simultaneously, a wide variety of large-scale scRNA-

seq technologies have been developed [14], including those using cell sorting de-

vices [15–17], Fludigm C1 [18–21], droplet-based technologies (Drop-Seq [2–4], in-

Drop RNA-Seq [5,6], 10X Genomics Chromium [22]), and single-cell combinatorial-

indexing RNA-sequencing (sci-RNA-seq [23]). Such technologies have encouraged

the establishment of several large-scale genomics consortiums such as the Human

Cell Atlas [24–26], Mouse Cell Atlas [27], and Tabula Muris [28]. These projects

are measuring a tremendous number of cells by scRNA-seq and tackling basic life

science problems such as the number of cell types consisting of an individual, cell-

type-specific marker gene expression and gene functions, and molecular mechanisms

of diseases at a single-cell resolution.

Nevertheless, the analysis of scRNA-seq datasets poses a potentially difficult prob-

lem; the cell type corresponding to each data point is unknown a priori [1, 29–33].

Accordingly, researchers perform unsupervised machine learning (UML) methods

such as dimensional reduction and clustering to reveal the cell type correspond-

ing to each individual data point. In particular, principal component analysis

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

mailto:itoshi.nikaido@riken.jp
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 2 of 31

(PCA [34–36]) is a workhorse algorithm for UML across many situations. PCA is

widely used for data visualization [37–39], data quality control (QC) [40], feature se-

lection [13,41–47], de-noising [48,49], imputation [50–52], confirmation and removal

of batch effects [53–55], confirmation and estimation of cell-cycle effects [56], input of

other non-linear dimensional reduction [57–63] and clustering methods [64–67], rare

cell type detection [68,69], cell type and cell state similarity search [70], pseudotime

coordinate [13, 71–75], and spatial coordinate [9]. A wide variety of data analysis

pipelines include PCA as an internal function or utilize principal component (PC)

scores as input for the down-stream analyses [22,76–83].

Despite its wide use, there are several reasons why it is unclear how PCA should

be conducted for large-scale scRNA-seq. First, since the widely used PCA algo-

rithms and implementations load all elements of data matrix into memory space,

for large-scale datasets such as the 1.3 million cells measured by 10X Genomics

Chromium [39] or the 2.0 million cells measured by sci-RNA-seq [23], the calcu-

lation is difficult unless the memory size of the user’s machine is very large. Fur-

thermore, the same data analysis workflow is repeatedly performed, with deletions

or additions of the data or changes of parameters of the workflow, and under such

trial-and-error cycles, PCA can become a bottleneck of the workflow. Therefore,

some fast and memory-efficient PCA algorithms are required.

Second, there are indeed other PCA algorithms that are faster and more memory-

efficient, but their practicality for use with large-scale scRNA-seq datasets is not

fully known. Generally, the acceleration of algorithms by some approximation meth-

ods, and the accuracy of biological data analysis can be a trade-off. Fast PCA al-

gorithms might overlook some important differential gene expression. In the case

of large-scale scRNA-seq studies aiming to find novel cell types, this property may

cause the loss of clustering accuracy and not acceptable.

Finally, actual computational time and memory efficiency are highly dependent on

the specific implementation, including the programming language and data format,

but there is no benchmarking for evaluating these properties. Such information is

directly related to the practicality of the software and is useful as a guideline for

users and developers.

For the above reasons, in this work, we examine the practicality of fast and

memory-efficient PCA algorithms for use with large-scale scRNA-seq datasets. This

work provides four key contributions. First, we reviewed the existing PCA algo-

rithms and their implementations (Figure 1). Second, we performed a benchmark

test with selected PCA algorithms and implementations. To our knowledge, this is

the first comprehensive benchmarking of PCA with scRNA-seq datasets. Third, we

provide some original implementations of some PCA algorithms and utility func-

tions for QC, filtering, and feature selection. All commands are implemented as a

fast and memory-efficient Julia package. Finally, we propose guidelines for end-users

and software developers.

Results
Review of PCA algorithms and implementations

Here, we review the existing PCA algorithms and their implementations. All algo-

rithms pseudo-code is provided in Additional file 1.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 3 of 31

PCA is formalized as eigenvalue decomposition (EVD) of the covariance ma-

trix of the data matrix or singular value decomposition (SVD) of the data ma-

trix [84]. To perform PCA, the most widely used PCA function in the R language

is probably prcomp function, which is a standard R function [13, 40, 41, 49, 53, 64,

67, 69, 72, 74, 76, 79, 85]. Likewise, users and developers of the Python language

may use the PCA function of scikit-learn (sklearn) [50, 54, 56, 86, 87], which is a

Python package for machine learning. These are actually wrapper functions for

performing SVD with LAPACK subroutines such as DGESVD (QR method-based)

or DGESDD (divide-and-conquer method-based), and both subroutines perform the

Golub-Kahan method [84]. In this method, the covariance matrix is tri-diagonalized

by Householder transformation, and then the tri-diagonalized matrix is diagonal-

ized by the QR method or divide-and-conquer method (Figure 2a). Such a two-step

transformation is commonly performed by the sequential similarity transformation

expressed as M−1k ...M−12 M−11 XM1M2...Mk, where X is an n-by-n covariance ma-

trix, Mk is an n-by-n invertible matrix, and k is the step of the transformation.

Likewise, when the input data matrix is asymmetric, the matrix is bi-diagonalized

and then tri-diagonalized. When the matrix is finally diagonalized at the kth step,

the diagonal elements become eigenvalues and M = M1M2...Mk becomes the set of

corresponding eigenvectors. Although the Golub-Kahan method is the most widely

used SVD algorithm, this method has some drawbacks. First, the large dense matrix

M must be temporarily saved and incrementally updated in each step, and there-

fore the memory space is filled quickly. Second, when the matrix is large, the data

matrix itself is difficult to be loaded and causes an out-of-memory error. For the

above reasons, the Golub-Kahan method cannot be directly applied to large-scale

scRNA-seq datasets.

There are some faster and more memory-efficient PCA algorithms. Contrary to

the full-rank SVD solved by LAPACK, such algorithms are formalized as truncated

SVD, in which only some of the top PCs are calculated. We classify these methods

into five categories (Figure 2b). The first category consists of downsampling-based

methods [88]. In these methods, SVD is first performed for a small matrix consisting

of cells randomly sampled from the original large matrix. The remaining cells are

then projected onto the low-dimensional space spanned by the eigenvectors learned

from the small matrix. The effectiveness of this method in scRNA-seq studies has

been evaluated by Bhaduri et al. [88] (Table 1).

The second category is SVD update [89], which repeatedly performs SVD using

subsets of the data sampled from the data matrix and incrementally updates the

result. Sequential Karhunen-Loeve transform (SKL) [89], which is a kind of SVD

update, is used in loompy (http://loompy.org) (Table 1).

The third category consists of Krylov subspace-based methods [90–93]. The most

typical method within this category is the power method, which iteratively multi-

plies a vector w with a covariance matrix X and normalizes w. Within some itera-

tions, w converges to the eigenvector (PC1) corresponding to the largest eigenvalue.

Since the way to calculate the higher PCs is not obvious, there are some algorithms,

such as orthogonal iteration (block power method, subspace iteration, or simultane-

ous iteration [90]), the Lanczos method [90], and the Arnoldi method [90]. Orthog-

onal iteration performs the power method with multiple initial vectors in parallel,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

http://loompy.org
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 4 of 31

and each power iteration step performs QR decomposition for orthonormalization.

Contrary to orthogonal iteration, Lanczos and Arnoldi methods respectively intro-

duce Lanczos and Arnoldi processes to generate vectors that are orthogonal to each

other. To make the convergence faster, both methods also introduce “restart” strate-

gies such as the augmented implicitly restarted Lanczos bidiagonalization algorithm

(IRLBA [94]) and implicitly restarted Arnoldi methods (IRAM [95]), in which new

initial vectors are calculated by the accumulated result of Lanczos or Arnoldi pro-

cesses. In contrast to the Golub-Kahan method, these methods do not generate large

dense temporary matrices, and when the data matrix is sparse, these methods are

compatible with a sparse matrix format and can be accelerated. Cell Ranger [22],

Seurat2 [47], Scanpy [87], SAFE [66], Scran [48], Giniclust2 [68], MAGIC [50],

Harmony [55], and Scater [76] use IRLBA for PCA functions (Table 1). Although

IRAM appears not to have been used in scRNA-seq studies, the effectiveness of its

use with population genetic datasets has been argued recently [96].

The fourth category is gradient descent (GD, or steepest descent)-based methods.

In this method category, the gradient of the objective function is calculated, and the

initial vectors are updated to the reverse direction of the gradient. Although GD

utilizes all the data to calculate the gradient (i.e., full gradient), stochastic gradient

descent (SGD) calculates the gradient with a subset of the data (i.e., stochastic gra-

dient). Although these PCA algorithms are sometimes used for situations in which

the data are incrementally observed, such as subspace tracking [97], these methods

also can be fast and memory-efficient because the calculation of the full/stochastic

gradient is decomposable to the sum of the gradient of individual data points.

Although these methods appear not to have been used in scRNA-seq studies, in

image processing studies, this method is known as Oja’s method or the generalized

Hebbian algorithm [98–100].

The fifth category comprises random projection-based methods, in which a data

matrix is randomly projected onto lower dimensions and basic linear algebraic meth-

ods such as QR decomposition and SVD are performed on the smaller matrix. Since

most calculations are performed for these random lower dimensions, these methods

can be fast and memory-efficient. Surprisingly, in this method, the SVD of the orig-

inal data matrix can be accurately reconstructed from the arithmetic of the small

matrix with low reconstruction error [101,102]. Although Halko’s method is known

as an algorithm of the randomized SVD, Li et al. also modified the preconditioning

step so that the calculation time is improved (algorithm971 [103]). Halko’s method

is used in scanpy [87], SIMLR [65], and SEQC [83], and algorithm971 is imple-

mented in CellFishing.jl [70] (Table 1). Halko’s method is also used in population

genetic studies [104].

Notably, the acceleration techniques of the above algorithms are based on random

row/column selection or random projection of data matrices, both of which are used

to make a large matrix smaller. When these processes are used in an out-of-core (also

known as, online, incremental, or on-disk) implementation, in which only a subset

of the data matrix is loaded into the memory and used to incrementally update

the calculation, these algorithms might be scalable to even scRNA-seq datasets

consisting of millions of cells. For example, in fast Fourier transform-accelerated

interpolation-based t-stochastic neighbor embedding (FIt-SNE [59]), algorithm971

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 5 of 31

is implemented in an out-of-core manner and named out-of-core PCA (oocPCA).

However, most PCA implementations load all the elements of a data matrix into

the memory-space simultaneously. Therefore, the order of memory usage of such

algorithms is commonly O (NM), where N is the number of genes and M is the

number of cells (Figure 3). To extend the scope of algorithms used in the bench-

marking, we originally implemented algorithms such as orthogonal iteration, GD,

SGD, Halko’s method, and algorithm971 in an out-of-core manner.

Benchmarking of PCA algorithms and implementations

Here, we perform the benchmarking test of the PCA algorithms described above.

We list PCA implementations that are freely available, easily downloaded, installed,

and performed as well as possible. The source code for performing the benchmark-

ing is summarized in Additional file 2, and the results of the benchmarking are

summarized in Figure 3.

Real-world datasets

In consideration of the trade-offs among the large number of methods to be eval-

uated and our limited time, computational resources, and manpower, we carefully

selected real-world datasets for benchmarking. We selected three datasets: mouse

cells from a primary visual cortex region (Cortex), human cells from the pancreas

(Pancreas), and mouse cells from the cortex, hippocampus, and ventricular zone

(Brain) (Table 2). These datasets have been used in many previous scRNA-seq

studies [66,70,82,88,105–111].

The accuracy of PCA algorithms

Here, we evaluate the accuracy of the various PCA algorithms by using three real-

world datasets. For the analyses of the Cortex and Pancreas datasets, we set the

result of prcomp as the gold standard, and the other implementations are compared

with this result (Figure 1b and 3). For the Brain dataset analyses, full-rank SVD by

LAPACK is computationally difficult. Therefore, we set the result of Cell Ranger

as the gold standard. Although we know that the algorithm is IRLBA, some details

of data preprocessing, such as gene selection and logarithm transformation, are

unclear. Accordingly, for the Brain dataset, the comparison may be imprecise. In

our computing environment, we could not use Cell Ranger to analyze the Brain

dataset owing to an out-of-memory error in Python, so the result of the analysis

provided by 10X Genomics is used instead.

First, we performed t-stochastic neighbor embedding (t-SNE [57, 58]) for the re-

sults of each PCA algorithm and compared the clarity of the cluster structure

detected by the original studies (Figure 1b and 4). For the Brain dataset, only

downsampling and some out-of-core PCA implementations such as IncrementalPCA

(sklearn), orthiter/gd/sgd/halko/algorithm971 (OnlinePCA.jl), and oocPCA CSV

(oocRPCA) could be performed, while the other implementations were terminated

by out-of-memory errors. Compared with the gold standard cluster structures, the

structures detected by downsampling were unclear, and some distinct clusters were

incorrectly combined into single clusters. In the realistic situation when the cellular

labels are not available a priori, the labels were exploratorily estimated by confirm-

ing differentially expressed genes, known marker-genes, or related gene functions

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 6 of 31

of clusters. In such a situation, downsampling may overlook subgroups hiding in a

cluster. We also performed two clustering methods (k-means and Gaussian mixture

model (GMM) clustering [112]) against all the results of the PCA implementa-

tions and calculated the adjusted Rand index (ARI [113]) to evaluate clustering

accuracy (Figure 1b and 5). Compared with the gold standard, the result of down-

sampling and sgd (OnlinePCA.jl) were worse, and the other implementations were

as accurate as the gold standard.

Next, we performed an all-to-all comparison between PCs from the gold standard

and the other PCA implementations (Figure 1b and 6). Since the PCs are unit

vectors, when two PCs are directed in the same or opposite direction, their cross

product becomes 1 or -1, respectively. Both the same and opposite direction vec-

tors are mathematically identical in PCA optimization problem and different PCA

implementations may yield PCs with different signs. Accordingly, we calculated the

absolute value of the cross product ranging from 0 to 1 for the all-to-all comparison

and evaluated whether higher PCs are accurately calculated. The figure 6 shows

that the higher PCs of downsampling, orthiter/gd/sgd (OnlinePCA.jl), and PCA

(dask-ml [114]) become inaccurate as the dimensionality of the PC increases. The

higher PCs of these implementations also look noisy and unclear in pair plots of

PCs in each implementation and seem uninformative (Additional file 3, Additional

file 4, and Additional file 5). In particular, the higher PCs calculated by sgd (On-

linePCA.jl) are sometimes influenced by the existence of outlier cells (Additional file

3, Additional file 4, and Additional file 5) and very sensitive to the different learning

parameters, the number of row vectors in the data matrix (i.e., number of epoch

or pass out, Additional file 7). Contrary to these results, all the implementations of

IRLBA and IRAM as well as the randomized SVD approaches except for PCA (dask-

ml) are surprisingly accurate regardless of the difference in the written language

and the developers. Although PCA (dask-ml) is based on Halko’s method and almost

identical to the other implementations of Halko’s method, this function uses the di-

rect tall-and-skinny QR algorithm [115] (https://github.com/dask/dask/blob/

a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52) and

this part might be related to the inaccuracy.

For the Brain dataset, compared with the gold standard (irlb (Cell Ranger)),

the diagonal lines within the plots of all the results seem unclear (Figure 6c). This

may be because the data preprocessing condition for irlb (Cell Ranger) [22] and

the other PCA implementations are not identical. The distribution of eigenvalues

of irlb (Cell Ranger) is also slightly flat compared with the other implementations

(Figure 7c).

Because PCA calculates cell-wise eigenvectors (PCs) and gene-wise eigenvectors

(loading vectors) simultaneously, we also performed all-to-all comparisons between

the loading vectors of the gold standard and those of the other PCA implementations

(Figure 8). We extracted the top 500 genes in terms of the largest absolute values

in loading vectors and calculated the number of genes in common between the

two loading vectors. The same tendencies were observed even in loading vectors.

Since the genes with large absolute values in loading vectors are used as feature

values in some studies [41–46], inaccurate PCA implementations may lower the

accuracy of such an approach. The distribution of the eigenvalues of downsampling,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://github.com/dask/dask/blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52
https://github.com/dask/dask/blob/a7bf545580c5cd4180373b5a2774276c2ccbb573/dask/array/linalg.py#L52
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 7 of 31

IncrementalPCA (sklearn), and sgd (OnlinePCA.jl) are also different from those of

the other implementations (Figure 7).

Finally, we compared the computational time and the memory usage of all the

PCA implementations (Figure 9). For the Brain dataset, downsampling itself was

fast, but the preprocessing steps, such as matrix transposition (X ′) and multi-

plication of the transposed data matrix and the loading vectors to calculate PCs

(X ′W), were slow and had high memory space requirements (Additional file 2).

We also found that the calculation time of PCA (dask-ml) was not as fast in spite

of its out-of-core implementation; for the Brain dataset, this implementation could

not finish the calculation within three days in our computational environment.

The other out-of-core PCA implementations such as IncrementalPCA (sklearn),

orthiter/gd/sgd/halko/algorithm971 (OnlinePCA.jl), and oocPCA CSV (oocR-

PCA), were able to finish those calculations in 10 or fewer hours.

Calculation time, memory usage, and scalability

We also systemically estimated the calculation time, memory usage, and scala-

bility of all the PCA implementations using 18 synthetic datasets consisting of

{102,103,104} genes × {102,103,104,105,106,107} cells matrices (see Materials and

methods). We evaluated whether the calculations can be finished or are terminated

by out-of-memory errors (Figure 1b). We also manually terminated a PCA pro-

cess (i.e., dask-ml) that was unable to generate output files within three days. All

the terminated jobs are summarized in Additional file 6. Note that the number

of epochs in orthiter/gd/sgd (OnlinePCA.jl) is one, and in most situations, the

value should be tuned using grid search (Additional file 7).

Figures 10 and 11 show the calculation time and the memory usage of all the

PCA implementations, which can be scaled to a 104×107 matrix. IncrementalPCA

(sklearn) and oocPCA CSV (oocRPCA) were slightly slower than the other imple-

mentations (Figure 10), and this was probably because the inputs of these im-

plementations were CSV files while the other implementations used binary files.

The memory usage of all the implementations were almost the same except for

oocPCA CSV (oocRPCA). This is probably because this function has a parameter

that controls the maximum memory usage (mem), and we set the value as 10 GB

(Additional file 2). Indeed, the memory usage seemed to have converged to around

10 GB (Figure 11). This property is considered an advantage of this implementation;

the users can specify different values to suit the computational environment.

The relationship between file format and performance

We also counted the pass out of the Brain matrix in out-of-core PCA implemen-

tations (Figure 12a) and found that the calculation time was correlated with the

number of pass out of the implementation. Furthermore, data compression substan-

tially accelerates the calculation time. This suggests that the data loading process

is very critical for out-of-core implementation and that the overhead for this process

has a great effect on the overall calculation time and memory usage. Accordingly,

using different data formats, such as CSV, Zstd, Loom [87], and hierarchical data

format 5 (HDF5), provided by the 10X Genomics (10X-HDF5) of the Brain dataset,

we evaluated the calculation time and the memory usage for the simple one-pass

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 8 of 31

orthogonal iteration (qr(XW)), where qr is the QR decomposition, X is the data

matrix, and W is the 30 vectors to be estimated as the eigenvectors (Figure 12b).

Since only one row is loaded at once for CSV, Zstd, and Loom formats, their memory

usage is very low but the time needed for calculation is greater than that of 10X-

HDF5. Conversely, for 10X-HDF5 format, the data matrix is stored as compressed

sparse column format (CSC), which omits the 0 values and saves memory usage,

and this enables the large data matrix to be divided into multiple blocks containing

multiple row vectors, for which each block is loaded incrementally. While it is not ob-

vious that the usage of sparse matrix accelerates the PCA with scRNA-seq datasets

because scRNA-seq datasets are not particularly sparse compared with data from

other scientific fields (cf. recommender systems or social network [116, 117]), we

showed that it does speed up the calculation time for scRNA-seq datasets.

When all row vectors stored in 10X-HDF5 are loaded at once, the calculation is

fastest, but the memory usage is also highest. Since the calculation time and the

memory usage have a trade-off and the user’s computational environment is not

always high-spec, the block size should be optionally specified as an argument of

the command. For the above reasons, we also developed tenxpca, which is a new

implementation that performs algorithm971 for sparse matrix stored in 10X-HDF5

format. Using all elements of the CSC at once, tenxpca can finish the calculation

in 1.18 hours with 82.96 GB memory usage. This is the fastest analysis of the Brain

dataset in this study. According to the user’s machine specification, the number of

rows loaded at once can be optionally changed to a different number.

In addition to tenxpca, some algorithms used in this benchmarking, such as or-

thogonal iteration, GD, SGD, Halko’s method, and algorithm971, are implemented

as Julia functions and command line, which have been published as a Julia pack-

age OnlinePCA.jl (Figure 13). When the data are stored as a CSV file, they are

compressed as a Zstd file (Figure 13a) and then some out-of-core PCA implemen-

tations are performed. When the data are in 10X-HDF5 format, algorithm971 is

directly performed with the data by tenxpca (Figure 13b). We also implemented

some functions and command line to extract row-wise/column-wise statistics such

as mean and variance as well as highly variable genes [118] in an out-of-core man-

ner. Because such statistics are saved as small vectors, they can be loaded by any

programming language and applied to QC, and the users can select only informative

genes and cells. After QC, the filtering command removes low-quality genes/cells

and generates another Zstd file.

Guidelines for users and developers

Based on all the benchmarking results and our implementation in this work, we

propose some user guidelines (Figure 14). Considering that bioinformatics studies

combine multiple tools to construct a user’s specific workflow, written language is

an important factor in selecting the right PCA implementation. Therefore, we cat-

egorized the PCA implementations by their written language (i.e., R, Python, and

Julia; Figure 14, column-wise). Along with the data matrix size, we also categorized

implementations by the way they load data (in-memory or out-of-core) as well as

their input matrix format (dense or sparse, Figure 14, row-wise). Here we define

the GC-value of a data matrix as the number of genes × the number of cells.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 9 of 31

If the data matrix is not too large (e.g., GC ≤ 107), the data matrix can loaded

as a dense matrix, and full-rank SVD of LAPACK is then accurate and optimal (in-

memory & dense matrix). In such a situation, the wrapper functions for utilizing

LAPACK written in each language are useful. However, if the data matrix is much

larger (e.g., GC ≥ 108), an alternative to LAPACK is needed. Based on the bench-

marking results, we recommend IRLBA, IRAM, Halko’s method, and algorithm971

as alternatives to LAPACK. If the GC-value is around 108 ≤ GC ≤ 1010, and if

the data matrix can be loaded into memory as a sparse matrix, some implementa-

tions for these algorithms are available (in-memory & sparse matrix). In particular,

such implementations are effective for large data matrices stored in 10X-HDF5 for-

mat as CSC format. Seurat2 [47] also introduces this approach by combining the

matrix market format (R, Matrix) and irlba function (R, irlba). When the data

matrix is dense and cannot be loaded into memory space (e.g., GC ≥ 1010), the

out-of-core implementations such as oocPCA CSV (R, oocRPCA), IncrementalPCA

(Python, sklearn), and algorithm971 (Julia, OnlinePCA.jl) are useful (dense ma-

trix & out-of-core). If the data matrix is extremely large and cannot be loaded into

memory even if the data are formatted as a sparse matrix, out-of-core PCA imple-

mentations for sparse matrix are needed. In such a situation, tenxpca can be used

if the data is stored in 10X-HDF5 format.

There is a point to be noted regarding effective utilization of the implementations

for randomized SVD. Both Halko’s method and algorithm971 have a parameter for

specifying the number of power iterations (niter), and this iteration step sharpens

the distribution of eigenvalues and enforces a more rapid decay of the singular values

([119] and Additional file 2). In our experiments, the value of niter is very critical for

achieving accuracy, and we highly recommend niter values of 3 or larger (Additional

file 8). In some implementations, this parameter is specified as a smaller number or

cannot be accessed as a function parameter. Therefore, users should carefully set

the parameter or select an appropriate implementation.

We also propose guidelines for developers. To develop fast, memory-efficient, and

scalable PCA implementations, there are many data, algorithms, and computational

framework and environment methodologies (Additional file 9). Here, we focus on

two topics.

The first topic is “loss of sparsity”. As described above, the usage of sparse matrix

can effectively reduce the memory space and accelerate the calculation, but devel-

opers must be careful not to destroy the sparsity of a sparse matrix. PCA with a

sparse matrix is not equivalent to SVD with sparse matrix; in PCA, all sparse ma-

trix elements must be centered by the substitution of gene-wise average values. Once

the sparse matrix X is centered (X −Xmean), it becomes a dense matrix filled with

floating-point numbers, and the memory usage is significantly increased. Obviously,

the explicit calculation should be avoided. In such a situation, if multiplication of

this centered matrix and dense vector/matrix is required, the calculation should be

divided into two parts, such as (X −Xmean)W = XW −XmeanW , and these parts

should be calculated separately. If one or both parts require more than the available

memory space, such parts should be incrementally calculated in an out-of-core man-

ner. There are actually some PCA implementations that can accept a sparse matrix,

but they may consume very long calculation time and large memory space be-

cause of a loss of sparsity (cf. rpca of rsvd https://github.com/cran/rsvd/blob/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://github.com/cran/rsvd/blob/7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158
https://github.com/cran/rsvd/blob/7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 10 of 31

7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158). To the best of

our knowledge, prcomp irlba of irlba (https://github.com/bwlewis/irlba/

blob/8aa970a7d399b46f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379), irlb of

Cell Ranger (https://github.com/10XGenomics/cellranger/blob/e5396c6c444acec6af84caa7d3655dd33a162852/

lib/python/cellranger/analysis/irlb.py#L118), safe sparse dot of sklearn

(https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.safe sparse dot.html),

and tenxpca of OnlinePCA.jl (https://github.com/rikenbit/OnlinePCA.jl/

blob/c95a2455acdd9ee14f8833dc5c53615d5e24b5f1/src/tenxpca.jl#L183) deal

with this topic. Likewise, as an alternative to the centering calculation, MaxAbsScaler

of sklearn (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html),

introduces a scaling method, in which the maximum absolute value of each gene

vector becomes one, thereby avoiding the loss of sparsity.

The second topic is “lazy loading.” Although, the out-of-core PCA imple-

mentations used in this benchmarking explicitly calculate centering, scaling,

and any other arithmetic operations from the extracted block of the data ma-

trix, such processes should be virtually calculated, as if the matrix was in

memory. In this situation, only when the data are actually required, the pro-

cesses should be lazily calculated on the fly. Source code to achieve this is

even safe and readable. Some packages, such as DeferredMatrix of BiocSingu-

lar (R/Bioconductor, https://bioconductor.org/packages/devel/bioc/html/

BiocSingular.html), CenteredSparseMatrix (Julia, https://github.com/jsams/

CenteredSparseMatrix), Dask [114] (Python, https://dask.org), and Vaex

(Python, https://vaex.io/), support lazy loading.

Discussion
In this benchmarking study, we found that PCA implementations based on LA-

PACK are accurate but cannot be scaled for use with large-scale scRNA-seq datasets

such as the Brain dataset, and alternative implementations are thus required. Some

methods approximate the calculation by using truncated SVD forms such as IRLBA,

IRAM, Halko’s method, and algorithm971, and these are sufficiently accurate as well

as faster and more memory-efficient than LAPACK. The actual memory usage is

highly dependent on whether an algorithm is implemented as out-of-core or whether

sparse matrix can be specified as input. Some sophisticated implementations, in-

cluding ours, can handle such issues. Other PCA algorithms, such as downsampling,

SKL, orthogonal iteration, GD, and SGD, are actually not accurate, and their use

risks overlooking cellular subgroups contained within scRNA-seq datasets. These

methods commonly update eigenvectors with small fractions of the data matrix, and

this process may overlook subgroups or subgroup-related gene expression, thereby

causing the observed inaccuracy. Although the down-stream analyses of PCA vary

widely, and we could not examine all the topics of scRNA-seq analysis, such as rare

cell-type detection [68, 69] and pseudotime analysis [13, 71–75], differences among

PCA algorithms might also affect the accuracy of such analyses. Butler et al. showed

batch effect removal can be formalized as canonical correlation analysis (CCA) [47],

which is mathematically very similar to PCA. The optimization of CCA is also

formalized in various ways, including randomized CCA [120] or SGD of CCA [121].

Although this topic is beyond the scope of the present work, we will also evaluate

such differences among algorithms in the future.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://github.com/cran/rsvd/blob/7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158
https://github.com/cran/rsvd/blob/7a409fe77b220c26e88d29f393fe12a20a5f24fb/R/rpca.R#L158
https://github.com/bwlewis/irlba/blob/8aa970a7d399b46f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379
https://github.com/bwlewis/irlba/blob/8aa970a7d399b46f0d5ad90fb8a29d5991051bfe/R/irlba.R#L379
https://github.com/10XGenomics/cellranger/blob/e5396c6c444acec6af84caa7d3655dd33a162852/lib/python/cellranger/analysis/irlb.py#L118
https://github.com/10XGenomics/cellranger/blob/e5396c6c444acec6af84caa7d3655dd33a162852/lib/python/cellranger/analysis/irlb.py#L118
https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.safe_sparse_dot.html
https://github.com/rikenbit/OnlinePCA.jl/blob/c95a2455acdd9ee14f8833dc5c53615d5e24b5f1/src/tenxpca.jl#L183
https://github.com/rikenbit/OnlinePCA.jl/blob/c95a2455acdd9ee14f8833dc5c53615d5e24b5f1/src/tenxpca.jl#L183
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://bioconductor.org/packages/devel/bioc/html/BiocSingular.html
https://bioconductor.org/packages/devel/bioc/html/BiocSingular.html
https://github.com/jsams/CenteredSparseMatrix
https://github.com/jsams/CenteredSparseMatrix
https://dask.org
https://vaex.io/
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 11 of 31

This work also sheds light on the effectiveness of randomized SVD. This algo-

rithm is popular in population genetic studies [104]. In the present study, we also

assessed its effectiveness with scRNA-seq datasets with high heterogeneity. This

algorithm is relatively simple and some studies have implemented it from scratch

(Table 1). The simplicity may be the attraction of this algorithm. Our literature re-

view, benchmarking, special implementation for scRNA-seq datasets, and guidelines

provide important resources for new users and developers tackling the challenges

of large-scale scRNA-seq data analysis. EVD/SVD is also known as the “master”

algorithm for matrices [84]; this method also can solve least squares problems and

be applied to other data analysis methods, such as dimensional reduction, cluster-

ing, and prediction, which means many out-of-core algorithms can be developed for

large scRNA-Seq datasets.

Materials and methods
Empirical datasets

The gene expression matrix and cell type labels for the Cortex dataset [37] were re-

trieved from the Single Cell Portal Beta (https://portals.broadinstitute.org/

single cell/study/a-transcriptomic-taxonomy-of-adult-mouse-visual-cortex-

visp). The gene expression matrix and cell type labels for the Pancreas dataset [38]

were retrieved from the GEO database (GSE84133). The gene expression matrix

and cell type labels for the Brain dataset [39] were downloaded from the 10X

Genomics company website (https://support.10xgenomics.com/single-cell/

datasets/1M neurons). The genes of all matrices with zero variance were removed

because such genes are meaningless for PCA calculation. The number of remaining

genes and cells are summarized in Table 2.

Simulated datasets

All count datasets were generated by the R rnbinom (random number based on a

negative binomial distribution) function with shape and rate parameters of 0.4 and

0.3, respectively. Matrices of {102,103,104} genes × {102,103,104,105,106,107} cells

were generated.

Benchmarking procedures

Assuming digital expression matrices of unique molecular identifier (UMI)-counts,

all the data files, including real and synthetic datasets, were in CSV format.

When using the Brain dataset, the matrix stored in 10X-HDF5 format was con-

verted to CSV using our in-house Python script (https://gist.github.com/

kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5). After being loaded by

each PCA implementation, the raw data matrix Xraw was transformed to X by

the logarithm-transformation X = log10 (Xraw + 1), where log is the element-wise

logarithm. When performing each PCA implementation based on the truncated

SVD, the number of PCs were specified in advance (Table 2).

Although it is unclear how many cells should be used in downsampling, an empir-

ical analysis [88] suggests that 20,000 to 50,000 cells are sufficient for clustering and

detecting subpopulations in the 1.3M dataset. Thus 50000/1300000×100 = 3.8% of

cells were sampled from each dataset and used for the downsampling method. When

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://portals.broadinstitute.org/single_cell/study/a-transcriptomic-taxonomy-of-adult-mouse-visual-cortex-visp
https://portals.broadinstitute.org/single_cell/study/a-transcriptomic-taxonomy-of-adult-mouse-visual-cortex-visp
https://portals.broadinstitute.org/single_cell/study/a-transcriptomic-taxonomy-of-adult-mouse-visual-cortex-visp
https://support.10xgenomics.com/single-cell/datasets/1M_neurons
https://support.10xgenomics.com/single-cell/datasets/1M_neurons
https://gist.github.com/kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5
https://gist.github.com/kokitsuyuzaki/5b6cebcaf37100c8794bdb89c7135fd5
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 12 of 31

performing IncrementalPCA (sklearn), the row-vectors, which match the number

of PCs, were extracted until the end of the lines of the files. When performing

irlb(Cell Ranger), the loaded dataset was first converted to the scipy sparse matrix

and specified with the function. This is because this function supports sparse matrix

data stored in 10X-HDF5 format. When performing the benchmark, this conversion

time and memory usage were also included. When performing all the functions of

OnlinePCA.jl such as orthiter/gd/sgd/halko/algorithm971, we converted the

CSV data to Zstd format, and the calculation time and the memory usage were

included in the benchmark for fairness. orthiter, gd, and sgd (OnlinePCA.jl)

were performed until the calculations converged (Additional file 7). For all the ran-

domized SVD implementations, the niter parameter value was set to 3 (Additional

file 8). When performing oocPCA CSV, the users can also use oocPCA BIN, which

is used to perform PCA with binarized CSV files. The binarization is performed

by the csv2binary function, which is also implemented in the oocRPCA package.

Although data binarization will accelerate the calculation time for PCA itself, we

confirmed that csv2binary is based on the in-memory calculation, and in our envi-

ronment, csv2binary was terminated by an out-of-memory error. Accordingly, we

only used oocPCA CSV, and the CSV files were directly loaded by this function.

Since most algorithms are based on random numbers, we also tried to evaluate

stability, as captured by variation among multiple trials. However, we could not

specify the random seed in many of the implementations. This is because, in many

cases, there is no parameter for specifying the seed in the PCA function, or some-

times the source code for performing the PCA calculation is separated into other

languages such as FORTRAN, C, and C++ making the seed hard to specify in the

code. We confirmed that many implementations generated the same results with

multiple trials (data not shown), but this does not always mean the calculations

stably converge to the same solution from any random seed, because the random

seed is sometimes hard-coded in the source code. For the above reason, in this work,

we used the result of a single trial for each implementation.

Computational environment

All computations were performed on two node-machines with Intel Xeon E5-2697

v2 (2.70 GHz) processors and 128 GB of RAM, four node-machines with Intel Xeon

E5-2670 v3 (2.30 GHz) processors and 96 GB of RAM, and four node-machines

with Intel Xeon E5-2680 v3 (2.50 GHz) processors and 128 GB of RAM. Storage

among node machines was shared by NFS, connected using InfiniBand. All jobs

were queued by the Open Grid Scheduler/Grid Engine (v2011.11) in parallel. The

elapsed time and maximum memory usage were evaluated using the GNU time

command (v1.7). We also tried to use Cell Ranger (v1.3.0) to analyze the Brain

dataset on a large-memory machine with an Intel Xeon (2.90 GHz) processor and

512 GB of RAM.

Reproducibility

All the analyses were performed on the machines described above. We used R

v3.5.0, Python v3.6.4, and Julia v1.0.1 in the benchmarking, and only when we

performed t-SNE by bhtsne (https://github.com/lvdmaaten/bhtsne) and CSV

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://github.com/lvdmaaten/bhtsne
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 13 of 31

conversion of Brain dataset, we used Python v2.7.9. All the programs used to per-

form the PCA implementations in the benchmarking are summarized in Additional

file 2. Orthogonal iteration, GD, SGD, Halko’s method, and algorithm971 are imple-

mented as orthiter, gd, sgd, halko, and algorithm971, respectively, which are the

Julia functions or commands for OnlinePCA.jl (https://github.com/rikenbit/

OnlinePCA.jl). We also published the script files used to perform the benchmark

(https://github.com/rikenbit/onlinePCA-experiments).

Abbreviations

PCA: principal component analysis; scRNA-seq: single-cell RNA sequencing; sci-RNA-seq: single-cell

combinatorial-indexing RNA-sequencing analysis; UML: unsupervised machine learning; QC: quality control; PC:

principal component; EVD: eigenvalue decomposition; SVD: singular value decomposition; Sklearn: scikit-learn; SKL:

sequential Karhunen-Loeve transform; IRLBA: augmented implicitly restarted Lanczos bidiagonalization; IRAM:

implicitly restarted Arnoldi method; GD: gradient descent; SGD: stochastic gradient descent; t-SNE: t-stochastic

neighbor embedding; FIt-SNE: fast Fourier transform-accelerated interpolation-based t-stochastic neighbor

embedding; oocPCA: out-of-core PCA; GMM: Gaussian mixture model; ARI: adjusted Rand index; Zstd: Zstandard;

UMI: unique molecular identifier; CSV: comma-separated values; HDF5: hierarchical data format 5; 10X-HDF5:

HDF5 provided by 10X Genomics; CSC: compressed sparse column format; CSR: compressed sparse row format

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by MEXT KAKENHI Grant Number 16K16152. This work was partially supported by the

Japan Science and Technology Agency (JST), CREST grant number JPMJCR16G3, and the Projects for

Technological Development, Research Center Network for Realization of Regenerative Medicine by Japan

(18bm0404024h0001), the Japan Agency for Medical Research and Development (AMED).

Author’s contributions

KT and HS surveyed the PCA algorithms and implementations. KT and IN designed the benchmarking test. KT and

KS implemented the Julia program and performed all the analyses. KT retrieved and preprocessed the test dataset

to evaluate the proposed method. All the authors have written, read, and approved the manuscript.

Acknowledgements

We thank Mr. Akihiro Matsushima and Mr. Manabu Ishii for their assistance with the IT infrastructure for the data

analysis. We are also grateful to all member of the Laboratory for Bioinformatics Research, RIKEN Center for

Biosystems Dynamics Research for their helpful advice. Computations were partially performed on the NIG

supercomputer at ROIS National Institute of Genetics.

Author details
1Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Japan. 2The Hakubi

Center for Advanced Research/Department of Applied Mathematics and Physics, Graduate School of Informatics,

Kyoto University, Japan. 3Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The

University of Tokyo, Japan. 4Bioinformatics Course, Master’s/Doctoral Program in Life Science Innovation (T-LSI),

School of Integrative and Global Majors (SIGMA), University of Tsukuba, Japan.

References
1. Trapnell, C.: Defining cell types and states with single-cell genomics. Genome Research 25(10), 1491–1498

(2015)

2. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki,

N., Martersteck, E.M., Trombetta, J.J., Weitz, D.A., Sanes, J.R., Shalek, A.K., Regev, A., McCarroll, S.A.:

Highly parallel genome-wide expression profiling of individual cells using nanoliter dropltes. Cell 161,

1202–1214 (2015)

3. Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko, E.Z., Kowalczyk, M., Adiconis, Z., Levin,

J.Z., Nemesh, J., Goldman, M., McCarroll, S.A., Cepko, C.L., Regev, A., Sanes, J.R.: Comprehensive

classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016)

4. Campbell, J.N., Macosko, E.Z., Fenselau, H., Pers, T.H., Lyubetskaya, A., Tenen, D., Goldman, M.,

Verstegen, A.M.J., Resch, J.M., McCarroll, S.A., Rosen, E.D., Lowell, B.B., Tsai, L.T.: A molecular census of

arcuate hypothalamus and median eminence cell types. Nature Neuroscience 20(3), 484–496 (2017)

5. Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A., Kirschner,

M.W.: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201

(2015)

6. Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr,

S.S., Klein, A.M., Melton, D.A., Yanai, I.: A single-cell transcriptomic map of the human and mouse pancreas

reveals inter- and intra-cell population structure. Cell Systems 3(4), 346–360 (2016)

7. Grun, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., sasaki, N., Clevers, H., Oudenaarden, A.:

Single-cell messenger rna sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://github.com/rikenbit/OnlinePCA.jl
https://github.com/rikenbit/OnlinePCA.jl
https://github.com/rikenbit/onlinePCA-experiments
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 14 of 31

8. Buettner, F., Natarajan, K.N., Casale, F.P., Proserpio, V., Scialdone, A., Theis, F.J., Teichmann, S.A.,

Marioni, J.C., Stegle, O.: Computational analysis of cell-to-cell heterogeneity in single-cell rna-sequencing data

reveals hidden subpopulations of cells. Nature Biotechnology 33(2), 155–160 (2015)

9. Durruthy-Durruthy, R., Gottlieb, A., Hartman, B.H., Waldhaus, J., Laske, R.D., Altman, R., Heller, S.:

Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157, 1–15

(2014)

10. Achim, K., Pettit, J.B., Saraiva, L.R., Gavriouchkina, D., Larsson, T., Arendt, D., Marioni, J.C.:

High-throughput spatial mapping of single-cell rna-seq data to tissue of origin. Nature Computational Biology

33(5), 503–509 (2015)

11. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A.: Spatial reconstruction of single-cell gene

expression data. Nature Biotechnology 33(5), 495–508 (2015)

12. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokhare, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen,

T.S., Rinn, J.L.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of

single cells. Nature Biotechnology 32, 381–386 (2014)

13. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., Trapnell, C.: Reversed graph embedding

resolves complex single-cell trajectories. Nature Methods 14(10), 979–982 (2017)

14. Svensson, V., Tormo, R.V., Teichmann, S.A.: Exponential scaling of single-cell rna-seq in the past decade.

Nature Protocols 13(4), 599–604 (2017)

15. Sasagawa, Y., Danno, H., Takada, H., Ebisawa, M., Tanaka, K., Hayashi, T., Kurisaki, A., Nikaido, I.:

Quartz-seq2: a high-throughput single-cell rna-sequencing method that effectively uses limited sequence reads.

BMC Genome Biology 19(29) (2018)

16. Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung,

S., Tanay, A., Amit, I.: Massively parallel single cell rna-seq for marker-free decomposition of tissues into cell

types. Science 343(6172), 776–779 (2014)

17. Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L., Gennert, D., Li, S.,

Livak, K.L., Rozenblatt-Rosen, O., Dor, Y., Regev, A., Yanai, I.: Cel-seq2: sensitive highly-multiplexed

single-cell rna-seq. BMC Genome Biology 17(77) (2016)

18. Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., Lönnerberg, P., Manno, G.L., Juréus, A., Marques, S.,

Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-Leffler, J., Linnarsson, S.: Cell

types in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science 347(6226), 1138–1142

(2015)

19. Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L., Gennert, D., Li, S.,

Livak, K.J., Rozenblatt-Rosen, O., Dor, Y., Regev, A., Yanai, I.: Cel-seq2: sensitive highly-multiplexed

single-cell rna-seq. Genome Biology 17(77) (2016)

20. Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, R.S., Gaublomme,

J.T., Yosef, N., Schwartz, S., Fowler, B., Weaver, S., Wang, J., Ding, R., Raychowdhury, R., Friedman, N.,

Hacohen, N., Park, H., May, A.P., Regev, A.: Single cell rna seq reveals dynamic paracrine control of cellular

variation. Nature 510(7505) (2014)

21. Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A.,

Dolbeare, T., Bertagnolli, D., Goldy, J., Shapovalova, N., Pary, S., Parry, C., Lee, C., Smith, K., Bernard, A.,

Madisen, L., Sunkin, S.M., Hawrylycz, M., Koch, C., Zeng, H.: Adult mouse cortical cell taxonomy revealed

by single cell transcriptomics. Nature Neuroscience 19(2), 335–346 (2016)

22. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D.,

McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J., Montesclaros, L., Underwood, J.G., Masquelier, D.A.,

Nishimura, S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwai, R., Wong, A., Ness, K.D.,

Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J., Ericson, N.G., Stevens, E.A., Radich,

J.P., Mikkelsen, T.S., Hindson, B.J., Bielas, J.H.: Massively parallel digital transcriptional profiling of single

cells. Nature Communications 8(14049), 1–12 (2017)

23. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen,

L., Steemers, F.J., Trapnell, C., Shendure, J.: The single-cell transcriptional landscape of mammalian

organogenesis. Nature (2019)

24. Consortium, T.H.: The human cell atlas white paper (2017)

25. Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A., Teichmann, S.A.: The human cell atlas: from vision to

reality. Nature 550, 451–453 (2017)

26. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P.,

Carninci, P., Clatworthy, M., Clevers, H., Deplancke, B., Dunham, I., Eberwine, J., Eils, R., Enard, W.,

Farmer, A., Fugger, L., Göttgens, B., Hacohen, N., Haniffa, M., Hemberg, M., Kim, S., Klenerman, P.,

Kriegstein, A., Lein, E., Linnarsson, S., Lundberg, E., Lundeberg, J., Majumder, P., Marioni, J.C., Merad, M.,

Mhlanga, M., Nawijn, M., Netea, M., Nolan, G., Pe’er, D., Phillipakis, A., Ponting, C.P., Quake, S., Reik, W.,

Rozenblatt-Rosen, O., Sanes, J., Satija, R., Schumacher, T.N., Shalek, A., Shapiro, E., Sharma, P., Shin,

J.W., Stegle, O., Stratton, M., Stubbington, M.J.T., Theis, F.J., Uhlen, M., van Oudenaarden, A., Wagner,

A., Watt, F., Weissman, J., Wold, B., Xavier, R., Yosef, N., Participants, H.C.A.M.: Science forum: The

human cell atlas. eLife, 37041 (2017)

27. Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z., Chen, H., Ye, F., Huang, D.,

Xu, Y., Huang, W., Jiang, M., Jiang, X., Mao, J., Chen, Y., Lu, C., Xie, J., Fang, Q., Wang, Y., Yue, R., Li,

T., Huang, H., Orkin, S.H., Yuan, G.C., Chen, M., Guo, G.: Mapping the mouse cell atlas by microwell-seq.

Cell 172(5), 1091–1107 (2018)

28. Consortium, T.T.M.: Single-cell transcriptomics of 20 mouse organs creates a tabula muris. Nature

562(7727), 367–372 (2018)

29. Wagner, A., Regev, A., Yosef, N.: Revealing the vectors of cellular identity with single-cell genomics. Nature

Biotechnology 34(11), 1145–160 (2017)

30. Stegle, O., Teichmann, S.A., Marioni, J.C.: Computational and analytical challenges in single-cell

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 15 of 31

transcriptomics. Nature Reviews Genetics 16(3), 133–145 (2015)

31. Bacher, R., Kendziorski, C.: Design and computational analysis of single-cell rna-sequencing experiments.

BMC Genome Biology 17(63) (2016)

32. Poulin, J.F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J.M., Awatramani, R.: Disentangling neural cell diversity

using single-cell transcriptomics. Nature Neuroscience 19(9), 1131–1141 (2016)

33. Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., Teichmann, S.A.: The technology and biology of

single-cell rna sequencing. Molecular Cell 58(4), 610–620 (2015)

34. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(11),

559–572 (1901)

35. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Educational

Psychology 24, 417–441498520 (1933)

36. Broa, R., K, S.A.: Principal component analysis. Royal Society of Chemistry 6(2812), 2812–2831 (2014)

37. Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A.,

Dolbeare, T., Bertagnolli, D., Goldy, J., Shapovalova, N., Parry, S., Lee, C., Smith, K., Bernard, A., Madisen,

L., Sunkin, S.M., Hawrylycz, M., Koch, C., Zeng, H.: Adult mouse cortical cell taxonomy revealed by single

cell transcriptomics. Nature Neuroscience 19(2), 335–346 (2016)

38. Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr,

S.S., Klein, A.M., Melton, D.A., Yanai, I.: A single-cell transcriptomic map of the human and mouse pancreas

reveals inter- and intra-cell population structure. Cell Systems 3(4), 346–360 (2016)

39. Genomics, X.: 1.3 Million Brain Cells from E18 Mice.

https://support.10xgenomics.com/single-cell/datasets/1M neurons

40. Cole, M.B., Risso, D., Wagner, A., DeTomaso, D., Ngai, J., Purdom, E., Dudoit, S., Yosef, N.: Performance

assessment and selection of normalization procedures for single-cell rna-seq. Cell Systems 8(4), 315–328

(2019)

41. Taguchi, Y.-H.: Principal component analysis-based unsupervised feature extraction applied to single-cell gene

expression analysis. In: 14th International Conference, ICIC 2018, pp. 816–826 (2018). China

42. Lin, Z., Yang, C., Zhu, Y., Duchi, J., Fu, Y., Wang, Y., Jiang, B., Zamanighomi, M., Xu, X., Li, M., Sestan,

N., Zhao, H., Wong, W.H.: Simultaneous dimension reduction and adjustment for confounding variation.

PNAS 113(51), 14662–14667 (2016)

43. Lasrado, R., Boesmans, W., Kleinjung, J., Pin, C., Bell, D., Bhaw, L., McCallum, S., Zong, H., Luo, L.,

Clevers, H., Vanden, B.P., Pachnis, V.: Lineage-dependent spatial and functional organization of the

mammalian enteric nervous system. Science 356(6339), 722–726 (2017)

44. Wagner, F.: Go-pca: An unsupervised method to explore gene expression data using prior knowledge. PLOS

ONE 10(11), 0143196 (2015)

45. Cerosaletti, K., Barahmand-Pour-Whitman, F., Yang, J., DeBerg, H.A., Dufort, M.J., Murray, S.A., Israelsson,

E., Speake, C., Gersuk, V.H., Eddy, J.A., Reijonen, H., Greenbaum, C.J., Kwok, W.W., Wambre, E., Prlic, M.,

Gottardo, R., Nepom, G.T., Linsley, P.S.: Single-cell rna sequencing reveals expanded clones of islet

antigen-reactive cd4+ t cells in peripheral blood of subjects with type 1 diabetes. Journal of Immunology

199(1), 323–325 (2017)

46. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Reports

17(2), 178–187 (2016)

47. Butler, H.P. A, Smibert, P., Papalexi, E., Satija, R.: Integrated analysis of single cell transcriptomic data

across conditions, technologies, and species. Nature Biotechnology 36, 411–420 (2018)

48. Lun, A.T., McCarthy, D.J., Marioni, J.C.: A step-by-step workflow for low-level analysis of single-cell rna-seq

data with bioconductor. F1000Research Version2 (2016)

49. Ilicic, T., Kim, J.K., Kolodziejczyk, A.A., Bagger, F.O., McCarthy, D.J., Marioni, J.C., Teichmann, S.A.:

Classification of low quality cells from single-cell rna-seq data. BMC Genome Biology 17(29) (2016)

50. Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K.R., Chaffer, C.L.,

Pattabiraman, D., Bierie, B., Mazutis, L., Wolf, G., Krishnaswamy, S., Pe’er, D.: Recovering gene interactions

from single-cell data using data diffusion. Cell 174(3), 716–729 (2018)

51. Li, W.V., Li, J.J.: An accurate and robust imputation method scimpute for single-cell rna-seq data. Nature

Communication 9(997) (2018)

52. Gong, W., Kwak, I.Y., Pota, P., Koyano-Nakagawa, N., Garry, D.J.: Drimpute: imputing dropout events in

single cell rna sequencing data. BMC Bioinformatics 19(220) (2018)

53. Büttner, M., Miao, Z., Wolf, F.A., Teichmann, S.A., Theis, F.J.: A test metric for assessing single-cell rna-seq

batch correction. Nature methods 16(1), 43–49 (2019)

54. Shaham, U., Stanton, K.P., Zhao, J., Li, H., Raddassi, K., Montgomery, R., Kluger, Y.: Removal of batch

effects using distribution-matching residual networks. Bioinformatics 33(16), 2539–2546 (2017)

55. Korsunsky, I., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.-R.,

Raychaudhuri, S.: Fast, sensitive, and accurate integration of single cell data with harmony. bioRxiv (2018).

doi:10.1101/461954

56. Scialdone, A., Natarajan, K.N., Saraiva, L.R., Proserpio, V., Teichmann, S.A., Stegle, O., Marioni, J.C.,

Buettner, F.: Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85,

54–61 (2015)

57. Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Reseach, 2579–2605 (2008)

58. Maaten, L.: Accelerating t-sne using tree-based algorithms. Journal of Machine Learning Reseach, 3221–3245

(2014)

59. Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y.: Fast interpolation-based t-sne for

improved visualization of single-cell rna-seq data. Nature methods 16, 243–245 (2019)

60. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: In

NIPS, p. 2004 (2003)

61. McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection for

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://support.10xgenomics.com/single-cell/datasets/1M_neurons
http://dx.doi.org/10.1101/461954
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 16 of 31

dimension reduction. The Journal of Open Source Software 3(29), 861 (2018)

62. Becht, E., McInnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., Newell, E.W.:

Dimensionality reduction for visualizing single-cell data using umap. Nature Biotechnology 37, 38–44 (2019)

63. Weinreb, C., Wolock, S., Klein, A.M.: Spring: a kinetic interface for visualizing high dimensional single-cell

expression data. Bioinformatics 34(7), 1246–1248 (2018)

64. Kiselev, V.Y., Kirschner, K., Schaub, M.T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K.N., Reik, W.,

Barahona, M., Green, A.R., Hemberg, M.: Sc3: consensus clustering of single-cell rna-seq data. Nature

methods 14(5), 483–486 (2017)

65. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell rna-seq

data by kernel-based similarity learning. Nature methods 14(4), 414–416 (2017)

66. Yang, Y., Huh, R., Culpepper, H.W., Lin, Y., Love, M.I., Li, Y.: Safe-clustering: Single-cell aggregated (from

ensemble) clustering for single-cell rna-seq data. Bioinformatics (2018)

67. Zurauskiene, J., Yau, C.: pcareduce: hierarchical clustering of single cell transcriptional profiles. BMC

Bioinformatics 17(140) (2016)

68. Tsoucas, D., Yuan, G.C.: Giniclust2: a cluster-aware, weighted ensemble clustering method for cell-type

detection. BMC Genome Biology 19(1) (2018)

69. Herman, J.S., Sagar, Grün, D.: Fateid infers cell fate bias in multipotent progenitors from single-cell rna-seq

data. Nature methods 15, 379–386 (2018)

70. Sato, K., Tsuyuzaki, K., Shimizu, K., Nikaido, I.: Cellfishing.jl: an ultrafast and scalable cell search method for

single-cell rna sequencing. BMC Genome Biology 20(1) (2019)

71. Diaz, A., Liu, S.J., Sandoval, C., Pollen, A., Nowakowski, T.J., Lim, D.A., Kriegstein, A.: Scell: integrated

analysis of single-cell rna-seq data. Bioinformatics 32(14), 2219–2220 (2016)

72. Ji, Z., Ji, H.: Tscan: Pseudo-time reconstruction and evaluation in single-cell rna-seq analysis. Nucleic Acids

Research 44(13) (2016)

73. Shin, J., Berg, D.A., Zhu, Y., Shin, J.Y., Song, J., Bonaguidi, M.A., Enikolopov, G., Nauen, D.W., Christian,

K.M., Ming, G.L., Song, H.: Single-cell rna-seq with waterfall reveals molecular cascades underlying adult

neurogenesis. Cell Stem Cell 17(3), 360–372 (2015)

74. Street, K., Risso, D., Fletcher, R.B., Das, D., Ngai, J., Yosef, N., Purdom, E., Dudoit, S.: Slingshot: cell

lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19(477) (2018)

75. Campbell, K.R., Yau, C.: Probabilistic modeling of bifurcations in single-cell gene expression data using a

bayesian mixture of factor analyzers. Wellcome Open Research 2(19) (2017)

76. McCarthy, D.J., Campbell, K.R., Lun, A.T., Wills, Q.F.: Scater: pre-processing, quality control, normalization

and visualization of single-cell rna-seq data in r. Bioinformatics 33(8), 1179–1186 (2017)

77. Jenkins, D., Faits, T., Khan, M.M., Briars, E., Carrasco, P.S., Johnson, W.E.: singleCellTK: Interactive

Analysis of Single Cell RNA-Seq Data.

https://bioconductor.org/packages/release/bioc/html/singleCellTK.html (2018)

78. Tian, L., Su, S., Dong, X., Amann-Zalcenstein, D., Biben, C., Seidi, A., Hilton, D.J., Naik, S.H., Ritchie,

M.E.: scpipe: A flexible r/bioconductor preprocessing pipeline for single-cell rna-sequencing data. PLOS

Computational Biology 14(8), 1006361 (2018)

79. Yip, S.H., Wang, P., Kocher, J.A., Sham, P.C., Wang, J.: Linnorm: improved statistical analysis for single cell

rna-seq expression data. Nucleic Acids Research 45(22), 179 (2017)

80. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller, H.W.,

McElrath, M.J., Prlic, M., Linsley, P.S., Gottardo, R.: Mast: a flexible statistical framework for assessing

transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data. BMC Genome

Biology 16(278) (2015)

81. Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak,

M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., Zupan, B.: Orange: Data mining

toolbox in python. Journal of Machine Learning Research, 2349–2353 (2013)

82. Zhu, X., Wolfgruber, T.K., Tasato, A., Arisdakessian, C., Garmire, D.G., Garmire, L.X.: Granatum: a graphical

single-cell rna-seq analysis pipeline for genomics scientists. BMC Genome Medicine 9(108) (2017)

83. Azizi, E., Carr, A.J., Plitas, G., Cornish, A.E., Konopacki, C., Prabhakaran, S., Nainys, J., Wu, K., Kiseliovas,

V., Setty, M., Choi, K., Fromme, R.M., Dao, P., McKenney, P.T., Wasti, R.C., Kadaveru, K., Mazutis, L.,

Rudensky, A.Y., Pe’er, D.: Single-cell map of diverse immune phenotypes in the breast tumor

microenvironment. Cell 5(23), 1293–1308 (2018)

84. Golub, G.H., Loan, C.F.V.: Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences),

Fourth Edition. Johns Hopkins University Press, ??? (2012)

85. Senabouth, A., Lukowski, S., Alquicira, J., Andersen, S., Mei, X., Nguyen, Q., Powell, J.: ascend: R package

for analysis of single cell rna-seq data. bioRxiv (2017). doi:10.1101/207704

86. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondl, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.:

Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011)

87. Wolf, F.A., Angerer, P., Theis, F.J.: Scanpy: large-scale single-cell gene expression data analysis. BMC

Genome Biology 19(15) (2018)

88. Bhaduri, A., Nowakowski, T.J., Pollen, A.A., Kriegstein, A.R.: Identification of cell types in a mouse brain

single-cell atlas using low sampling coverage. BMC Biology (2018)

89. Levy, A., M, K.: Sequential karhunen-loeve basis extraction and its application to images. IEEE Transactions

on Image Processing 9(8), 1371–1374 (2000)

90. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Vorst, H.V.D.: Templates for the Solution of Algebraic

Eigenvalue Problems, A Practical Guide. Society for Industrial and Applied Mathematics, ??? (1987)

91. Lehoucq, R., Maschhoff, K., Sorensen, D., Yang, C.: ARPACK SOFTWARE.

https://www.caam.rice.edu/software/ARPACK/

92. Qiu, Y.: Spectra: C++ Library For Large Scale Eigenvalue Problems. https://spectralib.org

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://bioconductor.org/packages/release/bioc/html/singleCellTK.html
http://dx.doi.org/10.1101/207704
https://www.caam.rice.edu/software/ARPACK/
https://spectralib.org
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 17 of 31

93. Larsen, R.M.: PROPACK homepage. http://sun.stanford.edu/~rmunk/PROPACK/

94. Baglama, J., Reichel, L.: Augmented implicitly restarted lanczos bidiagonalization methods. SIAM Journal on

Scientific Computing 27(1), 19–42 (2005)

95. Lehoucq, R.B., Sorensen, D.C., Yang, C.: Arpack users’ guide: Solution of large-scale eigenvalue problems

with implicitly restarted arnoldi methods (1997)

96. Chen, J., Noack, A., Edelman, A.: Fast computation of the principal components of genotype matrices in

julia. arXiv (2018). doi:arXiv:1808.03374v1

97. Balzano, L., Chi, Y., Lu, Y.M.: Streaming pca and subspace tracking: The missing data case. Proceedings of

the IEEE 106(8), 1293–1310 (2018)

98. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology 15,

267–273 (1982)

99. Oja, E., Karhunen, J.: On stochastic approximation of the eigenvectors and eigenvalues of the expectation of

a random matrix author links open overlay panel. Journal of Mathematical Analysis and Applications 106(1),

69–84 (1985)

100. Oja, E.: Principal components, minor components, and linear neural networks. Neural Networks 5, 927–935

(1992)

101. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions. SIAM Rev., Survey and Review 53(2), 217–288 (2011)

102. Halko, N., Martinsson, P.G., Shkolnisky, Y., M, T.: An algorithm for the principal component analysis of large

data sets. SIAM Journal on Scientific Computing 33(5), 2580–2594 (2011)

103. Li, H., C, L.G., Szlam, A., Stanton, K.P., Kluger, Y., Tygert, M.: Algorithm 971: An implementation of a

randomized algorithm for principal component analysis. ACM Transactions on Mathematical Software 43(3)
(2017)

104. Abraham, G., Inouye, M.: Fast principal component analysis of large-scale genome-wide data. PLOS ONE

9(4), 93766 (2014)

105. Lacono, G., Mereu, E., Guillaumet-Adkins, A., Corominas, R., Cusco, I., Rodriguez-Esteban, G., Gut, M.,

Perez-Jurado, L.A., Gut, I., Heyn, H.: bigscale: an analytical framework for big-scale single-cell data. Genome

Research 28(6), 878–890 (2018)

106. Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F.,

Marine, J.-C., Geurts, P., Aerts, J., Oord, J., Atak, Z.K., Wouters, J., Aerts, S.: Scenic: single-cell regulatory

network inference and clustering. Nature methods 14, 1083–1086 (2017)

107. Crow, M., Paul, A., Ballouz, S., Huang, Z.J., Gilllis, J.: Characterizing the replicability of cell types defined by

single cell rna-sequencing data using metaneighbor. Nature communications 884 (2018)

108. Kisekev, V.Y., Yiu, A., Hemberg, M.: scmap: projection of single-cell rna-seq data across data sets. Nature

methods 15, 359–362 (2018)

109. Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., Murray, J.I., Raj, A., Li, M., Zhang,

N.R.: Saver: gene expression recovery for single-cell rna sequencing. Nature methods 15, 539–542 (2018)

110. Wang, D., Gu, J.: Vasc: Dimension reduction and visualization of single-cell rna-seq data by deep variational

autoencoder. Genomics, Proteomics & Bioinformatics 16(5), 320–331 (2018)

111. Ding, J., Condon, A., Shah, S.P.: Interpretable dimensionality reduction of single cell transcriptome data with

deep generative models. Nature Communications 2002 (2018)

112. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, ???

(2006)

113. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–218 (1985)

114. Rocklin, M.: Dask: Parallel computation with blocked algorithms and task scheduling. In: Huff, K., Bergstra,

J. (eds.) Proceedings of the 14th Python in Science Conference, pp. 130–136 (2015)

115. Benson, A.R., Gleich, D.F., Demmel, J.: Direct qr factorizations for tall-and-skinny matrices in mapreduce

architectures. Proceedings of the IEEE International Conference on Big Data (2013).

doi:10.1109/BigData.2013.6691583

116. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer

42(8), 30–37 (2009)

117. Davis, T.: University of Florida Sparse Matrix Collection. https://sparse.tamu.edu

118. Yip, S.H., Sham, P.C., J, W.: Evaluation of tools for highly variable gene discovery from single-cell rna-seq

data. Briefing in Bioinformatics, 011 (2018)

119. Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Randomized matrix decompositions using r. arXiv

(2016). doi:arXiv:1608.02148v4

120. Mineiro, P., Karampatziakis, N.: A randomized algorithm for cca. arXiv (2014). doi:arXiv:1411.3409v1

121. Arora, R., Cotter, A., Livescu, K., Srebro, N.: Stochastic optimization for pca and pls. In: 2012 50th Annual

Allerton Conference on Communication, Control, and Computing (Allerton), pp. 861–868 (2012)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

http://sun.stanford.edu/~rmunk/PROPACK/
http://dx.doi.org/arXiv:1808.03374v1
http://dx.doi.org/10.1109/BigData.2013.6691583
https://sparse.tamu.edu
http://dx.doi.org/arXiv:1608.02148v4
http://dx.doi.org/arXiv:1411.3409v1
https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 18 of 31

Figures

Figure 1 Overview of benchmarking in this work. (a) Schematic overview of this work. (b)
Evaluation metrics of the benchmarking with real-world datasets. (c) Evaluation metrics of the
benchmarking with synthetic datasets.

Figure 2 Some fast and memory-efficient PCA algorithms. (a) Full-rank SVD based on
LAPACK and (b) truncated SVD based on the recent fast and memory-efficient PCA algorithms.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 19 of 31

Figure 3 Summary of results. (a) Theoretical properties summarized by our literature review. (b)
Properties related to each implementation. (c) Performance evaluated by benchmarking with
real-world and synthetic datasets. (d) User-friendliness evaluated by some metrics.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 20 of 31

Figure 4 The comparison of t-SNE plots. Comparison of multiple PCA implementations
performed with empirical datasets: (a) Cortex (103 cells), (b) Pancreas (104 cells), and (c) Brain
datasets (106 cells). t-SNE was performed with the result of each PCA implementation. The
cluster labels are the same as those of the respective original papers.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 21 of 31

Figure 5 Clustering accuracy comparison. Clustering accuracy was evaluated by ARI of the result
of k-means and GMM clustering. Multiple PCA implementations were performed for Cortex (103

cells), Pancreas (104 cells), and Brain datasets (106 cells), and k-means and GMM were
performed for the PCA result. For each PCA result, k-means and GMM calculations were
performed ten times. The cluster labels are the same as those of the respective original papers.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 22 of 31

Figure 6 Comparison of all combinations of eigenvectors. Absolute values of the cross product
of all combinations between the eigenvectors of the gold standard methods and those of the other
PCA implementations were calculated. The closer the value is to 1, the closer the two
corresponding eigenvectors are to each other. If two PCA results are equal without considering
differences in sign, the matrix in this figure becomes an identical matrix.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 23 of 31

Figure 7 Comparison of eigenvalues. Distribution of eigenvalues of all the PCA implementations
are drawn in each real dataset.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 24 of 31

Figure 8 Comparison of loading vectors. Number of intersection elements between the top 500
largest absolute value elements of the gold standard methods and those of the other PCA
implementations were calculated. The closer the value is to 500, the closer the two corresponding
loading vectors are to each other. If two PCA results are equal without considering differences in
their sign, all the diagonal elements of the matrix in this figure become 500.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 25 of 31

Figure 9 Comparison of the elapsed time and maximum memory usage for empirical datasets.
(a) Elapsed time and (b) memory usage of all PCA implementations calculated for each empirical
dataset.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 26 of 31

Figure 10 Comparison of the elapsed time for simulated datasets. Synthetic datasets
({102,103,104} genes × {102,103,104,104,105,106,107} cells matrices) were randomly generated,
and all the out-of-core PCA implementations were performed. In each panel, the logarithm of the
number of cells is indicated along the x-axis, and the elapsed time (hours) is shown along the
y-axis.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 27 of 31

Figure 11 Comparison of the maximum memory usage for simulated datasets. Synthetic
datasets ({102,103,104} genes × {102,103,104,104,105,106,107} cells matrices) were randomly
generated, and all the out-of-core PCA implementations were performed. In each panel, the
logarithm of the number of cells is indicate along the x-axis, and memory usage (GB) is shown
along y-axis.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 28 of 31

Figure 12 Relationship of the algorithms/implementations, the number of pass out, and the
file format with the elapsed time for performing PCA with the Brain dataset. (a) Number of
pass out for the data matrix and the calculation time for each algorithms/implementations were
calculated. (b) Elapsed time and memory usage of one-pass orthogonal iteration were calculated.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 29 of 31

Figure 13 OnlinePCA.jl schematic. Input CSV files were first saved as a binary file with the
csv2bin command and used with the gd and sgd command, which performs incremental PCA.
When using the HDF5 file defined by 10X Genomics, we converted the file to CSV format using
an in-house Python script. Gene-wise or cell-wise summary statistics were calculated using the
sumr command. Highly variable genes can also be calculated by the hvg command. Because the
gene-wise and cell-wise summary statistics are expressed as small vectors, it can be used to
perform precise data quality control (QC) with any programming language. After QC, the
filtering command removed low-quality genes and cells using a user-specified index. Combined
with the small size vectors, some out-of-core PCA implementations, such as
orthiter/gd/sgd/halko/algorithm971 have commands to incrementally update eigenvectors
from the row vector of the data matrix.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 30 of 31

Figure 14 User guidelines. Recommended PCA implementations categorized based on written
language and matrix size.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

Tsuyuzaki et al. Page 31 of 31

Tables

Table 1 Use cases of PCA implementations in scRNA-seq studies.

scRNA-seq studies PCA implementations Commands or functions used in the studies
In most cases

Golub-Kahan method
prcomp/svd (R)

[13, 40, 41, 49, 50, 53, 54, 56,
64,67,69,72,74,76,79,85,87]

PCA (Python, sklearn)

Bhaduri et al., [88] Downsampling Unknown
Loompy [87] SKL IncrementalPCA (Python, sklearn)

Scanpy [87]
IRLBA PCA (Python, sklearn)
SKL IncrementalPCA (Python, sklearn)
Halko’s method TruncatedSVD (Python, sklearn)

Cell Ranger [22] IRLBA irlb (Python, from scratch)
Seurat2 [47] IRLBA irlba (R, irlba)

Scran [48]
Golub-Kahan method svd (R)
IRLBA irlba (R, irlba)

SAFE [66] IRLBA irlba (R, irlba)

MAGIC [50]
Golub-Kahan method svds (MATLAB)
Halko’s method randPCA (MATLAB, from scratch)
Halko’s method PCA (Python, sklearn)

Harmony [55] IRLBA irlba (R, irlba)

Scater [76]
Golub-Kahan method prcomp (R)
IRLBA irlba (R, irlba)

GiniClust2 [68] IRLBA propack.svd (R, svd)
SIMLR [65] Halko’s method fast.rsvd (R, from scratch)

SEQC [83]
Golub-Kahan method PCA (Python, sklearn)
Halko’s method PCA (Python, sklearn)

CellFishing.jl [70] algorithm971 rsvd (Julia, from scratch)

Table 2 Real-world datasets for benchmarking

Dataset Total variance # Genes # Cells # Cell types PCs used
File size

(Normalized,
CSV)

File size
(Count,
CSV)

File size
(Count,
Binary)

Cortex 4170.7 21614 1679 21 PC1-10 650 MB 113 MB 17 MB
Pancreas 254.9 17499 8569 14 PC1-12 2.7 GB 287 MB 23 MB

Brain 205.0 23771 1306127 60 PC1-20 316 GB 58 GB 3.2 GB

Additional Files
Additional File 1 — Pseudo-code of all the PCA algorithms. (PDF 178 KB)

Additional File 2 — Source code of all the PCA implementations. (PDF 58 KB)

Additional File 3 — Pair plots of all the PCA (Cortex) implementations. (ZIP 7.2 MB)

Additional File 4 — Pair plots of all the PCA (Pancreas) implementations. (ZIP 6.7 MB)

Additional File 5 — Pair plots of all the PCA (Brain) implementations. (ZIP 11.6 MB)

Additional File 6 — Crashed jobs caused by out-of-memory errors. (TXT 930 B)

Additional File 7 — Parameter tuning of the orthogonal iteration, gradient descent, and stochastic gradient descent

implementations. (PDF 1.3 MB)

Additional File 8 — Parameter tuning of the randomized SVD implementations. (PDF 988 KB)

Additional File 9 — Developer guidelines. (PNG 1.1 MB)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 20, 2019. ; https://doi.org/10.1101/642595doi: bioRxiv preprint

https://doi.org/10.1101/642595
http://creativecommons.org/licenses/by/4.0/

	Abstract

