Seven new Neocallimastigomycota genera from fecal samples of wild, zoohoused, and domesticated herbivores: Description of *Ghazallomyces* constrictus gen. nov., sp. nov., *Aklioshbomyces papillarum* gen. nov., sp. nov., *Agriosomyces longus* gen. nov., sp. nov., *Capellomyces foraminis* gen. nov., sp. nov. and *Capellomyces elongatus* sp. nov., *Joblinomyces apicalis* gen. nov., sp. nov., *Khoyollomyces ramosus* gen. nov., sp. nov., and *Tahromyces munnarensis* gen. nov., sp. nov.

Radwa A. Hanafy¹, Vikram B. Lanjekar², Prashant K. Dhakephalkar², Tony M. Callaghan³, Sumit S. Dagar², Gareth W. Griffith³, Mostafa S. Elshahed¹, and Noha H. Youssef^{1*}

¹Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK. ²Bioenergy group, Agharkar Research Institute, Pune, India. ³Institute of Biological, Environmental, and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, Wales, UK.

*Correspondence: Noha H. Youssef: Noha@Okstate.edu.

Seven new genera of anaerobic gut fungi

1 ABSTRACT

2	We isolated and characterized sixty-five anaerobic gut fungi (AGF, Neocallimastigomycota)
3	strains from fecal samples of five wild (W), one zoo-housed (Z), and three domesticated (D)
4	herbivores in the US states of Texas (TX) and Oklahoma (OK), Wales (WA), and the Indian
5	states of Kerala (KE) and Haryana (HA). Phylogenetic assessment based on D1-D2 region of the
6	large rRNA subunit (LSU) identified seven distinct lineages, with strains recovered from Axis
7	Deer (W-TX) clustering within the Orpinomyces-Neocallimastix-Pecoramyces-Feramyces clade;
8	Boer Goat-domesticated Goat strains (W-TX, D-KE) clustering within the Oontomyces-
9	Anaeromyces-Liebetanzomyces clade; and domesticated Goat and Sheep strains (D-HA) as well
10	as Nilgiri Tahr strains (W-KE) forming two distinct clades associated with genus
11	Buwchfawromyces. The remaining three lineages, represented by strains recovered from
12	Mouflon-Boer Goat (W-TX), White Tailed Deer (W-OK), and Zebra-Horse (Z-OK, and D-WA),
13	displayed no specific suprageneric affiliation. All strains displayed monocentric thalli and
14	produced mono/uniflagellate zoospores with the exception of Axis Deer strains, which produced
15	polyflagellate zoospores. Isolates displayed multiple interesting microscopic features including
16	sporangia with tightly constricted necks and fine septa at the base (Axis Deer), papillated and
17	pseudo-intercalary sporangia (White-Tailed Deer), swollen sporangiophores and zoospores with
18	long flagella (Mouflon-Boer Goat), zoospore release through an apical pore followed by either
19	sporangial wall collapse (Axis Deer and Boer Goat-domesticated Goat) or sporangial wall
20	remaining intact after discharge (Zebra-Horse), multi-sporangiated thalli with branched
21	sporangiophores (Zebra-Horse), and short sporangiophores with subsporangial swellings (Nilgiri
22	Tahr). Internal transcribed spacer-1 region (ITS-1) sequence analysis indicated that Zebra-Horse
23	strains are representatives of the AL1 lineage, frequently encountered in culture-independent

24	surveys of the alimentary tract and fecal samples from hindgut fermenters. The other six
25	lineages, five of which were isolated from wild herbivores, have not been previously
26	encountered in such surveys. Our results significantly expand the genus level diversity within the
27	Neocallimastigomycota, and strongly suggest that wild herbivores represent a yet-untapped
28	reservoir of AGF diversity. We propose the creation of seven novel genera and eight novel
29	Neocallimastigomycota species to accommodate these strains, for which we propose the names
30	Agriosomyces longus (Mouflon and wild Boer Goat), Aklioshbomyces papillarum (White tailed
31	Deer), Capellomyces foraminis (wild Boar Goat) and C. elongatus (domesticated Goat),
32	Ghazallomyces constrictus (Axis Deer), Joblinomyces apicalis (domesticated Goat and Sheep),
33	Khoyollomyces ramosus (Zebra-Horse), and Tahromyces munnarensis (Nilgiri Tahr). The type
34	species are strains Axs-31, WT-2, MS-4, BGB-11, GFKJa1916, GFH683, ZS-33, and

- 35 TDFKJa193, respectively.
- 36 **KEY WORDS:** Anaerobic gut fungi, Neocallimastigomycota, Herbivores, 8 new taxa.

Seven new genera of anaerobic gut fungi

37 INTRODUCTION

38 Members of the anaerobic gut fungi (AGF, Phylum Neocallimastigomycota) colonize the 39 alimentary tract of mammalian and reptilian herbivores (Gruninger and others 2014; Ljungdahl 40 2008). Interest in the taxonomy, ecology, cell biology, and genomics of the 41 Neocallimastigomycota has been driven by their unique habitat, physiological preferences, and 42 evolutionary history, as well as by their possession of superior plant polymers degradation 43 capacities (Youssef and others 2013). Such characteristics render them a promising platform for 44 biofuel and biogas production from plant biomass (Ranganathan and others 2017; Young and 45 others 2018). 46 Currently, eleven different AGF genera have been described (Ariyawansa 2015; Barr and 47 others 1989; Breton and others 1990; Callaghan and others 2015; Dagar and others 2015; Gold 48 and others 1988; Hanafy and others 2017; Hanafy and others 2018; Heath and others 1983; Joshi 49 and others 2018; Li 2016; Ozkose and others 2001). However, it is reasonable to assume that 50 multiple novel, yet-uncultured AGF lineages remain to be isolated and characterized. The 51 inherent difficulty in isolating and maintaining these strictly anaerobic and senescence-prone 52 organisms severely hampers isolation and characterization efforts, and limits the number of 53 research groups dedicated to uncovering AGF diversity. Further, it is entirely plausible that 54 multiple AGF taxa are extremely fastidious, with complex nutritional requirements that are not 55 satisfied in current isolation protocols. Indeed, culture-independent diversity surveys utilizing the 56 internal transcribed spacer 1 (ITS-1) as a phylogenetic marker demonstrated that multiple novel 57 AGF lineages remain to be isolated and characterized (Kittelmann and others 2012; 58 Liggenstoffer and others 2010; Paul and others 2018; Mura and others 2019).

Seven new genera of anaerobic gut fungi

59	On the other hand, culturing efforts have occasionally recovered novel AGF strains that
60	bear no clear similarities to clades identified in culture-independent studies (Callaghan and
61	others 2015; Joshi and others 2018). This surprising observation could be attributed to
62	mismatches in the isolates' ITS-1 region to commonly utilized ITS-1 AGF primers (Callaghan
63	and others 2015), extremely narrow host range of some AGF taxa (Callaghan and others 2015),
64	or existence in extremely low relative abundance in-situ.
65	Moreover, it is important to note that while both culture-based and culture-independent
66	surveys have reported the presence of AGF communities in a relatively wide range of animal
67	hosts, such studies by no means represent an exhaustive catalogue of global AGF diversity in
68	nature. For example, due to logistical considerations, the great majority of studies have utilized
69	samples from domesticated herbivores, with efforts to isolate AGF strains from wild herbivores
70	being extremely rare (Nagpal and others 2011; Paul and others 2010; Tuckwell and others 2005;
71	Hanafy and others 2018).
72	In an effort to broaden the current Neocallimastigomycota global culture collection, we
73	conducted a multi-year isolation effort targeting novel AGF taxa in fecal samples from a wide
74	range of wild, zoo-housed, and domesticated herbivorous mammals. Here, we report on the
75	isolation and characterization of seven novel AGF genera, including the first cultured
76	representative of the hitherto uncultured AGF lineage AL1. The results expand the known AGF
77	genus-level diversity by >50% (from 11–18), and strongly suggest that wild undomesticated
78	herbivores represent a yet-untapped reservoir of novel AGF taxa.
79	

Seven new genera of anaerobic gut fungi

80 MATERIALS AND METHODS

81 Samples— Fecal samples were obtained from Axis Deer (Axis axis), White Tailed Deer

82 (Odocoileus virginianus), Mouflon Sheep (Ovis orientalis), and Boer Goat (Capra aegagrus) in

two separate hunting expeditions in Sutton and Val Verde counties (TX), and Payne county (OK)

84 in October 2017 and April 2018 (TABLE 1). The hunting parties had all appropriate licenses,

and the animals were shot either on private land with the owner's consent or on public land

86 during the hunting season. Samples were also obtained from a Grevy's Zebra (Equus grevyi)

87 housed in the Oklahoma City Zoo in May 2018, with the sampling protocol approved by the

88 Oklahoma City Zoo and Botanical Garden's Scientific Review Committee. All fecal samples

89 were placed on ice on site, transferred to the laboratory within 24h of collection, where they were

90 immediately used as an inoculum for subsequent enrichment and isolation procedures.

91 In India, dried fecal samples were obtained from Nilgiri Tahr (Nilgiritragus hylocrius), and

92 domesticated but forest grazing Goat (*Capra aegagrus hircus*) in Munnar in the State of Kerala.

93 Fresh fecal samples were also obtained from domesticated Goats and Sheep (Ovis aries) in

94 Sonipat in the State of Haryana. Fresh fecal samples were transferred to the laboratory within

95 24h of collection, while dried fecal samples were transferred within 72 hours of collection. In

96 Wales, samples were obtained from two domesticated Horses in Llanbadarn Fawr, Ceredigion

97 County, and promptly transferred to the laboratory for processing.

98 Isolation procedures— In the USA, isolation of anaerobic fungal strains was conducted as

99 previously described (Hanafy and others 2017). Feces were suspended in rumen-fluid (RF)

100 media (Calkins and others 2016; Hanafy and others 2018) with either cellobiose, or 0.5%

101 cellobiose and switchgrass (0.5%) used as a substrate. Antibiotics (50 µg/mL kanamycin, 50

102 µg/mL penicillin, 20 µg/mL streptomycin, and 50 µg/mL chloramphenicol, respectively) were

Seven new genera of anaerobic gut fungi

103	added to inhibit growth of bacteria. Samples were serially diluted and incubated at 39 C for 24-
104	48 h. Dilutions showing visible signs of growth (clumping or floating plant materials and
105	production of gas bubbles) were then used for the preparation of roll tubes (Hungate 1969) on
106	RF-cellobiose agar media. Single colonies were picked into liquid RF-cellobiose media, and at
107	least three rounds of tube rolling and colony picking were conducted to ensure purity of the
108	obtained colonies. Strains were maintained by bi-weekly subculturing into RF-cellobiose media.
109	In India, the fecal samples were homogenised in anaerobic diluent (McSweeney and others 2005)
110	using BagMixer (Interscience, France). One ml of homogenate was inoculated into 9 ml fungal
111	culture medium (Joshi and others 2018) containing neutral detergent fibre (NDF) as the sole
112	carbon source, and serially diluted up to 10^{-3} dilution. The antibiotics benzylpenicillin and
113	streptomycin sulfate (final concentration 2 mg/ml) were used to inhibit the bacterial growth.
114	Following incubation at 39 ± 1 C for 5–10 d, the tubes showing visible colonization of NDF were
115	used to isolate pure cultures of anaerobic fungi using serum roll bottle method as described
116	previously (Joshi and others 2018). The colonies differing in morphology were picked, grown in
117	liquid culture medium, and re-roll bottled until single culture was established.
118	Long-term storage was conducted by surface inoculation of RF-cellobiose agar media as
119	described previously (Calkins and others 2016), or by cryopreservation at -80 $^\circ$ C using 0.64 M
120	ethylene glycol as the cryoprotectant (Callaghan and others 2015). Cultures are available at
121	Oklahoma State University, Department of Microbiology and Molecular Genetics culture
122	collection, and at MACS Collection of Microorganisms (MCM), Agharkar Research Institute,
123	Pune, India. In Wales, isolation procedures were conducted as previously described in
124	(Callaghan and others 2015).

Seven new genera of anaerobic gut fungi

125	Morphological characterization— The colony morphology of 3d old cultures on roll bottles was
126	measured using a stereomicroscope (Leica M205 FA) equipped with a digital camera (Leica
127	DFC450 C), or directly from the roll tube. Samples for light and scanning electron microscopy
128	were obtained from liquid cultures at various stages of growth. Lactophenol cotton blue stain
129	was used for visualization of fungal structures using an Olympus BX51 microscope (Olympus,
130	Center Valley, Pennsylvania) equipped with a DP71 digital camera (Olympus), or a phase
131	contrast microscope equipped with a Canon DS126191 digital camera. For examination of nuclei
132	localization, samples were stained with 4', 6 diamidino-2-phenylindole (DAPI, 10 μ g/ml), as
133	previously described (Callaghan and others 2015; Hanafy and others 2018; Joshi and others
134	2018) and examined using a fluorescence Olympus BX51 microscope (Olympus, Center Valley,
135	Pennsylvania) equipped with a Brightline DAPI high-contrast filter set for DAPI fluorescence
136	and a DP71 digital camera (Olympus), or an Olympus BX53 differential interference contrast
137	(DIC) microscope equipped with a DP73 digital camera (Olympus). Scanning electron
138	microscopy was conducted with a FEI quanta scanning electron microscope (Hillsboro, Oregon,
139	USA), or a Carl Zeiss EVO MA15 (Hanafy and others 2017; Joshi and others 2018).
140	Phylogenetic analysis— Biomass was harvested and crushed in liquid N2. DNA was extracted
141	from the ground fungal biomass using DNeasy PowerPlant Pro Kit (Qiagen Corp., Germantown,
142	MD, USA) according to the manufacturer's instructions, or using the CTAB DNA extraction
143	protocol (Joshi and others 2018). To assess phylogenetic relationships, the ITS-1 region, and the
144	D1/D2 region of the 28S rRNA (hereafter LSU) were amplified using the MN100 (5'-
145	TCCTACCCTTTGTGAATTTG-3') / MNGM2 (5'-CTGCGTTCTTCATCGTTGCG-3') pair,
146	and the NL1 (5'-GCATATCAATAAGCGGAGGAAAAG-3') / NL4 (5'-
147	GGTCCGTGTTTCAAGACG G-3') pair, respectively as previously described (Hanafy and

148	others 2017; Joshi and others 2018). The resulting PCR amplicon for the ITS-1 region was
149	cloned into a TOPO-TA cloning vector according to the manufacturer's instructions (Life
150	Technologies®, Carlsbad, CA) and several clones were Sanger sequenced, while the purified
151	LSU PCR amplicons were directly sequenced using the services of the Oklahoma State
152	University DNA core facility or a commercial provider (1 st BASE, Singapore). The obtained
153	sequences were aligned to anaerobic fungal reference ITS-1 and LSU sequences downloaded
154	from GenBank using MAFFT aligner (Nakamura and others 2018) and the alignments were used
155	to construct maximum likelihood phylogenetic trees in MEGA7 (Kumar and others 2016), using
156	Chytriomyces sp. JEL176 as the outgroup. Bootstrap values were calculated on the basis of 100
157	replicates.
158	Ecological distribution— We queried GenBank and ITS-1 datasets (Kittelmann and others 2012;
159	Liggenstoffer and others 2010; Paul and others 2018) using reference ITS-1 sequences from
160	strains recovered in this study. The phylogenetic position of all closely related sequences (> 87%
161	sequence similarity) was evaluated by insertion into maximum likelihood trees. Taxonomy of
162	uncultured taxa followed the schemes outlined in prior publications (Kittelmann and others 2012;
163	Liggenstoffer and others 2010; Paul and others 2018).
164	Accession numbers— Sequences generated in this study have been deposited in GenBank under
165	accession numbers MK881965-MK882046, MK775304, MK775310-MK775313, MK775315,
166	MK775321-MK775324, MK755326-MK755327, MK755330, MK755333. Alignments and
167	phylogenetic trees are available through TreeBase under study accession URL
168	http://purl.org/phylo/treebase/phylows/study/TB2:S24394

Seven new genera of anaerobic gut fungi

169 **RESULTS**

170	Isolation summary— Sixty-five different strains were obtained and characterized in this study
171	(TABLE 1). These isolates were obtained from fecal samples of five wild undomesticated
172	herbivores: Axis Deer (W-TX), White tailed Deer (W-OK), Mouflon (W-TX), Boer Goat (W-
173	TX), and Nilgiri Tahr (Munnar, Kerala, India), one zoo-housed Grevy's Zebra (Z-OK), two
174	domesticated Horses (D-WA), two domesticated Goats (D-HA and D-KE) and a domesticated
175	Sheep (D-HA) (TABLE 1). Morphological, microscopic and phylogenetic analysis described
176	below grouped these isolates into seven distinct clades (Labeled clades 1-7 in TABLE 1
177	according to alphabetical order of suggested genus names). Isolates representing three clades
178	were obtained from one host animal only: White Tailed Deer strains (Clade 2), Axis Deer strains
179	(Clade 4), and Nilgiri Tahr strains (clade 7); while isolates representing four clades were
180	identified in more than sample: Mouflon-Boer Goat strains (clade 1), Boer Goat-domesticated
181	Goat strains (clade 3), domesticated Sheep-Goat strains (clade 5), and Zebra-Horse strains (clade
182	6). No specific morphological or microscopic decipherable differences were identified between
183	different strains belonging to most of these clades, and one strain from each group was chosen
184	for detailed analysis (TABLE 1). The only two exceptions were: 1. Strains belonging to clade 3
185	(Boer Goat-domesticated Goat); where strains from wild Boer Goat (W-TX) displayed distinct
186	microscopic and phylogenetic differences from those obtained from the domesticated Goat (D-
187	KE) to warrant the detailed characterization and eventual description of two different strains
188	(TABLE 1 and detailed descriptions below), and 2. Strains belonging to clade 6 (Zebra-Horse)
189	where few microscopic, but negligible phylogenetic differences were observed between the 16
190	Zebra strains (Z-OK) and the 5 Horse strains (D-WA) identified. These differences are
191	highlighted below, but we do not believe they warrant the description of a new species, given the

Seven new genera of anaerobic gut fungi

- 192 negligible sequence divergences between these strains. Below, we provide a detailed
- 193 characterization of these seven novel groups.

194 Colony morphology and macroscopic growth characteristics—Clade 1 (Mouflon-Boer Goat)

- strain MS-2 produced small brown circular colonies (0.2–1 mm diam.) on agar, and a thin
- 196 biofilm-like growth in liquid media (FIG. 1a). Clade 2 (White tailed Deer) strain WT-2 produced
- 197 beige circular colonies (0.5–2.5 mm diam.) with a brown central core of dense sporangial
- structures and an outer ring of light gray hyphal growth. In liquid media, it produced heavy
- 199 growth of thick biofilms that firmly attached to the tube's glass surface (FIG. 1b). Clade 3 (Boar
- 200 Goat-domesticated Goat) strain BGB-11 produced small circular brown colonies (0.1–0.5 mm
- diam.), with dark center of sporangia structures and a thin fungal biofilm in liquid media (FIG.
- 202 1c), while Boar Goat-domesticated Goat strain GFKJa1916 produced compact cottony off-white
- 203 colonies of 2–3 mm size, with a fluffy center of thick sporangial structures and surrounded by
- radiating rhizoids (FIG. 1d). In liquid media, strain GFKJa1916 produced numerous fungal thalli
- attached to the glass bottles on initial days of growth, which later developed into thin mat-like
- structures. Clade 4 (Axis Deer) strain Axs-31 produced small circular white colonies (1–4 mm
- 207 diameter), with a brown central core of dense sporangial structures on agar and a thick fungal
- 208 biofilm-like growth in liquid media (FIG. 1e). Clade 5 (Domesticated Goat-Sheep) strain
- 209 GFH683 produced 1–2 mm sized colonies, having a dense dark central core of abundant
- sporangial growth, surrounded by long and thin radiating rhizoids (FIG. 1g). In liquid media,
- strain GFH683 produced numerous fungal thalli attached to the glass bottles on initial days of
- 212 growth, which later developed into thin mat-like structures. Clade 6 (Zebra-Horse) strains Zebra
- 213 strain ZS-33 produced small yellow to yellowish brown irregularly shaped colonies (FIG. 1f). In
- 214 liquid media, the fungal thalli were loose and exhibited a sand-like appearance resembling liquid

Seven new genera of anaerobic gut fungi

215	growth patterns generally observed with isolates belonging to the bulbous genera Caecomyces
216	and Cyllamyces (personal observation) (FIG. 1f). Finally, clade 7 (Nilgiri Tahr) strain
217	TDFKJa193 were smaller, approximately 1 mm in size, white in color with a compact and fluffy
218	center, surrounded by dotted circles of fungal thalli. In liquid media, the strain produced
219	numerous fungal thalli attached to the glass bottles on initial days of growth, which later
220	developed into thin mat-like structures (FIG. 1h).
221	
222	Microscopic features—
223	Clade 1 (Mouflon-Boer Goat) strains- Strain MS2 produced small globose zoospores, with an
224	average diameter of 4 \pm 1.1 μm (average \pm standard deviation values from 29 zoospores, range
225	2.7–7.5 μm). Zoospores were mainly mono-flagellate with a flagellum length of 22 \pm 3.8 μm
226	(average \pm standard deviation values for 29 zoospores, range 16.6–30 μ m), approximately 5–6
227	times longer than the zoospore body (FIG. 2a). Biflagellate zoospores (FIG. 2b) were rarely
228	encountered. Zoospores germinated into monocentric thalli with filamentous anucleate rhizoidal
229	systems (FIG. 2c-d). Both endogenous and exogenous sporangia were observed, which were
230	very homogenous and displayed no pleomorphism. Endogenous sporangia were globose, with a
231	diameter range of 15–65 μ m (FIG. 2e-f). The rhizoid was swollen below the sporangial neck,
232	which was tightly constricted (FIG. 2e-f). Exogenous sporangia were also consistently globose
233	and developed at the end of swollen sporangiophores (30–80 μm L X 5–10 μm W) (FIG. 2g-h).
234	The sporangial neck was constricted with a narrow neck port. Zoospores were released through
235	dissolution and rupturing of the sporangial wall (FIG. 2i).
236	Clade 2 (White-tailed Deer) strains- Strain WT-2 produced globose zoospores, with an average

 $237 \qquad \text{diameter of } 7.4 \pm 2.4 \ \mu\text{m} \ (\text{average} \pm \text{standard deviation values for } 35 \ \text{zoospores, range} \ 4.5-13 \ \text{m} \ \m} \ \text{m} \ \text{m} \ \text{m} \ \text{m} \ \m} \ \m} \ \ \text{m} \ \m} \ \ \text{m} \ \m} \ \m} \ \ \text{m} \ \m} \ \m} \ \ \text{m} \ \m} \ \ \text{m} \ \m} \ \m} \ \m} \ \ \m} \ \m} \ \m} \ \m} \ \m} \ \m} \$

Seven new genera of anaerobic gut fungi

238	μm). Zoospores were mostly monoflagellate, with an average flagellum length of 22.8 \pm 6.3 μm
239	(average \pm standard deviation values for 35 zoospores, range 12–35 μm) (FIG. 3a). Zoospores
240	with two (FIG. 3b) to three (FIG. 3c) flagella were less frequently observed. Fungal thalli were
241	consistently monocentric with filamentous anucleate rhizoids (FIG. 3d). Germination of
242	zoospores produced two types of monocentric thalli, endogenous and exogenous. Endogenous
243	sporangia with single (FIG. 3e) and two adjacent rhizoidal systems (FIG. 3f) were observed.
244	Occasionally, pseudo- intercalary endogenous sporangia (sporangia present in the middle of two
245	main rhizoids) were encountered (FIG. 3g), Similar to what have previously been observed with
246	the genera Oontomyces (Dagar and other, 2015) and Feramyces (Hanafy and others, 2017).
247	Exogenous sporangia developed at the end of unbranched sporangiophores of varying length
248	from a few microns to 230 μ m (FIG. 3h-j). No morphological differences were noticed between
249	endogenous and exogenous sporangia and their shapes ranged from ovoid (FIG. 3e-f), globose
250	(FIG. 3g-h), obpyriform (FIG. 3j-k and 3n-o), and ellipsoidal (FIG. 3i and 3l). Many, but not all,
251	sporangia were papillated with one (FIG. 3m-p) or two (FIG. 3q) papillae. These papillated
252	sporangia are similar to those previously observed in Piromyces mae (Li and others 1990). It is
253	believed that these papillae disintegrate to facilitate zoospore release. However, we were unable
254	to observe zoospore discharge through papillae in strain WT-2.
255	Clade 3 (Boer Goat-domesticated Goat) strains- Boer Goat Strain BGB-11 produced globose
256	zoospores, with an average diameter of 5.5 \pm 0.97 μm (average \pm standard deviation values for
257	40 zoospores, range 4–7 μ m). The majority of zoospores were mono-flagellate with a flagellum
258	length of 19.6 \pm 3.2 μm (average \pm standard deviation values for 40 zoospores, range 15–25 μm),
259	(FIG. 4a). Occasionally, biflagellate zoospores were observed (FIG. 4b). Zoospores encystment

260 followed flagellar shedding (FIG. 4c). Zoospore cyst germinated producing germ tube (FIG. 4d)

Seven new genera of anaerobic gut fungi

261	that subsequently branched (FIG. 4e) into monocentric thalli with filamentous anucleate
262	rhizoidal systems (FIG. 4f-g).
263	The expansion of the zoospore cysts resulted in the formation of endogenous sporangia
264	that were ellipsoidal (FIG. 4h) and ovoid (FIG. 4i). In addition to endogenous sporangia,
265	exogenous sporangia were also observed at the end of unbranched sporangiophores ranging in
266	length between 20–150 μ m (FIG. 4j-p). Some of the sporangiophores ended with sub-sporangial
267	swellings (FIG. 41-m). Exogenous sporangia varied in shape from ovoid (FIG. 4k-l), ellipsoidal
268	with a single constriction (FIG. 4n), and globose (FIG. 4o-p). Zoospores were liberated through a
269	wide apical pore at the top of the sporangia followed by sporangial wall collapse (FIG. 4m, q-r).
270	Domesticated Goat strain GFKJa1916 on the other hand produced globose zoospores
271	(FIG. 5a), with an average diameter of 4–5 μ m. The majority of zoospores were mono-flagellate
272	with a flagellum length of 15–20 μ m. Bi- and tri-flagellate zoospores were also observed. Strain
273	GFKJa1916 zoospores germinated either endogenously or exogenously into a single monocentric
274	thallus, which was also confirmed by the presence of nuclei only in sporangia and their absence
275	in rhizoids (FIG. 5b-c). Endogenous sporangia varied in shape between cylindrical, elongate,
276	globose, sub-globose, ellipsoid & obovoid with sizes ranging between 8–60 μ m wide & 10–140
277	μ m long (FIG. 5d-g). Unlike Boer Goat Strain BGB-11, exogenous sporangia in the
278	domesticated Goat strain GFKJa1916 developed at the end of long thick sporangiophores (up to
279	$300 \mu\text{m}$ in some cases) (FIG. 5h-l), and multisporangiate thalli were commonly observed with
280	two sporangia of either the same (FIG. 5j) or different (FIG. 5K-l) shape, similar to Piromyces
281	rhizinflatus (Ho and Barr 1995) and Neocallimastix frontalis (Barr and others 1995).
282	Clade 4 (Axis Deer) strains- Strain Axs-31 produced globose zoospores, with an average

diameter of $8.1 \pm 1.3 \,\mu\text{m}$ (average \pm standard deviation values for 35 zoospores, range 6–10.5

Seven new genera of anaerobic gut fungi

μ m). All zoospores were polyflagellate, with (7–14) flagella and an average flagellum length of
$23.5\pm4.9~\mu m$ (average \pm standard deviation values for 35 zoospores, range 16–31 μm) (FIG.
6a). Zoospores germinated into monocentric thalli with highly branched anucleate rhizoidal
systems (FIG. 6b-c).
Strain Axs-31 exhibited both endogenous and exogenous monocentric thallus
development. In endogenous thalli, zoospore cysts enlarged into new sporangia of different
shapes, including globose (FIG. 6d), tubular (FIG. 6e), clavate (FIG. 6f) and ellipsoidal (FIG.
6g). Endogenous sporangia displayed tightly constricted necks (point between sporangia and
rhizoids) with narrow ports (arrows in FIG. 6d-g).
During exogenous thallus development, zoospore cysts germinated from both ends.
Rhizoids developed on one side while sporangiophores developed on the opposite side. The
empty zoospore cyst remained as a persistent swollen structure at the base of sporangiophore
(FIG. 6h). Exogenous sporangia developed at the end of unbranched sporangiophores of varied
lengths. Short sporangiophores had an average length of 6–20 μ m (FIG. 6h-i), while long
sporangiophores extended up to 200 μ m (FIG. 6j). Some of the short sporangiophores had
eggcup-shaped appearance (FIG. 6k). Exogenous sporangia were ellipsoidal (FIG. 6j), ovoid
(FIG. 6k), globose (FIG. 6l), constricted ellipsoidal (FIG. 6m), pyriform (FIG. 6n), bowling pin-
shaped (FIG. 60), and rhomboidal (FIG. 6p). Sporangial necks were constricted with narrow port
(FIG. 6m-p). At maturity, a fine septum developed at the base of the sporangium (FIG. 6n & p,
arrow). Zoospores were released through an apical pore followed by collapse of the sporangial
wall (FIG. 6q).

Seven new genera of anaerobic gut fungi

306	Clade 5 (Domesticated Goat and Sheep) strains- Strain GFH683 produced globose zoospores
307	(FIG. 8a-b), with an average diameter of 5–6 μ m. The majority of zoospores were mono-
308	flagellate with 1, or 2 flagella (FIG. 7a-b). Flagellum length ranged between 20–22 μ m.
309	Zoospores germinated to produce both endogenous and exogenous monocentric thalli (FIG. 7c-
310	f), as evident by presence of a single sporangium per thallus, nucleated sporangia but anucleate
311	rhizoids. Endogenous sporangia were globose, sub-globose, ovoid, and obovoid (FIG. 7g) with
312	sizes ranging between 8–40 μ m wide & 10–40 μ m long. Exogenous sporangia were terminal and
313	varied in shape between globose, ovoid, and obovoid with sporangiophores that varied in length
314	from 20–80 μ m (FIG. 7h-i). Zoospores discharge occurred through gradual dissolution of a wide
315	apical portion of sporangial wall, resulting in formation of an empty cup-shaped sporangium
316	(FIG. 7j-l). Such zoospore liberation patterns, and empty cup shaped sporangia were earlier
317	documented for Piromyces minutus (Ho and Barr 1995).
318	Clade 6 (Zebra-Horse) strains- Strain ZS-33 produced spherical zoospores, with an average
319	diameter of 10.8 \pm 3 μm (average \pm standard deviation of 54 zoospores, range 6–17 μm). All
320	zoospores were uniflagellate, with an average flagellum length of 26 \pm 6.5 μm (average \pm
321	standard deviation of 54 zoospores, range 18–40 μ m) (FIG. 8a). After shedding their flagella,
322	zoospores started to encyst (FIG. 8b) and germinate producing germ tube (FIG. 8c). Germ tube
323	branched and developed a highly branched anucleate rhizoidal system (FIG. 8d-e). Both narrow,
324	$0.5-2.5 \ \mu m$ wide, and broad, $3-12.5 \ \mu m$ wide, hyphae were observed; intercalary swellings were
325	frequently encountered in the broad hyphae (arrow in FIG. 8f).
326	Both endogenous and exogenous sporangia were observed. Endogenous sporangia varied
327	in shape and size. Small endogenous sporangia were mainly subglobose (20–60 μ m in diameter).

328 (FIG. 8g). Large endogenous (80–160 µm L X 35–65 µm W) sporangia were mainly ellipsoidal

Seven new genera of anaerobic gut fungi

329	(FIG. 8h). Exogenous sporangia size ranged between (80–270 μ m L X 35–85 μ m W) and
330	displayed a wider range of morphologies, e.g. heart-shaped (FIG. 8k), ovoid (FIG. 8l) and
331	pyriform (FIG. 8m). Sporangiophores ranged in length between 20–400 μ m. Characteristically,
332	strain ZS-33 displayed a multisporangiate thallus: the majority of sporangiophores were
333	branched and bore two to four sporangia (FIG. 8i-j). Similar sporangial morphology has
334	previously been observed in members of the genus Piromyces (e.g. P. rhizinflatus), and
335	Caecomyces (e.g. C. communis) (Akin and others 1988; Akin and others 1989; Breton and others
336	1991). Unbranched sporangiophores with single sporangia were less frequently encountered
337	(approximately 30% of observed sporangiophores n=50, Fig. 8k-m).
338	Zoospores were liberated through a wide apical pore at the top of the sporangia. The
339	sporangial wall stayed intact after the discharge (FIG. 8n-p). Further, mature sporangia
340	frequently detached from hyphae or sporangiophores, probably serving as an additional mean of
341	fungal dispersal (FIG. 8q).
342	The type strain ZS-33 was obtained from Zebra fecal samples collected at the Oklahoma
343	City Zoo. No noticeable differences were observed between ZS-33, and all other strains (n=15)
344	obtained from Zebra fecal samples from the Oklahoma City Zoo. On the other hand, two distinct
345	microscopic differences were identified in strains from domesticated Horses in Llanbadarn Fawr,
346	Ceredigion County, Wales. First, multisporangiate thalli, copiously observed in ZS-33, were
347	extremely rare in Welch Horse strains, and second, Distinct-resting stages (FIC. 8r) were often
348	observed in Welch Horse strains, but never in Oklahoma City Zebra strains. Whether these
349	differences are distinct characteristics of each group of strains, or induced by variations in media
350	
550	composition as well as growth and incubation procedures remain to be seen.

Seven new genera of anaerobic gut fungi

351	Clade 7 (Nilgiri Tahr) strains- Strain TDFKJa193 produced globose zoospores (FIG. 9a), with
352	an average diameter of 3–4 μ m. The majority of zoospores were mono-flagellate with 1, 2, or 3
353	flagella (FIG. 9a). Flagellum length ranged between 12–15 μ m. Strain TDFKJa193 exhibited
354	both endogenous and exogenous monocentric thallus development (FIG. 9b-e). Endogenous
355	sporangia were terminal, varied in shape between globose, ovoid & obovoid, and ranged in size
356	between 10–70 µm wide & 12–100 µm long (FIG. 9f-g). Some endogenous sporangia showed
357	sub-sporangial swellings (FIG. 9f). Endogenous sporangia with one or two main rhizoidal
358	systems (FIG. 9f) and with branched rhizoidal system (FIG. 9g) were also observed. Exogenous
359	sporangia, on the other hand, were globose, ovoid & obovoid and were observed at the end of
360	short sporangiophores (12–20 μ m) (FIG. 9h-k). Some of the sporangiophores ended with sub-
361	sporangial swellings with (FIG 9 i-j) or without (FIG. 9h&k) constricted neck of 1–8 μ m width
362	and 2–10 μ m length. The presence of subsporangial swellings and short sporangiophores were
363	previously reported for Piromyces mae (Ho and Barr 1995) and Buwchfawromyces eastonii
364	(Callaghan and others 2015). Mature exogenous sporangia often showed the formation of a
365	septum at their base (FIG. 9k) similar to Neocallimastix frontalis (Ho and Barr 1995). Zoospores
366	liberation happened after irregular dissolution of the sporangial wall (FIG. 91).
367	

Phylogenetic analysis— Phylogenetic analysis using LSU (FIG. 10a) placed the isolated strains into
seven monophyletic and bootstrap-supported lineages that were distinct from all currently described
AGF genera. LSU sequence divergence estimates between various strains within a single clade
ranged between 0–1%. The closest cultured representative to each of the seven clades is shown in
TABLE 1. Within the LSU taxonomic framework, strains recovered from Axis Deer clustered within
the *Orpinomyces-Neocallimastix-Pecoramyces-Feramyces* suprageneric clade, while strains

Seven new genera of anaerobic gut fungi

374	recovered from Boer Goat and domesticated goat clustered within the Oontomyces-Anaeromyces-
375	Liebetanzomyces supragenus clade. On the other hand, strains recovered from Nilgiri Tahr, as well as
376	strains recovered from domesticated Goat and Sheep formed two distinct new clades associated with
377	the genus Buwchfawromyces. In contrast, strains recovered from Zebra-Horse, and Mouflon-Boer
378	Goat formed two distinct clades associated together but with no specific affiliation to any
379	suprageneric group. The remaining group represented by strains isolated from White Tailed Deer
380	displayed no specific affiliation to any currently characterized genera or supragenus groups within the
381	Neocallimastigomycota.
382	To investigate ITS-1 sequence variability often reported within a single AGF strain, the ITS-1
383	region was amplified, cloned, and sequenced from all type strains. ITS-1 sequence divergence
384	within type strains ranged between 0% for strain TDFKJa193 representative of the Nilgiri Tahr
385	strains clade, and 0-8.4% (average 3.4%) for strain MS-2 representative of the Mouflon-Boer
386	Goat strains clade. ITS-1-based analysis confirmed the monophyletic and distinct nature of all
387	seven lineages, but yielded a different topology (FIG. 10b), as consistently observed in prior
388	studies (Hanafy and others 2017; Wang and others 2017). Of special note, was the surprisingly
389	high ITS-1 sequence similarity of the Boer Goat-domesticated Goat clade represented by strains
390	BGB-11 and GFKJa1916 (FIG. 10B), to an Anaeromyces sp. isolate GA-04 (GenBank accession
391	number FJ912851.1, unpublished) and to Anaeromyces robustus (GenBank accession number
392	NR_148182.1 (Li and others 2016)). Average ITS-1 sequence divergence between various
393	clones of the Boer Goat-domesticated Goat clade and Anaeromyces sp. GA-04 was 1.2%, and
394	between various clones of the Boer Goat-domesticated Goat clade and A. robustus and was
395	4.2%. Unfortunately, the LSU sequence data from both Anaeromyces sp. GA-04 and A. robustus
396	are not available for further comparison. This may be attributed to the inaccurate identification

Seven new genera of anaerobic gut fungi

397	and reporting of these two cultures, an issue very well known in the anaerobic fungal taxonomy
398	using ITS-1. We noted that in the paper describing Anaeromyces robustus, the type strain seems
399	to deviate from the typical morphology of the genus Anaeromyces, e.g. multi-flagellate
400	zoospores, lack of sausage shaped hyphae, and whale-tail like sporangia (see Figure 148 in (Li
401	and others 2016)), casting doubts on the phylogenetic affiliation of Anaeromyces robustus to the
402	genus Anaeromyces. Regardless, that stark morphological differences exist between Boer Goat-
403	domesticated Goat strains and all other members of the genus Anaeromyces, e.g. monocentric
404	thalli as opposed to polycentric thalli, absence of hyphal constrictions as opposed to sausage-
405	shaped hyphae with multiple constrictions, and monoflagellate (2-4 flagella) versus uniflagellate
406	zoospores (TABLE 1, FIG. 4-5). Such differences, in addition to the high ITS-1 sequence
407	divergence values between the Boer Goat-domesticated Goat clade and other members of the
408	genus Anaeromyces (7.1–13.1% to A. mucronatus and 8.5–18.6% to A. contortus), strongly
409	support the distinction between these strains and the genus Anaeromyces.
410	Ecological distribution— We queried the GenBank nr database to determine whether
411	representatives of these seven novel clades were encountered in prior ITS-1-based culture-
412	independent AGF diversity surveys. Multiple sequences with high (95.3-100%) sequence
413	similarity to Zebra-Horse strain ZS-33 ITS-1 sequence were identified. These sequences were
414	recovered from fecal samples obtained from multiple animals housed in the Oklahoma City Zoo
415	(Liggenstoffer and others 2010), as well as in various locations (left and right dorsal colon,
416	caecum and right ventral colon) within the digestive tract of horses (Mura and others 2019). This
417	group has previously been assigned the alphanumeric designation (AL1) (Kittelmann and others
418	2012; Liggenstoffer and others 2010).
410	Summisingly ITS 1 sequences from the remaining six lineages (Axis Deer White Toiled

419 Surprisingly, ITS-1 sequences from the remaining six lineages (Axis Deer, White-Tailed

Seven new genera of anaerobic gut fungi

420	Deer, Mouflon-Boer Goat, Boer Goat-domesticated Goat, domesticated Goat-domesticated Sheep,
421	and Nilgiri Tahr) bore no close resemblance to all currently available ITS-1 sequence data (TABLE
422	1), with highest similarity being 83% in White-Tailed Deer to sequences from Bontebok, 84% in
423	Mouflon-Boer Goat to sequences from Bontebok, 88% in domesticated goat-domesticated sheep to
424	sequences from horse, 89% in Nilgiri Tahr strains to sequences from Okapi, 91% in Axis Deer to
425	sequences from Llama, and 91-92% in Boer Goat-domesticated Goat strains to sequences from cow.
426	As such, representatives of these novel lineages, the absolute majority of which (5/6) recovered from
427	fecal samples of wild non-domesticated herbivores, do not appear to correspond to any of the
428	alphanumerically designated uncultured groups previously identified in prior culture-independent
429	efforts.
430	TAXONOMY
431	Agriosomyces Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar,
432	G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
433	MycoBank ID: MB830737
434	Typification. Agriosomyces longus. Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar,
435	T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef,
436	Etward and Anniel derived from the Creek word for wild, where the Creek name for fur and
437	<i>Etymology: Agrioso</i> = derived from the Greek word for wild; <i>myces</i> = the Greek name for fungus.
437	Obligate anaerobic fungus that produces small spherical monoflagellate zoospores with an
437	
	Obligate anaerobic fungus that produces small spherical monoflagellate zoospores with an
438	Obligate anaerobic fungus that produces small spherical monoflagellate zoospores with an extremely long flagellum ($22 \pm 3.8 \mu m$). Zoospores germinate into monocentric thalli with
438 439	Obligate anaerobic fungus that produces small spherical monoflagellate zoospores with an extremely long flagellum ($22 \pm 3.8 \mu m$). Zoospores germinate into monocentric thalli with filamentous anucleate rhizoidal systems. Both endogenous and exogenous globose sporangia are

Seven new genera of anaerobic gut fungi

- 442 dissolution and rupturing of the sporangial wall. The clade is defined by the sequences
- 443 MK882010-MK882013 (ITS-1) and MK881996 (D1-D2 28S rDNA).
- 444 Agriosomyces longus Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan,
- 445 Dagar, G.W. Griff, Elshahed, and N.H. Youssef, sp. nov.
- 446 MycoBank ID: MB830738.
- 447 *Typification*: The holotype is FIG. 2g in this manuscript, derived from the following: U.S.A.
- 448 TEXAS: Val verde county, 29.369' N and 100.829' W ~300 m ASL, 3d old culture of isolate
- 449 MS-2, originally isolated from freshly deposited feces of male Mouflon Sheep (Ovis orientalis),
- 450 April 2018, Radwa Hanafy. Ex-type strain: MS2, GenBank: MK881996 (D1-D2 28S rDNA).
- 451 *Etymology:* The species epithet "longus" refers to the extremely long flagellum observed in
- 452 zoospores of strain MS-2 (FIG. 2a).
- 453 Obligate anaerobic fungus that produces small globose monoflagellate zoospores with an
- 454 average diameter of $4 \pm 1.1 \,\mu$ m. Zoospores are mainly mono-flagellate with a flagellum length
- 455 of $22 \pm 3.8 \,\mu\text{m}$, approximately 5-6 times longer than the zoospore body. Bi-flagellate zoospores
- 456 are rarely encountered. Zoospores germinate into monocentric thalli with filamentous anucleate
- 457 rhizoidal systems. Both endogenous and exogenous sporangia are observed, which display no
- 458 pleomorphism and both show globose morphology. In endogenous sporangia, the rhizoids are
- 459 swollen below the sporangial neck, which is tightly constricted. Exogenous sporangia develop at
- 460 the end of swollen sporangiophores, and the sporangial neck is constricted with a narrow neck
- 461 port. Zoospores are released through dissolution and rupturing of the sporangial wall. Produces
- 462 small brown spherical colonies on agar, and a thin biofilm-like growth in liquid media. The clade
- 463 is defined by the sequences MK882010-MK882013 (ITS-1) and MK881996 (D1-D2 28S
- 464 rDNA).

- 465 Additional specimens examined: Radwa Hanafy strain MS-4 (GenBank accession number of D1-
- 466 D2 28S rDNA amplicon MK881997) isolated from the same freshly deposited feces of male
- 467 Mouflon Sheep (*Ovis orientalis*) from which the type strain originated, April 2018, and strain
- 468 BGS-13 (GenBank accession number of D1-D2 28S rDNA amplicon MK881995) isolated from
- 469 freshly deposited feces of female wild Boer Goat (*Capra aegagrus*), April, 2018.
- 470 Aklioshbomyces Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan,
- 471 Dagar, G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
- 472 MycoBank ID: MB830735
- 473 *Typification: Aklioshbomyces papillarum* Hanafy, Vikram B. Lanjekar, Prashant K.
- 474 Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
- 475 *Etymology: Aklioshb*= derived from the Arabic word for grass-eaters (herbivores); *myces* = the
- 476 Greek name for fungus.
- 477 Obligate anaerobic fungus that produces globose monoflagellate zoospores. Zoospores germinate
- 478 into monocentric thalli with filamentous anucleate rhizoids. Exhibits both endogenous and
- 479 exogenous monocentric thallus development. Exogenous sporangia develop at the end of
- 480 unbranched sporangiophores of varying length. No morphological differences are observed
- 481 between endogenous and exogenous sporangia, with ovoid, globose, and obpyriform sporangial
- 482 shapes noted. The clade is defined by the sequences MK882038-MK882042 (ITS-1) and
- 483 MK882001 (D1-D2 28S rDNA).
- 484 Aklioshbomyces papillarum Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M.
- 485 Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef, sp. nov.
- 486 MycoBank ID: MB830736
- 487 *Typification*: The holotype is FIG. 3m in this manuscript, derived from the following: U.S.A.

Seven new genera of anaerobic gut fungi

488	OKLAHOMA: Payne county, 36.145' N and 97.007' W ~300 m ASL, 3d old culture of isolate
489	WT-2, originally isolated from freshly deposited feces of female White-Tailed Deer (Odocoileus
490	virginianus), October 2017, Radwa Hanafy. Ex-type strain: WT-2, GenBank: MK882001 (D1-
491	D2 28S rDNA).
492	Etymology: The species epithet "papillarum" refers to the papillae observed on the majority of
493	strain WT-2 sporangia (FIG. 3m-q).
494	Obligate anaerobic fungus that produces globose monoflagellate zoospores with an average
495	diameter of 7.4 \pm 2.4 $\mu m.$ The majority of zoospores are monoflagellate, with zoospores with two
496	to three flagella less frequently observed. Fungal thalli are consistently monocentric with
497	filamentous anucleate rhizoids. Germination of zoospores produces two types of monocentric
498	thalli, endogenous and exogenous. Endogenous sporangia with single and two adjacent rhizoidal
499	systems are observed. Pseudo-intercalary endogenous sporangia are occasionally observed.
500	Sporangiophores carrying exogenous sporangia exhibit varying length from a few microns to 230
501	μ m. Endogenous and exogenous sporangia are ovoid, globose, obpyriform, and ellipsoidal.
502	Sporangia are mostly papillated with one or two papillae. Produces beige circular colonies with a
503	brown central core of dense sporangial structures and an outer ring of light gray hyphal growth
504	on agar, and heavy growth of thick biofilms that firmly attached to the tube's glass surface in
505	liquid media. The clade is defined by the sequences MK882038-MK882042 (ITS-1) and
506	MK882001 (D1-D2 28S rDNA).
507	Additional specimens examined: Radwa Hanafy strains WT-1 (MK882000), WT-3 (MK881998),
508	WT-4 (MK881999), WT-41(MK882002), WTS-51 (MK882006), WTS-52 (MK882003), WTS-
509	53 (MK882004), and WTS-54 (MK882005), (GenBank accession number of D1-D2 28S rDNA
510	amplicon in parenthesis) isolated from the same freshly deposited feces of female White-Tailed

- 511 Deer from which the type strain originated, October 2017.
- 512 *Capellomyces* Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar,
- 513 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
- 514 MycoBank ID: MB830739.
- 515 *Typification. Capellomyces foraminis.* Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar,
- 516 T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
- 517 *Etymology: Capella*= derived from the Latin word for Goat; *myces* = the Greek name for fungus.
- 518 Obligate anaerobic fungus that produces monoflagellate (1–3 flagella) zoospores. Zoospores
- 519 germinate into monocentric thalli with filamentous anucleate rhizoidal systems. Both
- 520 endogenous and exogenous sporangia are observed, with varying shapes and sizes. The clade is
- 521 defined by the sequences MK882007-MK882009 (ITS-1), and MK881975 (D1-D2 28S rDNA).
- 522 *Capellomyces foraminis* Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M.
- 523 Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef, sp. nov.
- 524 MycoBank ID: MB830740
- 525 *Typification*: The holotype is FIG. 4n in this manuscript, derived from the following: U.S.A.
- 526 U.S.A. TEXAS: Val verde county, 29.369' N and 100.829' W ~300 m ASL, 3d old culture of
- 527 isolate BGB-11, originally isolated from freshly deposited feces of a female Boer Goat (*Capra*
- 528 aegagrus) April 2018, Radwa Hanafy. Ex-type strain: BGB-11, GenBank: MK881975 (D1-D2
- 529 28S rDNA).
- 530 *Etymology:* The species epithet "*foraminis*" refers to the wide apical pore at the top of the
- 531 sporangia through which zoospores are discharged.
- 532 Obligate anaerobic fungus that produces spherical monoflagellate zoospores. Zoospores start to
- 533 encyst after shedding their flagella. Zoospore cyst germinates, producing germ tube that

Seven new genera of anaerobic gut fungi

534	subsequently branches into monocentric thalli with filamentous anucleate rhizoidal systems.
535	Endogenous and exogenous sporangia are produced. Endogenous sporangia are ellipsoidal or
536	ovoid. Exogenous sporangia are formed at the end of un-branched sporangiophores (20-150
537	μ m). Some of the sporangiophores exhibit sub-sporangial swellings. Exogenous sporangia are
538	ovoid, ellipsoidal with a single constriction, and globose. Zoospores are liberated through a wide
539	apical pore at the top of the sporangia followed by sporangial wall collapse. Colonies are small
540	(0.1–0.5 mm diameter) circular and brown, with dark center of sporangia structures on agar.
541	Produces thin fungal biofilm in liquid media. The clade is defined by the sequences MK882007-
542	MK882009 (ITS-1), and MK881975 (D1-D2 28S rDNA).
543	Additional species examined. Radwa Hanafy, strains BGB-2 (MK881974), BGC-12
544	(MK881976), BGS-11 (MK881977), and BGS-12 (MK881978) isolated from the same freshly
545	deposited feces of a female Boer Goat (Capra aegagrus), April 2018, from which the type strain
546	originated, April 2018 (D1-D2 28S rDNA amplicon GenBank accession number in parenthesis).
547	Capellomyces elongatus. Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M.
548	Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
549	MycoBank: MB830869.
550	Typification: The holotype is FIG. 5k in this manuscript, derived from the following: India,
551	KERALA, town of Munnar, 10.219' N and 77.106' E ~2100 m ASL, 3d old culture of isolate
552	GFKJa1916, originally isolated from freshly deposited feces of a domesticated but forest grazing
553	Goat (Capra aegagrus), Sumit S. Daggar. Ex-type strain: GFKJa1916, GenBank: ITS-1
554	(MK775315), D1-D2 28S rDNA (MK775304).
555	Etymology: The species epithet "elongatus" refers to the characteristic long sporangiophore of

556 exogenous sporangia. \Box

Seven new genera of anaerobic gut fungi

557	Obligate anaerobic fungus that produces globose monoflagellate (1, 2, or 3 flagella) zoospores.
558	Zoospore cyst germinate both endogenously and exogenously to produce monocentric thalli with
559	filamentous anucleate rhizoidal systems. Endogenous sporangia are cylindrical, elongate,
560	globose, sub-globose, ellipsoid & obovoid with sizes ranging between 8–60 μ m wide & 10–140
561	μ m long. Exogenous sporangia are formed at the end of developed at the end of long thick
562	sporangiophores (up to $300 \ \mu m$). Multisporangiate thalli are commonly observed with two
563	sporangia of either the same or different shapes. Colonies are compact of 2–3 mm size, cottony
564	and off-white in color with a compact and fluffy center made up of thick sporangia type
565	structures, and surrounded by radiating rhizoids. Produces numerous fungal thalli that attach to
566	the glass bottles on initial days of growth, which later develop into thin mat-like structures in
567	liquid media. The clade is defined by the sequence MK775304 (D1-D2 28S rDNA).
568	Additional species examined. None
569	Ghazallomyces Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar,
569 570	<i>Ghazallomyces</i> Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
570	G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
570 571	G.W. Griff, Elshahed, and N.H. Youssef, gen. nov. MycoBank ID: MB830733
570 571 572	 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov. MycoBank ID: MB830733 <i>Typification: Ghazallomyces constrictus</i> Hanafy, Vikram B. Lanjekar, Prashant K.
570 571 572 573	 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov. MycoBank ID: MB830733 <i>Typification: Ghazallomyces constrictus</i> Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
570 571 572 573 574	 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov. MycoBank ID: MB830733 <i>Typification: Ghazallomyces constrictus</i> Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef. <i>Etymology: Ghazallo</i> = derived from the Arabic word for Deer (Ghazalla); <i>myces</i> = the Greek
570 571 572 573 574 575	 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov. MycoBank ID: MB830733 <i>Typification: Ghazallomyces constrictus</i> Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef. <i>Etymology: Ghazallo</i> = derived from the Arabic word for Deer (Ghazalla); <i>myces</i> = the Greek name for fungus.
570 571 572 573 574 575 576	 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov. MycoBank ID: MB830733 <i>Typification: Ghazallomyces constrictus</i> Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef. <i>Etymology: Ghazallo</i> = derived from the Arabic word for Deer (Ghazalla); <i>myces</i> = the Greek name for fungus. Obligate anaerobic fungus that produces polyflagellate zoospores. Zoospores germinate into
570 571 572 573 574 575 576 577	 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov. MycoBank ID: MB830733 <i>Typification: Ghazallomyces constrictus</i> Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef. <i>Etymology: Ghazallo</i> = derived from the Arabic word for Deer (Ghazalla); <i>myces</i> = the Greek name for fungus. Obligate anaerobic fungus that produces polyflagellate zoospores. Zoospores germinate into monocentric thalli with highly branched anucleate rhizoidal systems. Exhibits both endogenous

Seven new genera of anaerobic gut fungi

580	During exogenous thallus development, zoospore cysts germinate from both ends, with rhizoids
581	developing from one side and sporangiophore developing from the opposite side. The empty
582	zoospore cyst remains as a persistent swollen structure at the base of unbranched sporangiophore
583	that exhibit wide variations in lengths. Zoospores are released through an apical pore followed
584	by collapse of the sporangial wall. The clade is defined by the sequences MK882043 (ITS-1) and
585	MK881971 (D1-D2 28S rDNA).
586	Ghazallomyces constrictus Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M.
587	Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef, sp. nov.
588	MycoBank ID: MB830734
589	Typification: The holotype is FIG. 6h in this manuscript, derived from the following: U.S.A.
590	TEXAS: Sutton county, 30.591' N and 100.138' W ~300 m ASL, 3d old culture of isolate Axs-
591	31, originally isolated from freshly deposited feces content of female Axis Deer (Axis axis), Apr.
592	2018, Radwa Hanafy. Ex-type strain: Axs-31, GenBank: MK881971 (D1-D2 28S rDNA).
593	Etymology: The species epithet "constrictus" refers to the observed constricted necks (point
594	between sporangia and rhizoids) in the species endogenous sporangia (FIG. 6d-g).
595	Obligate anaerobic fungus that produces globose polyflagellate zoospores with 7–14 flagella.
596	Zoospores germinate into monocentric thalli with highly branched anucleate rhizoidal systems.
597	Exhibits both endogenous and exogenous monocentric thallus development. Endogenous
598	sporangia produced from zoospore cyst enlargement develop into different shapes including
599	globose, tubular, clavate, and ellipsoidal. Endogenous sporangia display tightly constricted necks
600	(point between sporangia and rhizoids) with narrow ports. Exogenous sporangia develop at the
601	end of unbranched sporangiophores of varied lengths. Both short (6–20 μ m) and long (up to
602	200µm) sporangiophores are observed. The exogenous sporangia display ellipsoidal, ovoid,

- 603 globose, constricted ellipsoidal, pyriform, bowling pin-like, and rhomboidal shapes. Sporangial
- 604 necks are constricted with narrow port. A fine septum develops at the base of the sporangium at
- 605 maturity. Zoospores are released through an apical pore followed by collapse of the sporangial
- 606 wall. Produces small circular white colonies (1–4 mm diameter) with a brown central core of
- 607 dense sporangial structures on agar, and a thick fungal biofilm growth in liquid media. The clade
- is defined by the sequences MK882043 (ITS-1) and MK881971 (D1-D2 28S rDNA).
- 609 Additional specimens examined: Radwa Hanafy strains ADC-2 (MK881965), ADS-14
- 610 (MK881966), AXS-33 (MK881967), AXS-34 (MK1881968), ADS-12 (MK881969), AXS-32
- 611 (MK881970), ADS-11 (MK881972), and ADS-21 (MK881973) (GenBank accession number of
- 612 D1-D2 28S rDNA amplicon in parenthesis) isolated from the same freshly deposited feces of
- 613 female Axis Deer (*Axis axis*) from which the type strain originated, April 2018.
- 614 Joblinomyces Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar,
- 615 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
- 616 MycoBank ID: MB830867
- 617 Typification. Joblinomyces apicalis. Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar,
- 618 T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
- 619 *Etymology: Joblino=* honoring Keith N. Joblin for his contributions to the field of anaerobic
- 620 fungi; *myces* = the Greek name for fungus.
- 621 Obligate anaerobic fungus that produces globose monoflagellate zoospores. Both endogenous
- and exogenous sporangia are observed with varying shapes and sizes. Sporangiophores of
- 623 exogenous sporangia vary in length. Exogenous sporangia have short and frequently swollen
- 624 sporangiophores. Zoospores discharge occurs through gradual dissolution of a wide apical

Seven new genera of anaerobic gut fungi

- 625 portion of sporangial wall, resulting in formation of an empty cup-shaped sporangium. The clade
- 626 is defined by the sequences MK910278 (ITS-1) and MK910268 (D1-D2 28S rDNA).
- 627 *Joblinomyces apicalis*. Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M.
- 628 Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
- 629 MycoBank ID: MB830868
- 630 *Typification*: The holotype is FIG. 7c in this manuscript, derived from the following: India,
- 631 HARYANA, city of Sonipat, 28.988' N and 76.941' E ~220 m ASL, 3d old culture of isolate
- 632 GFH683, originally isolated from freshly deposited feces of a domesticated goat (Capra
- 633 aegagrus hircus), Sumit Dagar. Ex-type strain: GFH683, GenBank: MK910268 (D1-D2 28S

634 rRNA).

- 635 *Etymology:* The species epithet "*apicalis*" refers to the zoospore discharge through the
- 636 dissolution of a wide apical portion of the sporangial wall.
- 637 Obligate anaerobic fungus that produces globose monoflagellate zoospores with 1, or 2 flagella.
- 638 Zoospores germinate to produce both endogenous and exogenous monocentric thalli.
- Endogenous sporangia vary in shape between globose, sub-globose, ovoid, and obovoid with
- 640 sizes ranging between 8–40 μm wide & 10–40 μm long. Exogenous sporangia are terminal and
- 641 vary in shape between globose, ovoid, obovoid. Sporangiophores vary in length from 20–80 μm.
- 642 Zoospores discharge occur through gradual dissolution of a wide apical portion of sporangial
- 643 wall, resulting in formation of an empty cup-shaped sporangium. Produces 1–2 mm sized
- 644 colonies with a dense dark central core of abundant sporangial growth, surrounded by long and
- thin radiating rhizoids. In liquid media, it produces numerous fungal thalli that attach to the glass
- bottles on initial days of growth, and later develop into thin mat-like structures. The clade is

- 647 defined by the sequences MK910278-MK910282 (ITS-1) and MK910268-MK910272 (D1-D2
- 648 28S rDNA).
- 649 Additional specimens examined: Sumit Dagar strains GFH681 (MK910263-MK910267) and GFH682
- 650 (MK775330) (GenBank accession number of D1-D2 28S rDNA amplicon in parenthesis) isolated
- from the same freshly deposited domesticated goat feces from which the type strain originated, and
- 652 SFH683 (MK775333) isolated from freshly deposited domesticated sheep feces in the city of Sonipat,
- 653 Haryana, India.
- 654 *Khoyollomyces* Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar,
- 655 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
- 656 MycoBank ID: MB830741
- 657 Typification. Khoyollomyces ramosus. Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar,
- 658 T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
- *Etymology: Khyollo*= derived from the Arabic word for horses; *myces* = the Greek name forfungus.
- 661 Obligate anaerobic fungus that produces spherical uniflagellate zoospores. Zoospores encyst and
- develop a highly branched anucleate rhizoidal system. Both endogenous and exogenous
- sporangia are observed. Small endogenous sporangia are subglobose and large endogenous
- sporangia are ellipsoidal. Exogenous sporangia displayed a wider range of shapes. The majority
- of sporangiophores are branched and bear two to four sporangia. Unbranched sporangiophores
- bearing a single sporangium are less frequently encountered. Zoospores are liberated through a
- 667 wide apical pore at the top of the sporangia. Mainly found in the digestive tracts of equids. The
- clade is defined by the sequences MK882019 (ITS-1), and MK881981 (D1-D2 28S rDNA).

Seven new genera of anaerobic gut fungi

669 *Khoyollomyces ramosus*. Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M.

670 Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef, sp. nov.

671 MycoBank ID: MB830742.

672 *Typification*: The holotype is FIG. 8j in this manuscript, derived from the following: U.S.A.

673 OKLAHOMA: Oklahoma City, 35.524' N and 97.472' W ~300 m ASL, 3d old culture of isolate

674 ZS-33, originally isolated from freshly deposited feces of a Grevy's Zebra (*Equus grevyi*), May,

675 2018, Radwa Hanafy. Ex-type strain: ZS-33, GenBank: MK881981 (D1-D2 28S rDNA).

676 *Etymology:* The species epithet "*ramosus*" (Latin for branched) refers to the observed branched

677 sporangiophores bearing two to four sporangia in *K. ramosus* type strain ZS-33 (FIG. 8i-k).

678 Obligate anaerobic fungus that produces spherical uniflagellate zoospores. Zoospores encyst and

679 germinate producing germ tube that develops into a highly branched anucleate rhizoidal system.

Both narrow, 0.5–2.5μm wide, and broad hyphae, 3–12.5μm wide, are produced; intercalary

681 swellings are frequently encountered in the broad hyphae. Both endogenous and exogenous

682 sporangia were observed. Endogenous sporangia vary in shape and size, with small endogenous

683 sporangia mainly subglobose (20–60 μm in diameter) while large endogenous (80–160μm L X

684 35–65μm W) sporangia mainly ellipsoidal. Exogenous sporangia ranged in size between (80–

685 270μm L X 35–85μm W)) and display a wide range of morphologies, e.g. heart-shaped, ovoid,

and pyriform. Displays a multisporangiate thallus, with the majority of sporangiophores being

687 branched and bearing two to four sporangia. Unbranched sporangiophores with single sporangia

are less frequently encountered (approximately 30% of observed sporangiophores). Zoospores

are liberated through a wide apical pore at the top of the sporangia. The sporangia stay intact

690 after the discharge. Mature sporangia frequently detach from hyphae or sporangiophores.

691 Produces small yellow to yellowish brown irregularly shaped colonies on agar. In liquid media,

- the fungal growth is loose and exhibited a sand-like appearance. The clade is defined by the
- 693 sequences MK882019 (ITS-1), and MK881981 (D1-D2 28S rDNA).
- 694 Additional specimens examined: Radwa Hanafy strains ZC-31 (MK881979), ZC-32
- 695 (MK881980), ZC-33 (MK881981), ZC-41 (MK881982), ZC-42 (MK881983), ZC-43
- 696 (MK881984), ZC-51 (MK881985), ZC-53 (MK881986), ZS-21 (MK881987), ZS-22
- 697 (MK881988), ZS-31 (MK881989), ZS-32 (MK881990), ZS-41 (MK881992), ZS-42
- 698 (MK881993), and ZS-43 (MK881994) (GenBank accession number of D1-D2 28S rDNA
- amplicon in parenthesis) isolated from the same freshly deposited Zebra feces from which the
- 700 type strain originated, May 2018. Tony Callaghan strains: HoCal4.A2, HoCal4.A2.2, HoCal4.A4
- isolated from fresh horse feces (Llanbadarn, nr. Aberystwyth; 52.4156,-3.8878), August 2013.
- 702 Two further cultures (Tmc003.6a, TMC3.6b) were isolated from a different horse at the same
- 703 site, November 2013.
- 704 *Tahromyces* Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M. Callaghan, Dagar,
- 705 G.W. Griff, Elshahed, and N.H. Youssef, gen. nov.
- 706 MycoBank ID: MB830865
- 707 Typification. Tahromyces munnarensis. Hanafy, Vikram B. Lanjekar, Prashant K.
- 708 Dhakephalkar, T.M. Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
- 709 *Etymology: Tahro*= referring to the Nilgiri Tahr from which the species was isolated; *myces* =
- 710 the Greek name for fungus.
- 711 Obligate anaerobic fungus that produces globose monoflagellate zoospores. Both endogenous
- and exogenous sporangia are observed with varying shapes and sizes. Endogenous sporangia
- vith one or two main rhizoidal systems and with branched rhizoidal system are frequently
- observed. Exogenous sporangia have short and frequently swollen sporangiophores. Sporangial

Seven new genera of anaerobic gut fungi

- necks are frequently constricted. Septa often form at the base of mature exogenous sporangia.
- 716 Zoospores liberation happens after irregular dissolution of the sporangial wall. The clade is
- defined by the sequences MK775321 (ITS-1), and MK775310 (D1-D2 28S rDNA).

718 *Tahromyces munnarensis* Hanafy, Vikram B. Lanjekar, Prashant K. Dhakephalkar, T.M.

- 719 Callaghan, Dagar, G.W. Griff, Elshahed, and N.H. Youssef.
- 720 MycoBank ID: MB830866
- 721 *Typification*: The holotype is FIG. 9h in this manuscript, derived from the following: India,

KERALA, town of Munnar, 10.219' N and 77.106' E ~2100 m ASL, 3d old culture of isolate

723 TDFKJa193, originally isolated from freshly deposited feces of a Nilgiri Tahr (*Nilgiritragus*

724 hylocrius), Sumit Dagar. Ex-type strain: TDFKJa193, GenBank: ITS-1 accession number

725 (MK775321), D1-D2 28S rDNA (MK775310).

Etymology: The species epithet "*munnarensis*" refers to the town that the type species wasisolated from.

728 Obligate anaerobic fungus that produces globose monoflagellate zoospores with 1, 2, or 3

flagella. Both endogenous and exogenous sporangia were observed. The sporangia vary in size

- between 12–100 μ m in length and 10–70 μ m in width, and display a wide range of morphologies
- 131 like globose, ovoid, and obovoid. Sporangiophores are short (12–20 μm) with frequent
- subsporangial swellings. Sporangial necks (1–8 μm width and 2–10 μm length) are frequently

constricted. Septa often form at the base of mature exogenous sporangia. Zoospores liberation

happens after irregular dissolution of the sporangial wall. Produces colonies that are small (1

- mm), white in color with a compact and fluffy center, surrounded by dotted circles of fungal
- thalli. In liquid media, it produces numerous fungal thalli attaching to the glass bottles on initial

- days of growth, and later developing into thin mat-like structures. The clade is defined by the
- 738 sequence MK775310 (D1-D2 28S rDNA).
- 739 Additional specimens examined: Sumit Dagar strains TDFKJa1924 (MK775323), TDFKJa1926
- 740 (MK775322), and TDFKJa1927 (MK775324) (GenBank accession number of D1-D2 28S rDNA
- amplicon in parenthesis) isolated from the same Nilgirir Tahr feces from which the type strain
- 742 originated.
- 743

Seven new genera of anaerobic gut fungi

744 **DISCUSSION**

745 Here, we report on the isolation and characterization of multiple novel AGF strains from a 746 concerted sampling effort of domesticated, zoo-housed, and wild animals from North America, 747 Europe, and Asia. We propose seven new AGF genera to accommodate these novel strains, 748 hence expanding the AGF genus-level diversity by more than 50% (From 11 to 18). All newly 749 described taxa produced filamentous, monocentric thalli, similar to seven of the eleven currently 750 described genera. Six of the seven novel genera described here produce mono/uniflagellate 751 zoospores, similar to eight of the eleven currently described taxa. As such, filamentous taxa with 752 moncentric thalli and monflagellate zoospore appear to be the most common thallus morphology 753 and zoospore flagellation patterns in the Neocallimastigomycota predominant within currently 754 described AGF genera. It is interesting to note that for decades, microscopic-based identification 755 of AGF strains typically assigned isolates with such morphology to the genus *Piromyces* (Ho and 756 others 1993). We note broad similarities between the microscopic features of Aklioshbomyces 757 papillarum and P. mae (papillated sporangia), and Joblinomyces and P. Minutus (zoospores 758 release through a wide apical portion of sporangial wall, resulting in formation of an empty cup-759 shaped sporangium). Unfortunately, the absnece of sequence data and extant cultures of these 760 previously described "Piromyces" taxa prevents futher investigation into this issue (Ho and 761 others 1993).

The current isolates were obtained in a multi-year effort to describe novel AGF strains from a wide range of animal hosts in the United States, India, Wales. The majority of novel taxa described here (5/7 genera, 6/8 species) originated from wild undomesticated animals (Axis Deer, White Tailed Deer, Mouflon, Boer Goat, and Nilgiri Tahr), underscoring their potential as novel, yet-untapped reservoir of AGF diversity. Such novelty, which has recently been

Seven new genera of anaerobic gut fungi

postulated (Hanafy and others 2018) could be attributed to higher variability in the quality and
quantity of ingested plant material, and the significant daily and seasonal fluctuations in feeding
frequencies.

770 Culture-independent surveys utilizing ITS-1 as a phylogenetic marker (Kittelmann and others 771 2012; Liggenstoffer and others 2010), and subsequent meta-analysis (Kittelmann and others 2012; 772 Kittelmann and others 2013) have identified multiple novel yet-uncultured AGF genus-level lineages. 773 This study has been successful in isolating the first representatives of novel group AL1 from Zebra 774 and Horse fecal samples. In a prior survey of AGF in zoo-housed animals (Liggenstoffer and others 775 2010), members of this lineage were encountered in approximately half of the animal hosts examined 776 (18/35). AL1-affiliated sequences were more predominant in hindgut fermenters (7/9 hosts), and 777 comprised a relatively high proportion of the AGF community in multiple hosts, e.g. 99.9% in three 778 different Zebra individuals, 56.7 and 68.3% in two horses, and 29.6% in a Grant's Gazelle). By 779 comparison, they were only encountered in 11/26 foregut fermenters, where they constituted 0.01% 780 to 38% of the AGF community in these animals. Further a recent seminal spatial analysis that 781 analyzed AGF community in samples directly obtained from various locations along horses digestive 782 tracts (Mura and others 2019) identified AL1 group as a prominent component of the AGF 783 community in the right ventral (88%), and left dorsal (98%) colons in horses. As such, this novel 784 genus appears to exhibit a preference for hindgut fermenters of the family Equidae. The reason for 785 such preferences, and the general preference of some fungal taxa to specific hosts remains unclear 786 (Callaghan and others 2015; Dagar and others 2015).

Surprisingly, comparative analysis of ITS-1 sequences indicated that the Axis Deer, White
tailed Deer, Mouflon-Boer Goat, Boer Goat-domesticated Goat, Nilgiri Tahr, and domesticated Goatsheep groups appear to be completely novel, and previously unencountered in prior culture-based or

Seven new genera of anaerobic gut fungi

790	culture-independent studies. ITS-1 sequences from these four isolates did not display mismatches to
791	common ITS-1 primers, did not have an atypical length that could hinder its amplification or
792	detection via PCR, and were readily amplified from pure-cultures' genomic DNA. As such, we posit
793	that the lack of prior observation of these taxa is biologically relevant, and is indicative of their
794	relatively specific host preference and/or predominance in wild, rather than domesticated herbivores.
795	Indeed, although 30 animals were screened in the current study, three of these seven novel genera
796	were isolated only from a single host (White tailed Deer, Axis Deer, and Nilgiri Tahr), while the
797	other four were isolated from only two hosts (Mouflon and Boer Goat, Boer Goat and domesticated
798	Goat, domesticated Goat and Sheep, and Zebra-domesticated Horse) (TABLE 1).
799	Collectively, the steady identification of novel taxa in culture-based and culture-independent
800	surveys, as well as the sparse overlap between these studies strongly suggests that the scope of AGF
801	diversity in nature is much broader than currently estimated (Kittelmann and others 2012; Paul and
802	others 2018). Compared to the prokaryotic component of the rumen and herbivorous gut, the diversity
803	of the rumen mycobiome remains woefully understudied. To provide a more thorough understanding
804	of the AGF diversity in nature, concerted efforts that systematically assess the AGF diversity and
805	community structure in various spatial (e.g. across various compartments of the herbivorous gut),
806	temporal (e.g. across the lifespan of an animal), and geographic dimensions in a wide range of
807	domesticated and wild herbivores is needed. Much remains to be understood regarding the diversity
808	and community structure of AGF within various locations of the gastrointestinal tract of an animal
809	host, interspecies stochastic differences between AGF communities in animal subjects, temporal age-
810	related progression of AGF in animal hosts, and the response of the AGF community to various
811	factors e.g. feeding patterns, antibiotic administration, animal disease, and co-housing arrangements
812	and combinations thereof.

Seven new genera of anaerobic gut fungi

- 813 **ACKNOWLEDGMENTS** We thank Jim and Tammy Austin for providing fecal samples,
- 814 Britny Johnson for technical assistance, Dr. Karthick Balasubramanian for his valuable help, Drs.
- 815 Rebecca Snyder and Jennifer D'Agostino for providing fecal samples from the Oklahoma City
- 816 Zoo, and to the Kerala Forest Department, Munnar for sampling permission (WL10-
- 817 51713/2017). This work has been funded by the NSF-DEB Grant number 1557102 to NHY and
- 818 MSE, Department of Biotechnology (DBT) project no. BT/PR15694/PBD/26/506/2015 to SSD.

Seven new genera of anaerobic gut fungi

819 LITERATURE CITED

- 820 Akin D, Borneman W, Windham W. 1988. Rumen fungi: morphological types from Georgia
- cattle and the attack on forage cell walls. Biosystems 21 385–391.
- 822
- 823 Akin D, Lyon C, Windham W, Rigsby L. 1989. Physical degradation of lignified stem tissues by
- ruminal fungi. Applied and Environmental Microbiology 55:611–616.
- 825
- 826 Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Thilini Chethana KW, Dai DQ, Dai YC,
- 827 Daranaama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM,
- 828 Voigt K, Zhao RL, Li G-J, Doilom M, Boonmee S, Yang, ZL, Cai Q, Cui Y-Y, Bahkali AH,
- 829 Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A,
- 830 Hongsanan S, Jones EBG, Larsson E, Li WJ, Li Q-R, Liu JK, Luo ZL, Maharachchikumbura
- 831 SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH,
- 832 Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian
- 833 CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang
- H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov T, Lima DX, Callaghan TM,
- 835 Callac P, Chang CH, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith
- 836 GW, Ho H-M, Hofstetter V, Jeewon R, Kang JC, Kirk PM, Kytövuori I, Lawrey JD, Xing J, Li
- 837 H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S,
- 838 Parnmen S, de Azevedo Santiago ALCM, Sommai S, de Souza CAF, de Souza-Motta CM, Su
- HY, Suetrong S, Wang Y, Wei S-F, Wen T-C, Yuan HS, Zhou LW, Réblová M, Fournier J,
- 840 Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S,
- 841 Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li X, Lee HW, Nguyen TTT, Lee

Seven new genera of anaerobic gut fungi

- HB, Battistin B, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen H-A,
- 843 Chen X-H, Miettinen O, Spirin V, Hernawati. 2015. Fungal diversity notes 111–252 taxonomic
- and phylogenetic contributions to fungal taxa. Fungal Diversity 75:27–274.
- 845
- 846 Barr D, Yanke L, Bae H, McAllister T, Cheng K. 1995. Contributions on the morphology and
- taxonomy of some rumen fungi from Canada. Mycotaxon 54:203–214.
- 848
- 849 Barr DJ, Kudo H, Jakober KD, Cheng KJ. 1989. Morphology and development of rumen fungi:
- 850 Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov. Canadian
- 851 Journal of Botany 67 2815–2824.
- 852
- 853 Breton A, Bernalier A, Dusser M, Fonty G, Gaillard-Martinie B, Guitlot J. 1990. Anaeromyces
- 854 *mucronatus* nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus.
- 855 FEMS Microbiology Letters 70:177–182.
- 856
- 857 Breton A, Dusser M, Gaillard-Martine B, Guillot J, Millet L, Prensier G. 1991. Piromyces
- 858 *rhizinflata* nov. sp., a strictly anaerobic fungus from faeces of the Saharian ass: a morphological,
- 859 metabolic and ultrastructural study. FEMS Microbiology Letters 82:1–8.
- 860
- 861 Calkins S, Elledge NC, Hanafy RA, Elshahed MS, Youssef NH. 2016. A fast and reliable
- 862 procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term
- storage of isolates. Journal of Microbiological Methods 127:206–213.
- 864
- 865 Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, Griffith GW.

Seven new genera of anaerobic gut fungi

- 866 2015. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus
- 867 (Neocallimastigomycota) isolated from buffalo faeces. Mycokeys 9:11–28.
- 868
- 869 Dagar SS, Kumar S, Griffith GW, Edwards JE, Callaghan TM, Singh R, Nagpal AK, Puniya AK.
- 870 2015. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract
- 871 of the Indian camel (*Camelus dromedarius*). Fungal Biology 19:731–737.
- 872
- 873 Gold JJ, Heath IB, Bauchop T. 1988. Ultrastructural description of a new chytrid genus of
- 874 caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae

875 BioSystems 21:403–415.

- 876
- 877 Gruninger RJ, Puniyab AK, Callaghanc TM, Edwardsc JE, Youssef N, Dagare SS, Fliegerova K,
- 878 Griffith GW, Forster R, Tsang A et al. 2014. Anaerobic Fungi (Phylum Neocallimastigomycota):
- 879 Advances in understanding of their taxonomy, life cycle, ecology, role, and biotechnological
- 880 potential. FEMS Microbiology Ecology. 90:1–17.
- 881
- 882 Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. 2017. Pecoramyces
- *ruminantium*, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep.
- 884 Mycologia 109:231–243.
- 885
- 886 Hanafy RA, Elshahed MS, Youssef NH. 2018. Feramyces austinii, gen. nov., sp. nov., an
- anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer.
- 888 Mycologia 110:513–525.
- 889

Seven new genera of anaerobic gut fungi

- Heath BI, Bauchop T, Skipp RA. 1983. Assignment of the rumen anaerobe *Neocallimastix*
- 891 *frontalis* to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore
- ultrastructure. Canadian Journal of Botany 61:295–307.
- 893
- 894 Ho YW, Bar DJS, Abdullah N, Jalaludin S, Kudo H. 1993a. A new species of Piromyces from
- the rumen of deer in Malaysia. Mycotaxon 47:285–293.
- 896
- 897 Ho YW, Barr DJS. 1995. Classification of anaerobic gut fungi from herbivores with emphasis on
- rumen fungi from malaysia. Mycologia 87:655–677.
- 899
- 900 Hungate RE. 1969. A roll tube method for cultivation of strict anaerobes. Methods in
- 901 Microbiology 3:117–132.
- 902
- 903 Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS. 2018.
- 904 *Liebetanzomyces polymorphus* gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota)

isolated from the rumen of a goat. Mycokeys 40:89–110.

906

- 907 Kittelmann S, G. E. Naylor, J. P. Koolaard, Janssen PH. 2012. A Proposed Taxonomy of
- 908 Anaerobic Fungi (Class Neocallimastigomycetes) Suitable for Large-Scale Sequence-Based

909 Community Structure Analysis. PLoS ONE 7:e36866.

- 910
- 911 Kittelmann S, H. Seedorf, W. A. Walters, J. C. Clemente, R. Knight, J. I. Gordon, Janssen PH.
- 912 2013. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial,

Seven new genera of anaerobic gut fungi

- 913 Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities. PLoS ONE
- 914 8:e47879.
- 915
- 916 Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis
- 917 version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874.
- 918
- 919 Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P,
- 920 Alves-Silva G, Ammirati JF, Ariyawansa HA, Baghela A, Bahkali AH, Beug M, Bhat DJ,
- 921 Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O, Chakraborty D,
- 922 Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Daranagama
- 923 DA, Das K, Dayarathne MC, De Crop E, De Oliveira RJV, de Souza CAF, de Souza JI,
- 924 Dentinger BTM, Dissanayake AJ, Doilom M, Drechsler-Santos ER, Ghobad-Nejhad M, Gilmore
- 925 SP, Góes-Neto A, Gorczak M, Haitjema CH, Hapuarachchi KK, Hashimoto A, He MQ, Henske
- 926 JK, Hirayama K, Iribarren MJ, Jayasiri SC, Jayawardena RS, Jeon SJ, Jerônimo GH, Jesus AL,
- 927 Jones EBG, Kang JC, Karunarathna SC, Kirk PM, Konta S, Kuhnert E, Langer E, Lee HS, Lee
- HB, Li WJ, Li XH, Liimatainen K, Lima FX, Lin CG, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ,
- 929 Lücking R, Lumbsch HT, Lumyong S, Leaño EM, Marano AV, Matsumura M, McKenzie EHC,
- 930 Mongkolsamrit S, Mortimer PE, Nguyen TTT, Niskanen T, Norphanphoun C, O'Malley MA,
- 931 Parnmen S, Pawłowska J, Perera RH, Phookamsak R, Phukhamsakda C, Pires-Zottarelli CLA,
- 932 Raspé O, Reck MA, Rocha SCO, de Santiago ALCMA, Senanayake IC, Setti L, Shang QJ,
- 933 Singh SK, Sir EB, Solomon KV, Song J, Srikitikulchai P, Stadler M, Suetrong S, Takahashi H,
- 934 Takahashi T, Tanaka K, Tang LP, Thambugala KM, Thanakitpipattana D, Theodorou MK,
- 935 Thongbai B, Thummarukcharoen T, Tian Q, Tibpromma S, Verbeken A, Vizzini A, Vlasák J,

Seven new genera of anaerobic gut fungi

936	Voigt K, Wanasinghe DN, Wang Y, Weerakoon G, Wen HA, Wen TC, Wijayawardene NN,
937	Wongkanoun S, Wrzosek M, Xiao YP, Xu JC, Yan JY, Yang J, Da Yang S, Hu Y, Zhang JF,
938	Zhao J, Zhou LW, Peršoh D, Phillips AJL, Maharachchikumbura SSN. 2016. Fungal diversity
939	notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78:1–
940	237.
941	
942	Li J, Health B, Bauchop T. 1990. Piromyces mae and Piromyces dumbonica, two new species of
943	uniflagellate anaerobic chytridiomycete fungi from the hindgut of the horse and elephant.
944	Canadian Journal of Botany 68:1021–1033.
945	
946	Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. 2010 Phylogenetic diversity and
947	community structure of anaerobic fungi (Phylum Neocallimastigomycota) in ruminant and non-
948	ruminant herbivores. The ISME Journal 4:1225–1235.
949	
950	Ljungdahl LG. 2008 The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces
951	PC-2 and aspects of its use. Annals of the New York Academy of Sciences 1125 308–321.
952	
953	McSweeney CS, Denman SE, Mackie RI. 2005. Rumen bacteria. In: Makkar HPS, McSweeney
954	CS, eds. Methods in Gut Microbial Ecology for Ruminants. Dordrecht, Netherlands: Springer. p.
955	23–37.
956	

Seven new genera of anaerobic gut fungi

957	Mura E. Edwards.	. Kittelmann S	. Kaerger K.	Voigt K. Mrázek J.	Moniello G, Fliegerova K.

- 958 2019. Anaerobic fungal communities differ along the horse digestive tract. Fungal Biology
- 959 123:240–246.
- 960
- 961 Nagpal R, Puniya AK, Sehgal JP, Singh K. 2011. In vitro fibrolytic potential of anaerobic rumen
- 962 fungi from ruminants and non-ruminant herbivores. Mycoscience 52:31–38.
- 963
- 964 Nakamura T, Yamada KD, Tomii K, Katoh K. 2018. Parallelization of MAFFT for large-scale
- 965 multiple sequence alignments. Bioinformatics 34:2490–2492.

966

- 967 Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK. 2001. Cyllamyces aberensis
- gen. nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from
- 969 cattle. Canadian Journal of Botany 79:666–673.
- 970
- Paul SS, Bu D, Xu J, Hyde KD, Yu Z. 2018. A phylogenetic census of global diversity of gut

972 anaerobic fungi and a new taxonomic framework. Fungal Diversity 89:253–266.

973

- 974 Paul SS, Deb SM, Punia BS, Singh D, Kumar R. 2010. Fibrolytic potential of anaerobic fungi
- 975 (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their
- addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of
- 977 buffaloes. Journal of the Science of Food and Agriculture 90:1218–1226.

978

879 Ranganathan A, Smith OP, Youssef NH, Struchtemeyer CG, Atiyeh HK, Elshahed MS. 2017.

Seven new genera of anaerobic gut fungi

980 Utilizing anaerobic fungi for two-stage sugar extraction and biofuel production from

981 lignocellulosic biomass. Frontiers in Microbiology 8:635.

- 982
- 983 Tuckwell DS, Nicholson MJ, McSweeney CS, Theodorou MK, Brookman JL. 2005. The rapid
- assignment of ruminal fungi to presumptive genera using ITS-1 and ITS2 RNA secondary

985 structures to produce group-specific fingerprints. Microbiology 151:1557–1567.

- 986
- 987 Wang X, Liu X, Groenewald JZ. 2017. Phylogeny of anaerobic fungi (phylum
- 988 Neocallimastigomycota), with contributions from yak in China. Antonie Van Leeuwenhoek
- 989 110:87–103.
- 990
- 991 Young D, Dollhofer V, Callaghan TM, Reitberger S, Lebuhn M, Benz JP. 2018. Isolation,

992 identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and

993 two-phase biogas plants. Bioresoure Technology 268:470–479.

- 995 Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh
- 996 HK, Wilkins MR, Elshahed MS. 2013. Genome of the anaerobic fungus Orpinomyces sp. C1A
- 997 reveals the unique evolutionary history of a remarkable plant biomass degrader. Applied and
- 998 Environmental Microbiology 79:4620–4634.
- 999
- 1000
- 1001
- 1002
- 1003

Seven new genera of anaerobic gut fungi

1004 LEGENDS AND FOOTNOTES.

1005 FIG. 1. Macroscopic features of colony morphology on agar media and fungal biomass in liquid 1006 media for (a) Agriosomyces longus strain MS2, brown circular colonies and thin fungal biofilm 1007 in liquid medium. (b) Aklioshbomyces papillarum strain WT-2, beige circular colonies with a 1008 brown central core of sporangia and thick fungal biofilm in liquid medium that firmly attaches to 1009 the tube's glass surface, note the inverted tube shows how the fungus thalli attached to the tube. 1010 (c) *Capellomyces foraminis* strain BGB-11, small brown circular colonies with dark center and 1011 thin fungal biofilm in liquid medium. (d) Capellomyces elongatus strain GFKJa1916, compact 1012 cottony off-white circular colonies with a fluffy central core of sporangia surrounded by 1013 radiating sporangia and thin fungal biofilm in liquid medium that attach to the tube's glass. (e) 1014 *Ghazallomyces constrictus* strain Axs-31, white circular colonies on roll tubes and thick fungal 1015 biofilm in liquid medium. (f) Joblinomyces apicalis strain GFH683, beige circular colonies with 1016 a brown central core of sporangia and thin fungal biofilm in liquid medium. (g) *Khyollomyces* 1017 *ramosus* strain ZS-33, yellowish brown colonies of irregular shape on agar medium and loose 1018 fungal thalli with sand-like appearance. (h) Tahromyces munnarensis strain TDFKJa193 white 1019 circular colonies with fluffy center, surrounded by dotted circles of fungal thalli and thick fungal 1020 biofilm in liquid medium that attach to the tube's glass. 1021 FIG. 2. Microscopic features of Agriosomyces longus (Clade 1, Mouflon-Boer Goat) strain 1022 MS2. Light (e-h) and scanning electron (a and i) micrographs are shown. DAPI staining for 1023 nuclei visualizing using a fluorescence microscope equipped with a Brightline DAPI high-1024 contrast filter set (c). Overlay image is shown in (d). (a) A monoflagellate zoospore. (b) A 1025 biflagellate zoospore. (c-d) Monocentric thalli, with nuclei occurring in sporangia, not in rhizoids

1026 or sporangiophores. (e-f) Endogenous globose sporangia with tightly constricted necks and

Seven new genera of anaerobic gut fungi

1027	subsporangial swellings (arrows). (g-h) Exogenous globose sporangia, note the swollen
1028	sporangiophores. (i) An empty sporangium after zoospore release and rupturing of the sporangial
1029	wall. Bar: a=5 μm, b=20 μm c-i=50 μm.
1030	FIG. 3. Microscopic features of Aklioshbomyces papillarum (Clade 2, White-Tailed Deer) strain
1031	WT-2. Light (a-e, and g-q) and scanning electron (f) micrographs are shown. Light microscopy
1032	pictures were examined after staining with lactophenol cotton blue (a-c, e, and g-q), as well as
1033	following nuclei staining with DAPI (d). (a) A monoflagellate zoospore. (b) A biflagellate
1034	zoospore. (c) A triflagellate zoospore. (d) Monocentric thalli, with nuclei occurring in sporangia,
1035	not in rhizoids or sporangiophores. (e-g) Endogenous sporangial development: (e) Ovoid
1036	sporangium with single rhizoidal system, (f) Ovoid sporangium with two main rhizoidal systems,
1037	(g) Globose pseudo-intercalary sporangium, between two main rhizoidal systems. (h-k)
1038	Exogenous sporangial development: (h) Globose sporangium on a very short sporangiophore, (i)
1039	Ellipsoidal sporangium, (j) Obpyriform sporangium on a long sporangiophore, (k) Obpyriform
1040	sporangium. (l) Ellipsoidal sporangium. (m) Sporangia with lateral single papilla, (n-p)
1041	Sporangia with terminal single papilla. (q) Sporangium with two papillae. Bar: a-c, e, f, n & o
1042	=20 μ m, g-k, p & q =50 μ m, d, 1 & m =100 μ m.
1043	FIG. 4. Microscopic features of <i>Capellomyces foraminis</i> (Clade 3, Boer Goat) strain BGB-11.
1044	Light (a-i, l, o & p) and scanning electron (j, k, m, n, q &r) micrographs are shown. Light
1045	microscopy pictures were examined after staining with lactophenol cotton blue (a-e, h, i, & o), as
1046	well as following nuclei staining with DAPI (f). Overlay image is shown in (g). (a) A
1047	monoflagellate zoospore. (b) A biflagellate zoospore. (c) Zoospore cyst, arrow points to the shed
1048	flagellum. (d) Germinating zoospore cyst producing a germ tube (arrow). (e) Rhizoidal system
1049	development. (f-g) Monocentric thalli with nuclei occurring in sporangia, not in rhizoids or

Seven new genera of anaerobic gut fungi

1050	sporangiophores. (h-i) Endogenous sporangial development: (h) Ellipsoidal sporangium with two
1051	main rhizoidal systems (arrows), (i) Ovoid sporangium with single rhizoidal system. (j-q)
1052	Exogenous sporangial development: (j) Exogeous sporangium with a short sporangiophore (Sp),
1053	note the empty zoospore cyst (Zc). (k) Ovoid sporangium with a long sporangiophore, (l) Ovoid
1054	sporangium on a long sporangiophore ends with sub-sporangial swelling (arrow), (m) Collapsed
1055	empty sporangium on a long sporangiophore ends with sub-sporangial swelling (arrow), (n)
1056	Constricted ellipsoidal sporangium, (o-p) Globose Sporangia. (q) Zoospores ae released through
1057	apical pore. (r) An empty sporangium following zoospores release. Abbreviations: (Sp),
1058	sporangiophore; (Zc), zoospore cyst. Bar: a-j, l, o & p =20 μ m, k, m, n, q & r =50 μ m.
1059	Fig 5. Microscopic features of Capellomyces elongatus (Clade 3, domesticated Goat) strain
1060	GFKJa1916. Differential interference contrast (a, d-f and i-l), scanning (g-h), phase contrast (b)
1061	and fluorescence (c) micrographs. (a) A monoflagellate zoospores. (b-c) Monocentric thalli;
1062	nuclei were observed in sporangia, not in rhizoids or sporangiophores. (d-g) Endogenous
1063	sporangia. (d) Globose endogenous sporangium with one main rhizoidal systems. (e-f)
1064	Endogenous sporangia with multiple rhizoidal systems. (g) Endogenous sporangium on wheat
1065	straw fibers. (h-l) Exogenous sporangia: (h) ovoid-shaped sporangium with long sporangiophore.
1066	(i) Multiple ovoid, and globose exogenous sporangia with long sporangiophores. (j)
1067	Multisporangiate thallus with two sporangia (same shape). (k-l) Multisporangiate thallus with
1068	two sporangia (different shape).
1069	Scale bar = 20μ M.

1070 FIG. 6. Microscopic features of *Ghazallomyces constrictus* (Clade 4, Axis Deer) strain Axs-31.

1071 Light (a-h, f, k and m-p) and scanning electron (i, j, l and q) micrographs are shown. Light

1072 microscopy pictures were examined after staining with lactophenol cotton blue (a, d-h, k, and m-

Seven new genera of anaerobic gut fungi

1073	p), as well as following nuclei staining with DAPI (b). Overlay image is shown in (c). (a) A
1074	polyflagellate zoospore. (b-c) Monocentric thalli, with nuclei occurring in sporangia, not in
1075	rhizoids or sporangiophores. (d-g) Endogenous sporangia with tightly constricted necks (arrows):
1076	(d) Young globose sporangium, (e) Young tubular sporangium, (f) Mature clavate sporangium,
1077	(g) and Mature ellipsoidal sporangium. (h-p) Exogenous sporangia: (h) Young sporangium on a
1078	short flattened sporangiophore (Sp), note the persistent empty zoospore cyst (Zc) and the
1079	rhizoidal system (R), (i) Ovoid sporangium on short sporangiophore, (j) Ellipsoidal sporangium
1080	on long sporangiophore, (k) ovoid sporangium on an eggcup-shaped sporangiophore (arrow), (l)
1081	Globose sporangium, (m) Constricted ellipsoidal sporangium with tightly constricted neck
1082	(arrow) on long sporangiophore, (n) Pyriform sporangium, note the fine septum at the base of
1083	sporangium (arrow), (o) Bowling pin-shaped sporangium, (p) Rhomboidal sporangium with
1084	constricted neck and fine septum (arrows), note the persistent empty zoospore cyst (Zc). (q)
1085	Zoospores are released through apical pore followed by collapse of the sporangial wall.
1086	Abbreviations: (Sp), sporangiophore; (Zc), zoospore cyst; (R), rhizoid. Bar: a=20µm, b-q=50
1087	μm.
1088	FIG. 7. Microscopic features of Joblinomyces apicalis (Clade 5, domesticated Goat and Sheep)
1089	strain GFH683. Phase contrast (b, c and e), fluorescence (d, f), scanning electron (g-h, and m)
1090	differential interference (k-l) micrographs. (a) A monoflagellate zoospore. (b) A biflagellate
1091	spherical zoospore. (c-f) Monocentric thalli; nuclei were observed in sporangia, not in rhizoids or
1092	sporangiophores, note the empty cup-shaped sporangium after zoospore release (arrow). (g)
1093	Ovoid endogenous sporangium. (h-i) Exogenous sporangia: (h) Ovoid sporangium with short
1094	sporangiophore. (i) Subglobose sporangium with long sporangiophore. (j-l) Zoospore release: (j)
1095	Dissolution of the apical portion of sporangial wall (arrow). (k-l) Cup-shaped sporangia with

Seven new genera of anaerobic gut fungi

wide apical pores and intact sporangial walls (arrow). (g) Colonization of rice straw fibers byfungal rhizoids and emanating.

1098 Scale bar = $20 \mu M$.

1099 FIG. 8. Microscopic features of Khyollomyces ramosus (Clade 6, Zebra-Horse) strain ZS-33 (a-

1100 q) and distinct resting stage structure from strain HoCal4.A2.2 (r). Light (a-e, g, i-j, 1 & q) and

1101 scanning electron (f, h, k, m &n-p) micrographs are shown. DAPI staining for nuclei visualizing

1102 using a fluorescence microscope equipped with a Brightline DAPI high-contrast filter set (d).

1103 Overlay image is shown in (e). (a) A uniflagellate zoospore. (b) Zoospore cyst after shedding of

1104 the flagellum. (c) Germinating zoospore cyst producing a germ tube (arrow). (d-e) Monocentric

1105 thalli, with nuclei occurring in sporangia, not in rhizoids or sporangiophores. (f) hyphal

1106 structures with intercalary swellings in wide hyphae (arrows). (g-h) Endogenous sporangial

1107 development: (g) Young subglobose sporangium with single rhizoidal system, (i) Mature

1108 ellipsoidal sporangium with two main rhizoidal systems. (i-m) Exogenous sporangial

1109 development: (i) Multisporangiate thallus with two sporangia, (j) Multisporangiate thallus with

1110 four sporangia, (k) Heart-shaped sporangium. (l) Ovoid sporangium (labeled S) on a wide

1111 flattened sporangiophore (labeled Sp), (m) Pyriform sporangium. (n) Zoospores are released

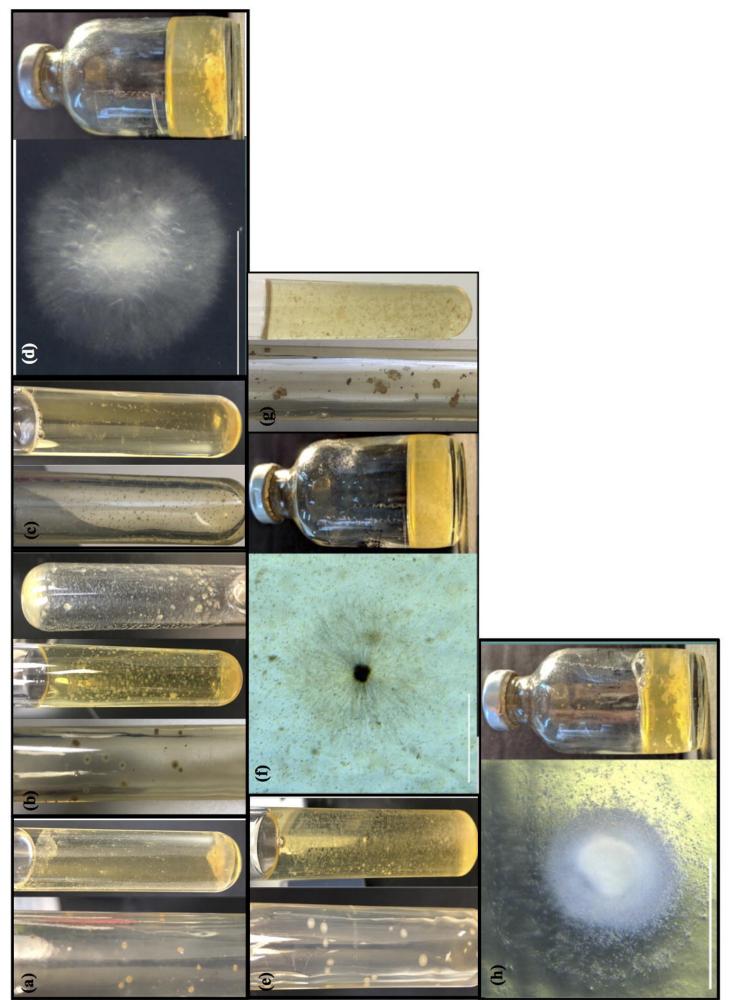
1112 through apical pore. (o-p) Empty sporangia with intact sporangial walls after zoospores

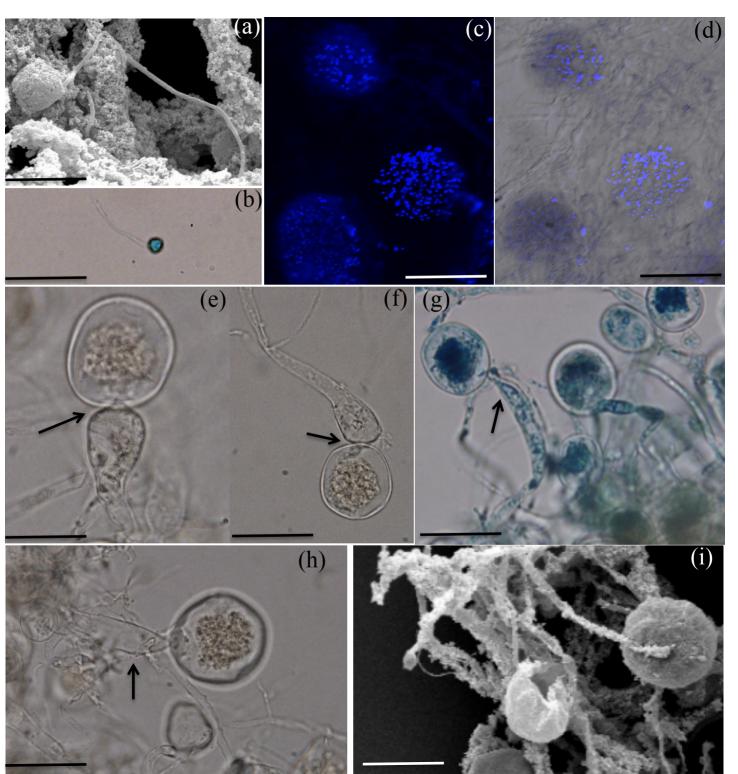
1113 discharge. (q) Mature sporangia detached from hyphae or sporangiophores. (r) Resting stages

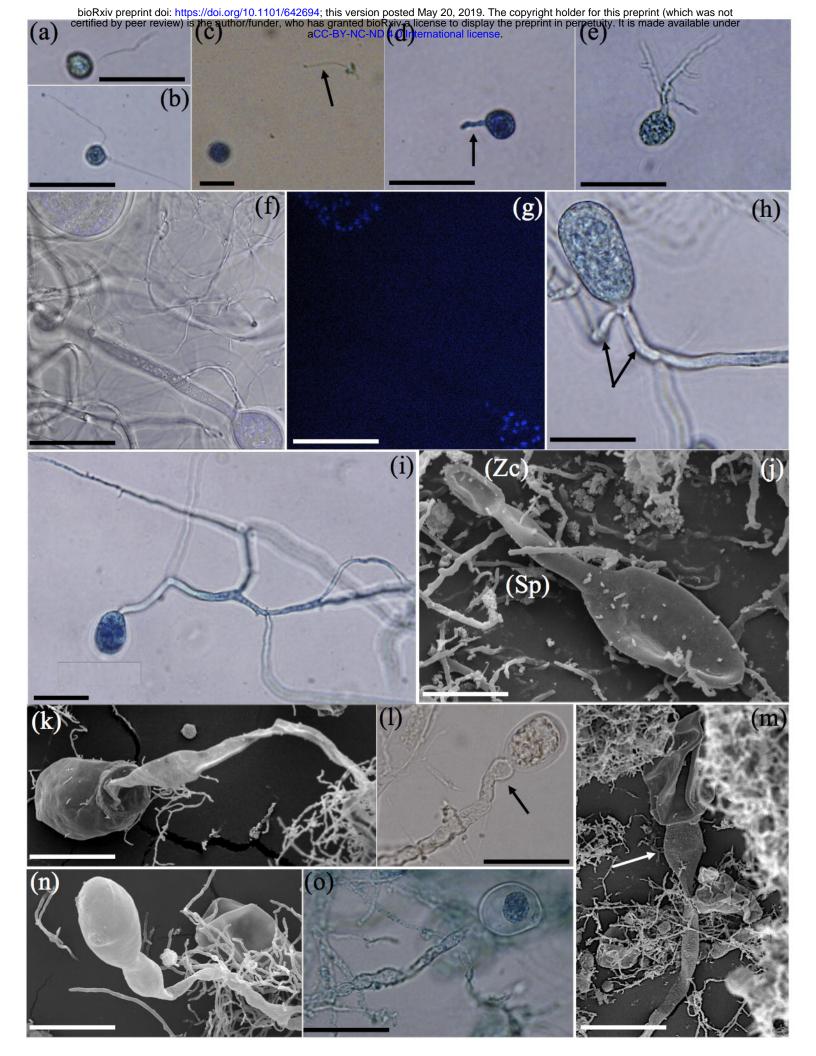
1114 from strain HoCal4.A2.2. Bar: a-c & f-g = $20 \mu m$, d-e, k & m-q = $50 \mu m$ and h-j & l = $100 \mu m$.

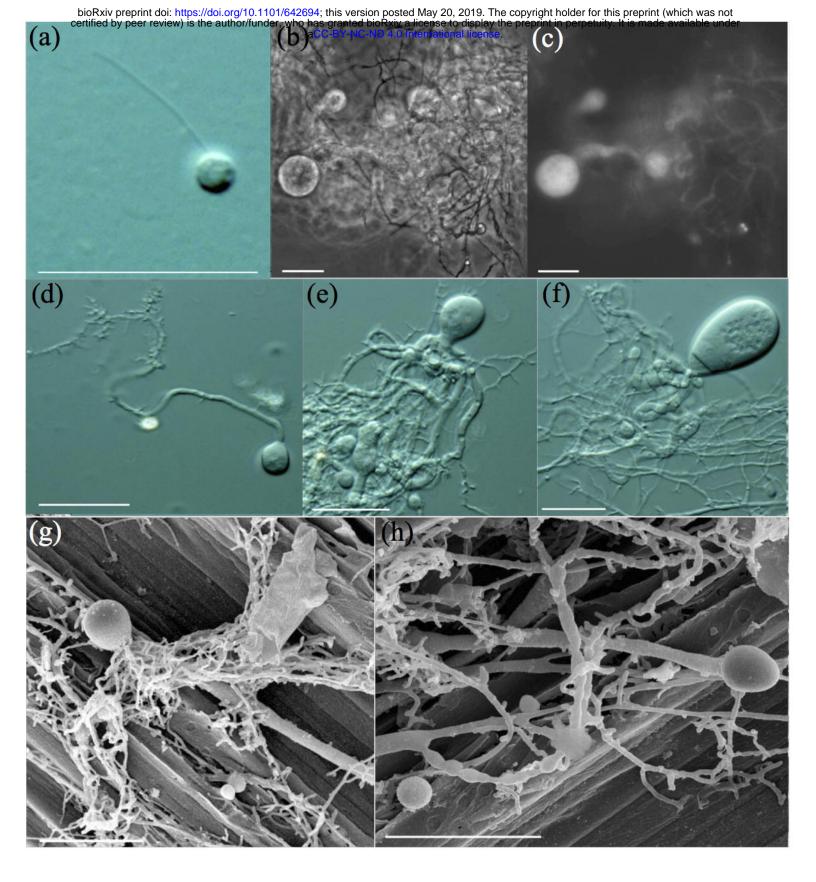
1115 FIG. 9. Microscopic features of *Tahromyces munnarensis* (Clade 7, Nilgiri Tahr) strain

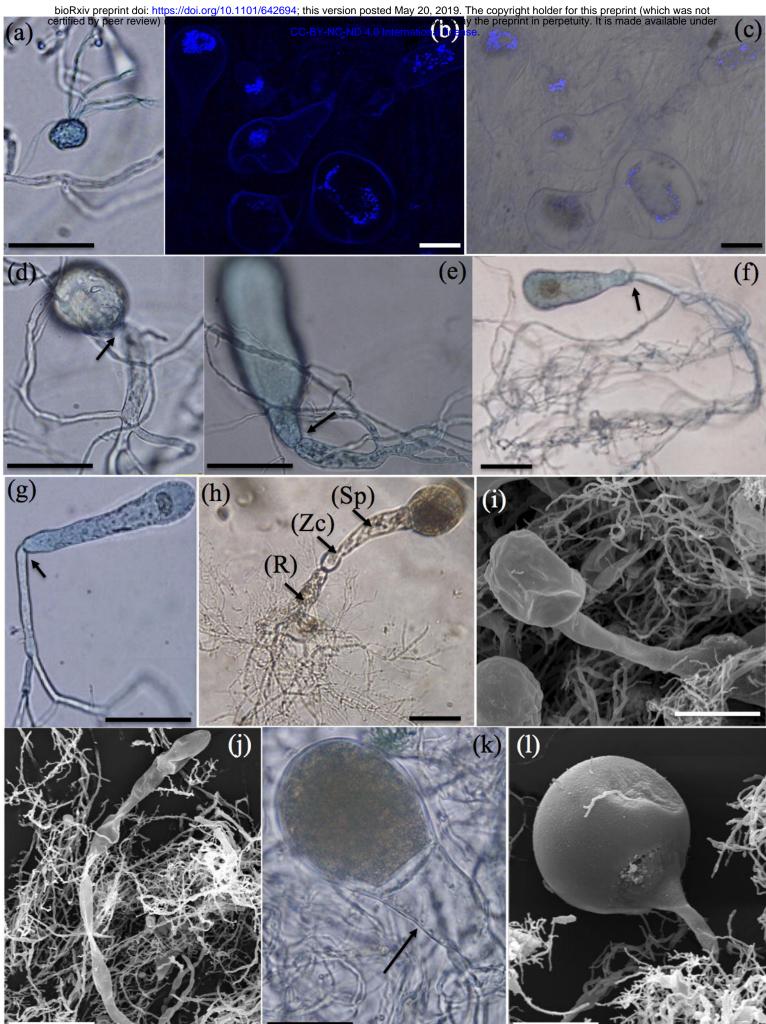
1116 TDFKJa193. Differential interference contrast (a, f and i-l), phase contrast (b, d, g and h),

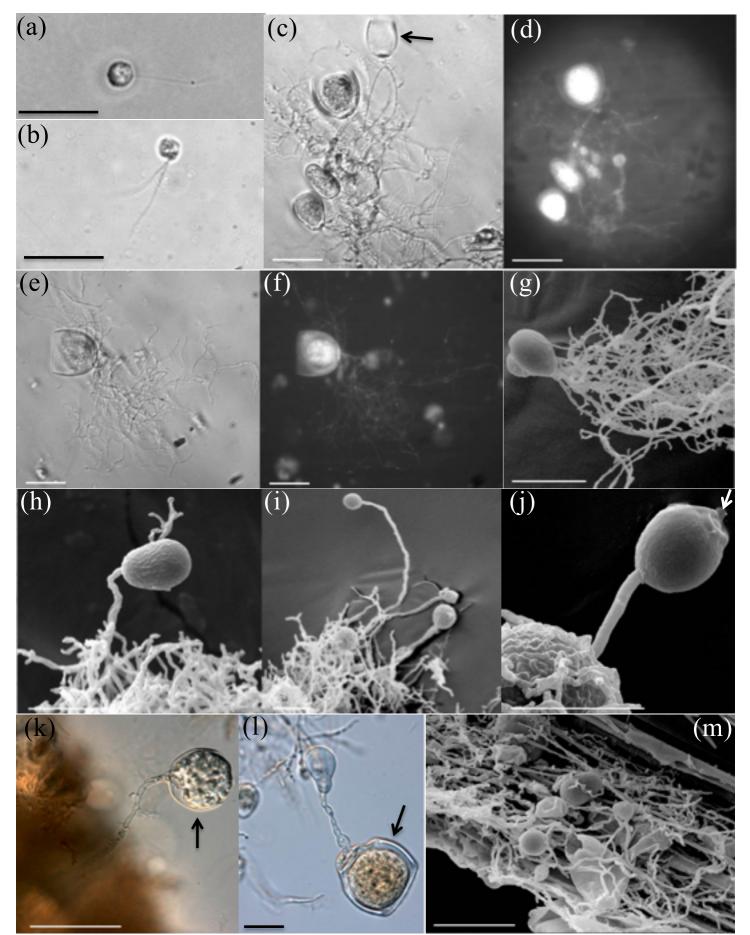

1117 fluorescence (c and e) micrographs. (a) A monoflagellate and triflagellate zoospores. (b-e)

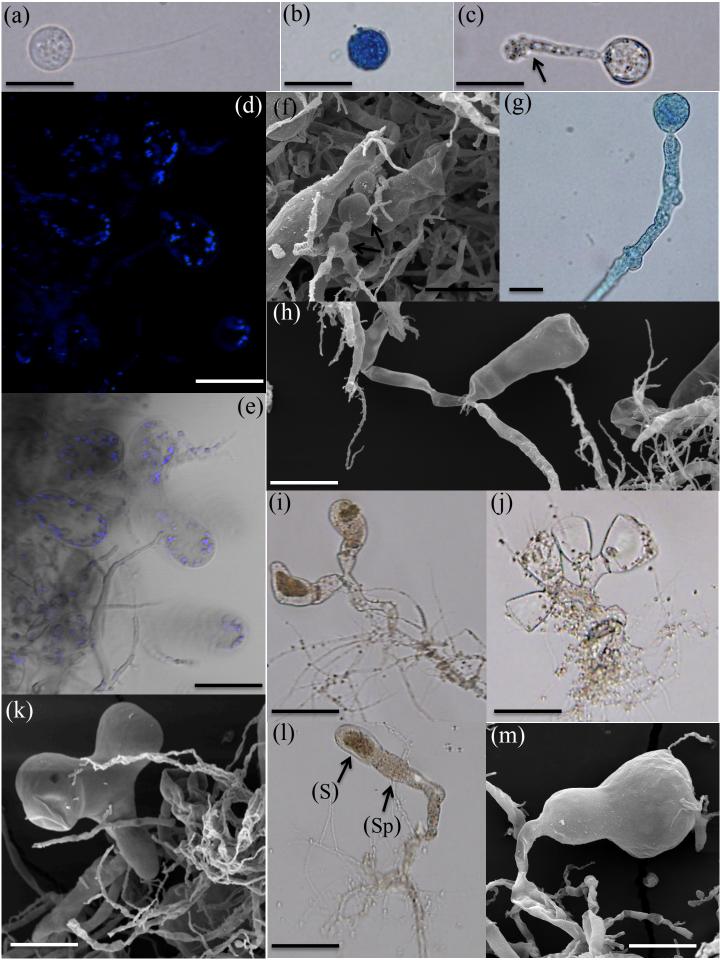

1118 Monocentric thalli; nuclei were observed in sporangia, not in rhizoids or sporangiophores. (f-g)

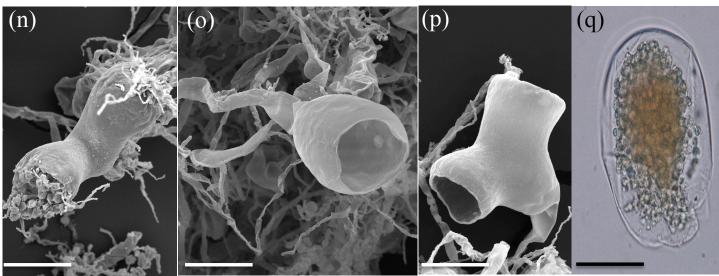

Seven new genera of anaerobic gut fungi

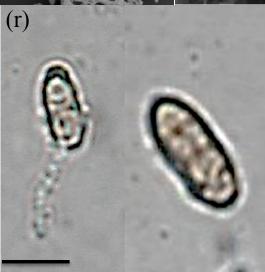

1119	Endogenous sporangia. (f) Ovoid endogenous sporangium with two rhizoidal systems, note the
1120	sub-sporangial swelling (arrow). (g) Endogenous sporangium with branched rhizoids. (h-l)
1121	Exogenous sporangia: (h) Globose sporangium with short swollen sporangiophore (arrow). (i-j)
1122	Exogenous sporangia with sub-sporangial swellings and constricted necks (arrow). (k) Ovoid
1123	sporangium with septum at the sporangial base (arrow). (1) Zoospore release through dissolution
1124	of a wide apical pore. Scale bar = $20 \ \mu$ M.
1125	FIG. 10. Phylogenetic affiliation of the 7 newly described genera to other AGF genera based on
1126	the sequences of the D1–D2 domains of nuc 28S rDNA gene (a), and partial ITS-1 sequences
1127	(b). Sequences were aligned in MAFFT (Nakamura and others 2018) and the alignment was used
1128	to construct phylogenetic trees in MEGA7 (Kumar and others 2016) using a maximum likelihood
1129	approach. Bootstrap values from 100 replicates are shown for nodes with more than 70%
1130	bootstrap support

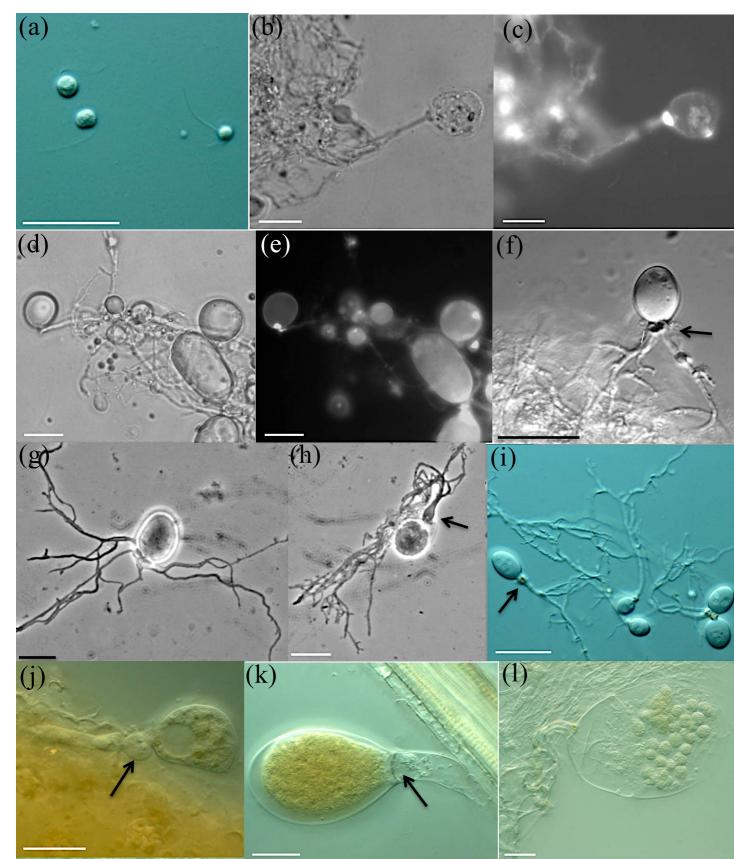

Seven new genera of anaerobic gut fungi

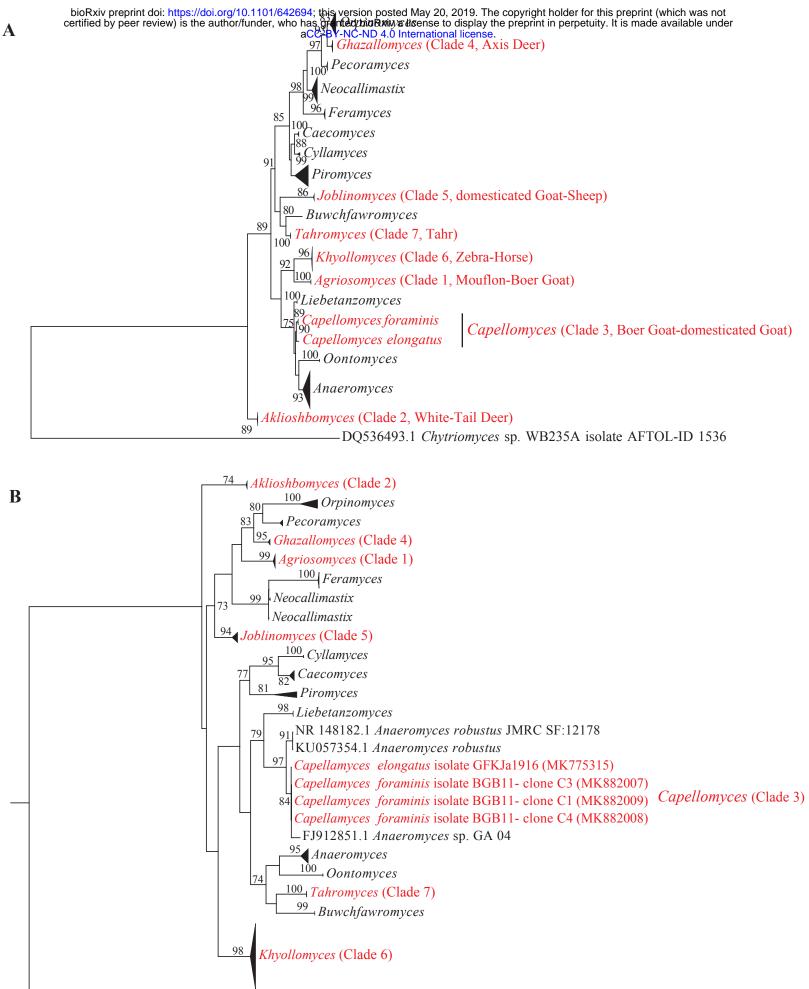









T TO CONSTRUCT



AY349118.1 Chytriomyces sp. JEL176