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Abstract 12 

The socio-economic and demographic changes occurred over the past 50 years have dramatically 13 

expanded urban areas around the globe, thus bringing urban settlers in closer contact with nature. Ticks 14 

have trespassed the limits of forests and grasslands to start inhabiting green spaces within metropolitan 15 

areas. Hence, the transmission of pathogens causing tick-borne diseases is an important threat to public 16 

health. Using volunteered tick bite reports collected by two Dutch initiatives, here we present a method 17 

to model tick bite risk using human exposure and tick hazard predictors. Our method represents a step 18 

forward in risk modelling, since we combine a well-known ensemble learning method, Random Forest, 19 

with four count data models of the (zero-inflated) Poisson family. This combination allows us to better 20 

model the disproportions inherent in the volunteered tick bite reports.  21 

Unlike canonical machine learning models, our method can capture the overdispersion or zero-inflation 22 

inherent in data, thus yielding tick bite risk predictions that resemble the original signal captured by 23 

volunteers. Mapping model predictions enables a visual inspection of the spatial patterns of tick bite 24 

risk in the Netherlands. The Veluwe national park and the Utrechtse Heuvelrug forest, which are large 25 

forest-urban interfaces with several cities, are areas with high tick bite risk. This is expected, since these 26 

are popular places for recreation and tick activity is high in forests. However, our model can also predict 27 

high risk in less-intensively visited recreational areas, such as the patchy forests in the northeast of the 28 

country, the natural areas along the coastline, or some of the Frisian Islands. Our model could help 29 

public health specialists to design mitigation strategies for tick-borne diseases, and to target risky areas 30 

with awareness and prevention campaigns.  31 

 32 

 33 
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1 – Background  36 

Over the last couple of decades, urban areas have dramatically expanded (EEA, 2006). In Europe, the 37 

development of low density residential areas in the periphery of cities has become the norm for urban 38 

growth. (EEA, 2006). This phenomenon, known as urban sprawl, has a plethora of negative effects over 39 

the local climate (e.g. urban heat islands), the modification of the landscape (e.g. fragmentation), and 40 

the alteration of ecosystems (e.g. biodiversity loss) (EEA, 2011). In addition, urban sprawl also brings 41 

urban settlers in closer contact with nature and the countryside (Tack, 2013). As a response, several 42 

bird (e.g. thrushes) and mammal species (e.g. rodents, foxes, raccoons) have adapted their ethology to 43 

be able to live at the interface between forests and urban regions (e.g. more food, less predators) 44 

(Uspensky, 2017). This also means that the parasites and pathogens that several wildlife species carry 45 

get closer to residential areas and that, for instance, the hazard for tick-borne diseases increases (Allan, 46 

Keesing, & Ostfeld, 2003). In parallel to this, the progressive adoption of healthier lifestyles encourages 47 

citizens to spend more time outdoors carrying out leisure (Mulder, van Vliet, Bron, Gassner, & Takken, 48 

2013) or sportive activities (Hall, Alpers, Bown, Martin, & Birtles, 2017). This behavior leads to a 49 

higher exposure to tick-borne diseases (Sandifer, Sutton-grier, & Ward, 2015).  50 

 51 

Socio-economic changes and the subsequent response of nature means that citizens are more vulnerable 52 

to tick-borne diseases today than in the past. Hence, the transmission of pathogens causing tick-borne 53 

diseases is an important public health threat (Ehrmann et al., 2017). In fact, recent research demonstrates 54 

that ticks have trespassed the limits of forests and natural grasslands to start inhabiting green spaces 55 

within metropolitan areas. Urban parks in Zurich (Oechslin et al., 2017), Milan (Olivieri, Gazzonis, 56 

Zanzani, Veronesi, & Manfredi, 2017), Kiev (Didyk et al., 2017), Warsaw (Kowalec et al., 2017) or 57 

Lisbon (Santos et al., 2018), and suburban forests in Paris (Paul, Cote, Le Naour, & Bonnet, 2016), 58 

Budapest (Szekeres et al., 2016, 2018) or Wroclaw (Kiewra, Stefańska-Krzaczek, Szymanowski, & 59 

Szczepańska, 2017), present tick populations, and researchers were able to identify pathogens capable 60 

of causing Lyme borreliosis (LB) or tick-borne encephalitis (TBE) in humans. Since parks and suburban 61 

forests are potentially visited by thousands to millions of citizens every year, it is necessary to fully 62 

comprehend and model the risk of getting a tick bite to prevent this major public health threat.  63 

 64 

The risk of getting a tick bite is the result of the interaction between its exposure and hazard components. 65 

Traditionally, researchers have tried to represent the risk of LB by quantifying the hazard component 66 

alone (Eisen et al., 2010; Gassner, Hansford, & Medlock, 2016; LoGiudice, Ostfeld, Schmidt, & 67 

Keesing, 2003), but in the last years researchers have worked on integrating hazard and exposure 68 

metrics to model tick bite risk (De Keukeleire et al., 2015; Zeimes, Olsson, Hjertqvist, & Vanwambeke, 69 

2014) because hazard maps alone are insufficient to identify locations with a high risk for LB (Garcia-70 

Marti, Zurita-Milla, Harms, & Swart, 2018).  71 

 72 

The location of citizens is key to model the level of risk they are exposed to, but acquiring this type of 73 

information requires a partnership of researchers and public-health specialists to create (inter-)national 74 

networks of surveillance and citizen observatories. In the Netherlands, Wageningen University & 75 

Research (WUR) and the Dutch Institute for Public Health and the Environment (RIVM) started two 76 

citizen science projects to collect data on ticks and tick bites. These projects, which started in 2006 and 77 

2012, have attracted enough media attention over the years to engage citizens at contributing tick bite 78 

reports. This engagement has resulted in over 50,000 volunteered tick bite reports in the Netherlands. 79 

This unique dataset enables new approaches to monitor and model elusive public health threats, such 80 

as tick bites. However, volunteered data is often unstructured, contains positional inaccuracies and 81 

reporting bias, and observations have a variable quality (Mehdipoor, Zurita-Milla, Augustijn, & van 82 
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Vliet, 2018; Senaratne, Mobasheri, Ali, Capineri, & Haklay, 2017), conditions that might cause 83 

difficulties when including volunteered data in a scientific workflow.  84 

 85 

A major challenge in our work was dealing with the highly skewed and zero-inflated distribution of the 86 

tick bite reports. These two types of disproportions are inherent traits of our data collection. Skewness 87 

refers to the asymmetry of the distribution, whereas zero-inflation refers to distributions in which zero-88 

valued observations are frequent. In this work, our goal is creating a spatial tick bite risk model with 89 

national coverage. However, adding the spatial dimension implies the simultaneous modelling of a few 90 

locations reporting a high number of tick bites, and a substantial amount of locations in which zero tick 91 

bites are recorded.  92 

Although these characteristics make it hard to use machine learning methods (Krawczyk, 2016), we 93 

pursue a solution based on machine learning because of its proven ability to handle non-linear and 94 

complex relationships. Classical count data statistical models are better equipped to handle skewed and 95 

zero-inflated datasets but they are unable to capture the inherent non-linearity in data. Thus, here we 96 

propose a solution integrating machine learning and classical statistic models. We combine the 97 

“segmentation capabilities” of the well-known Random Forest regressor (Breiman, 2001), which can 98 

split the data into homogenous groups using decision tree rules, with count data models of the Poisson 99 

family, which are better suited to model count data. Thus, our scientific contribution is two-fold: we 100 

present a tick bite risk model based on a wide array of hazard and exposure metrics, and we propose a 101 

methodological step forward by combining Random Forest and count data models to better model 102 

skewed and zero-inflated distributions.  103 

 104 

2 – Risk, exposure, and hazard 105 

In the field of risk assessment, risk (R) is often modelled as a function of hazard (H) and exposure (E). 106 

The relationship between these three variables can be conceptualized as R = H × E (Braks, van Wieren, 107 

Takken, & Sprong, 2016). Thus, the calculation of tick bite risk should include variables representing 108 

both the H and E components, which likely have different underlying factors.  109 

 110 

In the case of ticks and LB, the first spirochetes were identified in the early 1980s (Burgdorfer et al., 111 

1982), and it took several years for the first studies to point out at human exposure to ticks as the source 112 

of the disease. Back then, various studies (e.g. Falco & Fish, 1989; Magnarelli, Denicola, Stafford, & 113 

Anderson, 1995) had already identified urban recreational parks as risky locations for LB, thus 114 

recommending prevention campaigns at parks and to inform citizens living nearby a green space. LB 115 

emerges from a complex ecological system driven by a wide array of factors (e.g. wildlife, climate, 116 

vegetation) (Ostfeld, 2012). For over 20 years scientists have studied the interactions between these 117 

factors to devise robust models of tick hazard. Multiple efforts can be found in literature since the late 118 

1990s to quantify and map this component of tick bite risk. However, in our recent research (Garcia-119 

Marti et al., 2018) we found out that the E component may be more relevant to determine tick bite risk. 120 

The quantification of the E component is a challenging task, due to the unavailability of human exposure 121 

metrics at the national scale. Thus, in this work we devoted special effort and creative thinking at 122 

developing novel human exposure indicators, which are combined with our tick hazard model (Garcia-123 

Martí, Zurita-Milla, van Vliet, & Takken, 2017) to predict tick bite risk.  124 

 125 

 126 
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2.1 – Tick hazard 127 

The H component of tick bite risk has been widely studied since the late 1990s. Scientists have 128 

thoroughly worked to understand the impact that wildlife (Ostfeld, Canham, Oggenfuss, Winchcombe, 129 

& Keesing, 2006; Randolph & Storey, 1999), mast years (Buonaccorsi et al., 2003; Kelly, Koenig, & 130 

Liebhold, 2008), vegetation type (Tack, Madder, Baeten, De Frenne, & Verheyen, 2012), and weather 131 

variables (Berger, Ginsberg, Gonzalez, & Mather, 2014) have on tick populations. The pursuit of 132 

reliable models on tick hazard has prompted researchers to model this component of risk from multiple 133 

perspectives. Thus, we can find studies dedicated to tick habitat suitability (Estrada-Peña, de la Fuente, 134 

Latapia, & Ortega, 2015), tick presence (Swart et al., 2014), tick activity (Bennet, Halling, & Berglund, 135 

2006), or tick dynamics (Garcia-Martí et al., 2017), with a varying number of biotic and abiotic 136 

parameters, and applied from local to continental spatial scales. In this work we use tick activity as a 137 

proxy for tick hazard. Tick activity represents the number of ticks that are questing for blood meals, 138 

which are the ones biting humans. Tick activity is extracted from a data-driven model that predicts daily 139 

tick activity in forests and natural grasslands (Garcia-Martí et al., 2017). The map in Figure 3 shows 140 

the predicted tick activity of this model, which is the average number of questing ticks per grid cell for 141 

the entire study period (2006-2014). 142 

  143 

2.2 – Human exposure 144 

Human exposure to ticks is intrinsically linked to human behavior outdoors and to diverse socio-145 

economic factors. For instance, (Zeman & Benes, 2014) discuss the peri-urbanization process in the 146 

Czech Republic, which prompted wealthy settlers to move away from large metropolitan areas into 147 

peri-urban areas to be in closer contact with nature and open spaces. This, in turn, triggered an increase 148 

in the number of tick-borne infections that was not directly related with any identifiable expansion on 149 

the tick habitat range.  150 

 151 

Similarly, the societal adoption of healthier lifestyles encourages citizens to spend more time outdoors 152 

carrying out physical or sportive activities. For instance, in (Hall et al., 2017) the authors used a mass-153 

participation cross-country marathon competition in Ireland to survey a large number of citizens and 154 

assess their exposure to ticks. Also, (Padgett & Bonilla, 2011) identify common picnic spots in a 155 

national park in the USA, as locations posing a risk of human exposure to ticks. Children participating 156 

in scouting or summer camp activities are found to be vulnerable to tick bites in a study in Belgium (De 157 

Keukeleire et al., 2015). All these examples are associated to the so-called “recreational exposure”, 158 

however, there are also studies that pinpoint activities in the peri domestic environment as risky for tick 159 

bites. Previous works considering the “residential exposure” include a study in the Netherlands finding 160 

a high risk of tick bites in gardens (Mulder et al., 2013) and two studies in the USA (Hahn et al., 2017) 161 

and Czech Republic (Zeman, Benes, & Markvart, 2015) indicating that properties in the peri-urban 162 

environment with a large interface between a forest and the garden or backyard pose a high risk for 163 

inhabitants of acquiring pathogens.  164 

 165 

A thorough study for TBE in Stockholm demonstrates a use case in which exposure and hazard variables 166 

are combined to obtain tick bite risk indicators (Zeimes et al., 2014). The authors create metrics for 167 

human exposure based in accessibility and scenic beauty, whereas for the hazard they include variables 168 

of wildlife, forest, and land cover. Indeed, accessibility measured as the distance to an access road or 169 

trail is an important variable to account for when modelling tick bite risk. In (Li, Colson, Lejeune, & 170 

Vanwambeke, 2016) the authors assess the willingness of residents to travel for woodland leisure, 171 

because it varies as a function of whether citizens have to walk, cycle, or drive to the leisure place. 172 

However, accessibility is not the only factor to account for human exposure. There are locations in 173 
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nature that are attractive for citizens due to presence of recreational areas or amenities (Lambin, Tran, 174 

Vanwambeke, Linard, & Soti, 2010), or because they have intrinsic value such as high scenic beauty or 175 

a good preservation (Nielsen, Heyman, & Richnau, 2012). 176 

 177 

3 – Methods 178 

3.1 – Tick bite risk monitored by volunteers 179 

This work is based on the collection of volunteered tick bite reports from the Natuurkalender (NK; 180 

“nature’s calendar”; http://www.natuurkalender.nl)  and the Tekenradar (TR; “tick radar”; 181 

https://www.tekenradar.nl)  citizen science initiatives promoted by WUR and the RIVM. During the six 182 

years (2006-2012) that NK registered tick bite reports, this platform gathered 9,256 user contributions, 183 

whereas the TR initiative collected 46,655 reports for the period 2012-2016. This means that in total 184 

there are 55,911 reports available. However, some of these reports lack geographic coordinates or are 185 

placed outside the boundaries of the Netherlands. Hence, a total of 46,838 valid reports were found. 186 

Here we approximate the risk of getting a tick bite in a given area by the cumulative sum of tick bites 187 

reports in that area for the whole study period (i.e. 2006-2016). 188 

 189 

Prior to the modelling phase a spatial aggregation operation was used to transform the individual tick 190 

bite reports into a tick bite risk proxy. We choose a regular grid with cells of 1km2 for the aggregation 191 

because that is the resolution of the existing hazard model described in Section 2.1. This aggregation 192 

groups together observations that are close in the geographic space (Figure 1a). However, it also creates 193 

a grid with right-skewed and zero-inflated (Figure 2) grid cell values. More precisely, the grid has a 194 

total of 36,866 cells. 9,985 cells have at least one tick bite report and the remaining 26,881 cells have 195 

zero tick bite reports. This means that for each grid cell with at least 1 tick bite, we have 3 in which no 196 

tick bites are recorded. Skewedness and zero-inflation are common real-world problems, especially 197 

when modelling count data, (Hadiji, Molina, Natarajan, & Kersting, 2015). Thus the analysis of the tick 198 

bite reports requires a modelling approach capable of handling these characteristics (Krawczyk, 2016).  199 

 200 

3.2 – Ensemble learning from skewed and zero-inflated datasets 201 

Random Forest (RF) (Breiman, 2001) is an ensemble learning method that can be used both for 202 

classifications an regression problems. The ensemble is formed by decision trees, whose individual 203 

predictions typically have a high variance, but when combined, they produce a robust and highly stable 204 

estimator (Louppe, Wehenkel, Sutera, & Geurts, 2013). RF combines bagging (Breiman, 1996) and the 205 

random subspace method (Ho, 1998). Bagging allows RF to see multiple variations of the input data 206 

and the random subspace method introduces randomness in the features presented to each tree during 207 

the learning phase. These two mechanisms are responsible of the diversity of the ensemble. RF predicts 208 

unseen samples by averaging the predictions of the trees in the ensemble.  209 

 210 

RF and other canonical machine learning algorithms work under the assumption of having a similar 211 

number of samples per class or range. If this is not the case, the application of a canonical RF tend to 212 

produce results biased to the majority class or most common values (Japkowicz & Stephen, 2002; 213 

Krawczyk, 2016). Learning from a imbalanced (classification) or skewed (regression) dataset, is a non-214 

trivial problem that started to receive attention in the early 2000s (He & Garcia, 2009). According to 215 

(Krawczyk, 2016) there are three categories of methods to learn from imbalanced or skewed data: 1) 216 

data-level methods; 2) algorithm-level methods; 3) hybrid methods. Data-level methods aim at 217 

balancing the dependent variable by applying over/under sampling techniques. Algorithm-level 218 

methods require the modification of the method in use to (partially) remove the bias towards the 219 
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majority class or most common range of values. The hybrid methods combine the balancing of the 220 

dependent variable and a modification of the method in use. We propose an algorithm-level method to 221 

mitigate the effects of the data imbalance over the predictive power of RF. 222 

 223 

As explained in section 3.1, the aggregation of the tick bite reports to create a 1km raster layer of tick 224 

bite risk created right-skewed and zero-inflated dataset (Figure 2). The sum of tick bites reported in 225 

each grid cell can be viewed as a discrete random variable that only takes non-negative values. This 226 

means that these reports can be modelled using well-known discrete probabilistic models for count data 227 

(hereinafter: count data models), such as Poisson (POI) and negative binomial (NB). Because of the 228 

large proportion of zero tick bites per grid cell, we also tested the zero-inflated versions of these models:  229 

the zero-inflated Poisson (ZIP) (Lambert, 1992), and the zero-inflated negative binomial (ZINB) 230 

(Greene, 1994) models. The difference between the original and the zero-inflated models is that in the 231 

latter type of models data is assumed to be derived from a two-stage process: 1) a Bernoulli trial 232 

deciding whether the event occurs or not (with probability p, the zero-inflation factor; 2) in case the 233 

event occurs, the counts will happen according to some rate λ. Note that this second process can also 234 

generate zeros. This two-stage process is convenient for the problem we are modelling. First, we check 235 

the presence of ticks (and humans) and if present, we check the “rate of transmission”, conceptually 236 

composed of visiting rates and biting rates.   237 

 238 

Zero-inflated models have been used to predict TBE in a set-up in which the majority of the available 239 

samples had a zero (Stefanoff et al., 2018). However, this approach is limiting because count data 240 

models do not generally work well in set ups where there are complex non-linear interactions between 241 

the predictors and the response variable. In our work, the use of RF allows the inclusion of a wide array 242 

of predictors and the identification of the main ones to segment the problem into more homogeneous 243 

cases, which can afterwards be modelled using count data models. We propose a modelling approach 244 

that combines weak (i.e. decision trees) and strong (i.e. models for count data) estimators to improve 245 

the canonical form of RF. Figure 4 sketches our modelling approach where ensemble trees are only 246 

grown until their terminal leaves hold a minimal number of relatively homogeneous samples. These 247 

samples are subsequently analyzed with the four selected count data models (i.e. POI, NB, ZIP, ZINB). 248 

During the testing phase, each of the test samples will be propagated down each tree in the ensemble 249 

and will yield four predictions (one per count data model). The final prediction of the ensemble will be 250 

calculated by averaging the predictions of each model type, just like a canonical RF operates. 251 

 252 

3.3 – Modelling tick bite risk 253 

The data and modelling approach described in the previous sections were used to model tick bite risk 254 

in the Netherlands. First, we explain the process of feature engineering applied to enrich each of the 255 

tick bite reports with hazard and exposure variables. Then, we describe our modelling experiments. 256 

Note that our work was developed using various Python libraries: numpy (Oliphant, 2006) to handle 257 

the multidimensional arrays, statsmodels (Seabold & Perktold, 2010) to fit the count data models, 258 

GDAL (GDAL Development Team, 2018) and Cartopy (Met Office UK, 2010) to process geospatial 259 

data and prepare the visualizations through map layers, matplotlib (Hunter, 2007) to prepare the rest of 260 

the figures, and SkillMetrics1 library and scipy (Oliphant, 2007) to obtain the statistical metrics used to 261 

evaluate the model.  262 

 263 

                                                           
1 https://github.com/PeterRochford/SkillMetrics  
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3.3.1 – Feature engineering 264 

In this study, we extend the ideas regarding human exposure described in (Zeimes et al., 2014). To do 265 

so, we use a substantial amount of official Dutch geospatial data, and of other user-contributed geo-266 

sources, to derive accessibility and attractiveness metrics. Because of the aggregation of the tick bites 267 

to a uniform raster layer, the exposure metrics where calculated as the geographic distance between the 268 

center of each grid cell and a set of selected real-world features in which we expect the co-ocurrence of 269 

humans and ticks. As explained in Section 2.1, hazard metrics are extracted for forests and natural 270 

grasslands using the model developed by (Garcia-Martí et al., 2017). Table 1 presents the 19 exposure 271 

metrics and the 2 hazard metrics that were used to model tick bite risk in the Netherlands.  The following 272 

paragraphs contain more details about each of the metrics.  273 

We derived accessibility metrics (Table 1, indices 1 – 7, Type AC) from the land-use map (BBG 2008) 274 

provided by Statistics Netherlands (CBS2), and from the transportation networks contributed by 275 

volunteers in OpenStreetMaps (OSM3). Using these data sources, we calculate the distance from each 276 

grid cell to a series of selected land uses and transportation networks. We compute the geographic 277 

distance (in meters) of each grid cell to the closest of selected BBG 2008 land use types, namely, forests, 278 

recreational areas and urban areas. We downloaded the latest snapshot of OSM for the Netherlands (last 279 

access, July 2018) and extracted the user-contributed cycling and walking networks. The former is 280 

available at local, regional and national scales whereas the latter is only available at the national scale. 281 

Note that the bike networks do not overlap so, for instance, the national routes do not include routes 282 

between small cities or forest patches, but longer routes connecting the edges of the country. We 283 

compute the geographic distance (in meters) between each grid cell and each of the selected cycling 284 

and walking networks. 285 

We obtained attractiveness metrics (Table 1, indices 8 – 19, Type AT) by using data from the Dutch 286 

Cadaster, the Dutch National Registry, and WUR. From the Dutch Cadaster, we use the so-called 287 

functional polygons of their TOP10NL4 product. These polygons demarcate areas with 296 types of 288 

functions (Full list available: http://geoplaza.vu.nl/data/dataset/top10nl, last accessed November 2nd, 289 

2018). Here, we selected 8 functions related to outdoor activities where humans could meet ticks: 290 

campings, caravan parks, bike cross circuit, golf courses, wild gardens, non-commercial havens, and 291 

safari parks. We also extract from the TOP10NL the location of all lakes and ponds in the country, since 292 

they can serve as attractors of visitors to nature due to its scenic beauty or recreational use. We include 293 

a publicly available map (Dutch National Registry) categorizing the attractiveness of the Dutch 294 

landscape (i.e. Belevingswaarde van het landschap5, last accessed July 5th, 2018) (Crommentuijn, 295 

Farjon, den Dekker, & van der Wulp, 2007; Roos-Klein Lankhorst, de Vries, Buijs, Bloemmen, & 296 

Schuiling, 2005). Finally, for each location, we extracted the land use and land cover categories from 297 

BBG 2008 and LGN7 database (produced by WUR), respectively.  298 

The hazard metrics (Table 1, indices 20 – 21, Type HZ) are extracted from the model outlined in Section 299 

2.1. This model, described in more detail in (Garcia-Martí et al., 2017), is based on nine years (2006-300 

2014) of data collected by volunteers. These volunteers carried out a monthly sampling by cloth 301 

dragging of 15 vegetated locations in the Netherlands, counting the number of ticks per life stage (i.e. 302 

larvae, nymph, and adult). Our model was calibrated for the nymph life stage only, since nymphs pose 303 

the highest hazard to humans. The model also includes 101 biotic and abiotic environmental predictors. 304 

                                                           
2 https://www.cbs.nl/en-gb  
3 https://www.openstreetmap.org  
4 https://zakelijk.kadaster.nl/-/top10nl  
5 https://data.overheid.nl/data/dataset/49505-belevingswaarde-van-het-landschap    
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These predictors describe the tick habitat conditions (e.g. litter, moss), the occurrence of mast years for 305 

three tree species, weather conditions (e.g. temperature, evapotranspiration, relative humidity), satellite-306 

derived vegetation indices (e.g. NDVI), and land cover. To account for the effect that short- and long-307 

term weather conditions have on tick activity, we aggregated the weather data to 11 temporal resolutions 308 

(i.e. 1–7, 14, 30, 90, 365 days). We run our data-driven model for each day in the period 2006-2014. 309 

Then we computed the average of the maximum tick activity of each year and its standard deviation to 310 

obtain robust and long-term proxies for tick hazard in forests and natural grasslands locations. This 311 

means that outside of these locations, the hazard is unknown. In this case, we are unable to use value 312 

imputation, since this would require imputing values for most of the country. Instead, outside of these 313 

locations, we used a symbolic value of minus one. This value is meant to separate locations for which 314 

we have and do not have hazard data. The selection of this value is backed up by recent research  315 

(Heylen et al., 2019), which shows that tick densities decrease along the forest-urban land use transition. 316 

Thus, the symbolic value of minus one helps at grouping together samples without hazard and samples 317 

with low hazard, which tend to occur outside forests.   318 

 319 

3.3.2 – Experiments  320 

The spatial aggregation and feature engineering described in sections 3.1 and 3.3.1, resulted in a matrix 321 

with 36,866 rows and 21 columns. Each row represents a grid cell and each column the E or H features 322 

selected for this work. A series of experiments were designed to identify a tick bite risk model that can 323 

handle the skewness and zero-inflation present in this matrix. First, we randomly selected 60% of the 324 

data for training all the models and reserved the remaining 40% for testing them. Then, we defined a 325 

range of values for the two main RF parameters of our ensemble: 1) the number of tree estimators; and 326 

2) the number of samples per terminal leaf node. We trained ensembles using 10, 20, and 50 trees and 327 

where each tree had at least 100, 200, 400, 600 and 800 samples per terminal leaf. The number of 328 

samples per leaf node determines the “level of development” of the trees in the ensemble. Thus, 329 

experiments with few samples per leaf node (e.g. 100 samples) create deep trees close to full 330 

development, whereas shallow trees are created when there are many samples per leaf node (e.g. 800 331 

samples). In total, 15 RF ensembles were trained using the same split of training and test samples. 332 

Subsequently, these RF ensembles were crossed with the four discrete probability models for count data 333 

(i.e. POI, NB, ZIP, ZINB), which were fitted using a non-parametric approach (i.e. without having to 334 

specify any hyper parameter), using a Nelder-Meade optimization routine to obtain the maximum 335 

likelihood estimates of the parameters of the distributions.   336 

Two issues could hamper the fitting of the count data models: excessive skewness or excessive zero-337 

inflation. The selected count data models can deal with skewed distributions, but the segmentation 338 

carried out by RF might leave the leave nodes with a subset of samples highly skewed towards zero 339 

(i.e. 85% - 100% of zeros). We explored how often these circumstances occur for each tree in the 340 

ensemble and we found out that in average, the fitting does not converge in 5% - 9% of the leaf nodes 341 

in the ensemble. In those cases, we keep the default behavior of a canonical RF, which is returning the 342 

mean of the samples falling in that node. Finally, model performance is checked with the test dataset. 343 

For this, we track the itinerary of each of the test samples down the tree, and identify the leaf node in 344 

which it ends up. Then, we pass this sample to each of count data models fitted with data from that node 345 

to get the prediction of that tree. We do this for each tree in the ensemble, and we average these tree-346 

based predictions to get the final (ensemble) prediction, following the default behavior of canonical RF 347 

models.  348 

 349 
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A modified Taylor diagram is used to graphically summarize the test results. This diagram shows three 350 

statistics in a single plot: the standard deviation, the root-mean-squared deviation (RMSD), and 351 

Pearson’s correlation coefficient. Taylor diagrams represent the relationship between the three 352 

variables, which essentially lie on a 2D manifold and are projected onto a 2D flat geometry without loss 353 

of information. We use this diagram because an accuracy metric like RMSD alone is not informative in 354 

the case of heavily skewed data, where also measures of dispersion play an important role. Since our 355 

distribution is skewed and zero-inflated, we substituted Pearson’s coefficient by Spearman and Kendall 356 

Tau ranked correlation coefficients. The ensemble and count data models combination that yield 357 

reasonable trade-off between RMSD, standard deviation and correlation coefficient are then used to 358 

create tick bite risk maps for the Netherlands. The map created when using a canonical RF is added to 359 

the list of best models to be able to evaluate the advantages of our approach. Finally, we intersect these 360 

maps with the human exposure layers showed in Figure 5.  361 

 362 

4 – Results 363 

Figure 6 shows the ability of the four count data models and the canonical RF to fit the skewed 364 

distribution of tick bites in the different set-ups. Overdispersion is better fitted by POI and ZIP models 365 

compared to NB and ZINB, since the former models yield values between 0 and 30 tick bites per grid 366 

cell, whereas NB and ZINB are barely able to predict beyond 10 tick bites per cell. Interestingly, the 367 

zero-inflation seems to be better captured by NB and ZINB than POI and ZIP, as seen by the frequency 368 

of predicted zeros of these models is similar to the original distribution. RF performs similarly in all the 369 

prepared set-ups, and seems unable to predict over a wide range of values, most values typically being 370 

constrained to below 5 tick bites. In general terms, the NB, ZIP, and ZINB models seem to capture 371 

reasonably well the original distribution, but the POI model and the canonical RF do not perform well: 372 

the POI model yields predictions with a frequency considerably higher than the original values, whereas 373 

RF is unable to predict beyond few tick bites per grid cell. In addition, POI and RF are not able to 374 

capture the zero-inflation.  As seen, the predicted distributions do not seem to considerably improve or 375 

deteriorate based on the increasing number of samples per leaf node (i.e. 100-600 samples), but the 376 

experiments with shallow trees (i.e. 800 samples) seem to have a negative impact in the ability of the 377 

models to predict zeros.  378 

Figure 7 shows the performance of the ensemble in two modified Taylor diagrams. Each of the colored 379 

symbols represents an ensemble with a concrete number of tree estimators (T) and samples per leaf 380 

node (S). A visual inspection of the diagrams reveals that all ensembles yield predictions that are 381 

strongly correlated (i.e. correlation > 0.8 for Spearman’s and > 0.7 for Kendall’s Tau) with the tick bite 382 

data. The Taylor diagrams also show that the RMSD of these models is within a reasonable and stable 383 

range (i.e. 1 – 6) for all the experiments. However, in this work we are not only interested in models 384 

with a high correlation and low error, but also in those providing a realistic range of predictions, which 385 

is given by the standard deviation (stdev) represented by the dotted radial axes. The models present a 386 

variable skill to account for overdispersion (i.e. stdev 1 – 8). Considering these three statistical metrics, 387 

we think that the models better performing are located under the arc created by RMSD=2. Using the 388 

pink hexagon as a reference point, we can see that there are NB, ZIP, and ZINB models below this arc 389 

present a high Pearson/Kendall correlation (i.e. >0.9), a low RMSD (i.e. <2) and a fair range of stdev 390 

(i.e. 2 – 5). Out of these selected models, we can see that 2 ZIP and 1 ZINB models present a higher 391 

skill to model overdispersion (stdev > 4), whereas the small cluster of NB and ZINB models under the 392 

arc are better suited to predict zero-inflation. These diagrams also show that the optimal experiments 393 

correspond to 200-600 S and 20-50 T. To create the tick bite risk maps, we select the experiments with 394 

200 samples per leaf node and 20 tree estimators since we believe they provide the best results. Figure 395 

8 shows the tick bite risk maps produced by the four count data models (a-d), by the canonical RF (e), 396 
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and a zoom-up of the maps obtained with the ZIP and ZINB models (f-g). The application of POI and 397 

ZIP models at the country level create maps that present a wide range of predicted tick bites. The NB 398 

and ZINB models yield maps that are visually less prominent, and the predictions of RF are mostly 399 

uniform throughout the territory and do not show any remarkable pattern. In Figure 6 and 7 we see that 400 

NB and ZINB present a higher skill to model zero-inflation, which means that they perform better than 401 

POI or ZIP at delineating regions with a low tick bite risk. In this sense, NB and ZIP mark large areas 402 

in the northwest (e.g. province of Friesland) and in the center west (e.g. region of the Groene Hart) of 403 

the country, either as very low or inexistent risk of tick bites. Figure 6 and 7 also show that ZIP has a 404 

better ability to predict over dispersed data, which is particularly suitable to identify less prominent 405 

risky locations, such as the patchy forest structures of the northeast of the country (e.g. provinces of 406 

Groningen and Drenthe) and the forests in the south (e.g. province of Noord-Brabant). The inspection 407 

of the zoomed ZIP and ZINB models (Figure 8; f-g) shows that the risk is maximum in popular 408 

recreational locations. The Veluwe national park, the Utrechtse Heuvelrug forests, and the recreational 409 

areas along the coast present the highest tick bite risk of the country. 410 

Figure 9 depicts the risk of tick bite classified by the exposure levels found in Figure 5. We show a plot 411 

for each count model (a-d), for the canonical RF (e), and the original volunteered reports from NK and 412 

TR (f) classified by type of human exposure as well. The models have different skills to predict risk for 413 

each of the exposure classes in Figure 5. Considering the low, medium, and high exposure classes in 414 

Figure 5a, we see that ZIP better captures the overdispersion of data, since its interquartile range across 415 

classes (i.e. 0 – 10 TB/cell) is longer than NB and ZINB models (i.e. 0 – 6 TB/cell). Also, NB and ZINB 416 

present a higher skill at modelling the low exposure class, since it coincides with the original tick bite 417 

distribution (i.e. 0 – 4 TB/cell). ZIP provides more flexibility at predicting for the medium (i.e. 3 – 9 418 

TB/cell) and high (i.e. 3 – 10 TB/cell) exposure classes, since these they span a range resembling the 419 

original distribution (i.e. 0 – 6 TB/cell and 0 – 14 TB/cell, respectively). Regarding the exposure classes 420 

in Figure 5b, we can see that ZIP seems to capture well the category of tick bite risk in non-intensively 421 

visited forests. The NB, ZIP, and ZINB models are not able to predict a range for the category of tick 422 

bites outside forests. The canonical RF shows a poor performance across the exposure classes, since it 423 

is only able to predict for a narrow margin of the original distribution. Based in the results provided in 424 

this section, we believe that, overall, the ZIP and ZINB models present stable predictions and the ability 425 

of modelling overdispersion and zero-inflation, respectively.  426 

 427 

5 – Discussion 428 

In this work we illustrate that canonical RF models have difficulties capturing skewed distributions and 429 

we present our approach conceived to mitigate the effects of biasing the model towards the mean. To 430 

do so, we apply an algorithm-level modification of RF (Krawczyk, 2016), by combining weak 431 

estimators (i.e. decision trees) with robust estimators (i.e. count data models). By doing this, we keep 432 

two important characteristics of both types of estimators: a fast segmentation of the samples, and a 433 

realistic prediction of the tick bite risk. Thus, the integration of the segmentation capabilities of RF and 434 

the count data models creates a robust combined estimator.   435 

 436 

Due to the skewed and zero-inflated nature of the tick bites per grid cell, our work does not aim at 437 

creating a model with the lowest performance metrics (i.e. low RMSD and standard deviation), but a 438 

model that finds the trade-off between the error and the capability of predicting tick bites over the 439 

reaslistic range of data values.  For this, we tested various model configurations. The metrics 440 

represented in Figure 7 show the performance of the models based in three metrics: the standard 441 
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deviation, the RMSD, and a correlation coefficient. Based on these three metrics, we think the that the 442 

ZIP and ZINB models are the ones performing better, since they present good correlation coefficients, 443 

reduced RMSD and are able to capture overdispersion or zero-inflation, respectively, which can open 444 

the door to multiple applications in ecological modelling and public health.  445 

 446 

The presented maps illustrate that the proposed approach can be used to estimate the tick bite risk in a 447 

location. The NB and ZINB models seem adequate for low-risk detection, since they perform better 448 

with zero-inflation in data, which subsequently enables the identification of low-risk regions. Then, the 449 

ZIP models are more suitable to fit over dispersed data, which enables the quantification of the risk 450 

within a wide range of values. Visually, this means that NB and ZINB maps identifies large regions 451 

with low-risk with sharp declines between different land uses, whereas the predictions yielded by ZIP 452 

show a richer range of predictions that can help at location risky locations in the country. The selected 453 

ZIP and ZINB models are able to identify locations of high risk in popular recreational places (e.g. 454 

Veluwe national park, coastal recreational areas), but they also have proved useful at detecting risky 455 

locations which are less intensively visited by citizens (e.g. patchy forests in the provinces of Noord-456 

Braband, Drenthe, and Groningen). We believe that these maps can support several public health 457 

interventions intended to decrease the number of tick bites.  458 

 459 

Using the categories from Figure 5 and the map layers in Figure 8, we inspected the risk of tick bites in 460 

function of human exposure inside and outside forests. In Figure 9 we see that some of the models are 461 

able to predict reasonably well for certain human exposure categories. For example, ZIP and ZINB 462 

yield predictions for the low exposure class very similar to the original ones, whereas ZIP has analogous 463 

predictive capabilities for the forests with a low recreational intensity. Note, however, that although ZIP 464 

and ZINB can model the medium exposure class reasonably, none of the used models are able to capture 465 

the high skewness present in the high exposure class. This limitation suggests that human exposure in 466 

highly visited locations might need additional features to better characterize the human activities 467 

outdoors. Considering all insights together, we think that these results suggest that a combination of RF 468 

and ZIP would be the most suitable one to estimate the tick bite risk in a location, whereas the 469 

combination of RF and ZINB would be adequate to detect locations with zero or very low risk.   470 

 471 

In this work we encountered four hurdles. First, finding a proper validation metric for skewed 472 

distributions was challenging, because the most commonly used measures of model performance use 473 

statistical measures of location, not of dispersion, whereas in this case we are equally interested in 474 

predicting the dispersion. The (modified) Taylor diagram can help at evaluating the models because it 475 

can represent three statistical metrics in a single chart. Second, the TB collection is self-reported by 476 

each user of NK and TR. This means that this is a source of spatial inaccuracy based on the level of 477 

map literacy and spatial awareness of each user. With the current data collection, we are not able to 478 

quantify, nor correct, for this spatial inaccuracy. This means that at the time of the feature engineering 479 

we might be characterizing an observation which is incorrectly placed. We acknowledge the importance 480 

of citizen science campaigns, but we recommend that further data collection campaigns dedicate effort 481 

to find the positional accuracy of each observation. Third, there is a small fraction of the non-parametric 482 

count data model fittings that fail to converge due to excessive data imbalance for the optimization 483 

routines. Further work should aim at incorporating statistical knowledge to improve the fitting 484 

procedure, so that all models converge and contribute to the joint prediction of the ensemble. Fourth, 485 

the hazard model used in this work can produce a robust estimation of tick activity within forests, but 486 

not on other land uses. Thus, in this work the contribution of E and H could only be estimated in forested 487 

areas, whereas in the remaining land uses the model is entirely driven by E features. Further work should 488 

aim at combining different hazard metrics (e.g. tick suitability) to obtain a continuous picture of tick 489 
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hazard throughout the country. This improved hazard metrics could help at disentangling which of the 490 

two factors (i.e. E or H) is dominant for each location, and thus would allow a deeper understanding of 491 

the factors of tick bite risk.  492 

 493 

6 – Conclusion  494 

In this work we illustrate how canonical machine learning algorithms like RF may not perform well at 495 

modelling a skewed and zero-inflated distribution, and we present our algorithm-level solution to 496 

mitigate the bias towards the mean. Our approach consists in modifying the default behavior of RF by 497 

combining weak estimators (i.e. decision trees) with robust estimators (i.e. count data models). Thus, 498 

we connect four discrete probability models for count data (i.e. Poisson, negative binomial, zero-499 

inflated Poisson, and zero-inflated negative-binomial) to each of the leaf nodes of RF. Subsequently, 500 

we enable RF to predict for skewed and zero-inflated distributions, which constitutes a methodological 501 

step forward in the machine learning field. We used this modified RF to model tick bite risk using 502 

volunteered reports collected by two Dutch citizen science projects. We extend the current state of the 503 

art on tick bite risk modelling by devising and integrating a wide array of hazard and exposure metrics. 504 

By doing this, we are able to create tick bite risk maps for the Netherlands, and to explore the risk based 505 

on human exposure. We hope that this double contribution can help other researchers across multiple 506 

fields at modelling skewed and zero-inflated distributions using machine learning methods. Finally, we 507 

believe that this work also demonstrates that the incorporation of volunteered data to a scientific 508 

workflow is not only possible, but recommended to model fine-grained phenomena that escape classic 509 

monitoring networks.  510 
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Id Name 
Data 

type 
Description Source Provider 

Type 

of 

metric 

1 dbuiltup integer  

Distance to the 

closest built-up 

area 

BBG2008 

Statistics 

Netherlands 

(CBS) 

AC 

2 dforest integer  
Distance to the 

closest forest patch 
BBG2008 

Statistics 

Netherlands 

(CBS) 

AC 

3 drecreation integer  

Distance to the 

closest recreational 

area 

BBG2008 

Statistics 

Netherlands 

(CBS) 

AC 

4 dbrr integer  

Distance to the 

closest regional 

bike route 

OpenStreetMap 
OSM 

Foundation 
AC 

5 dwrl integer  

Distance to the 

closest local 

walking path 

OpenStreetMap 
OSM 

Foundation 
AC 

6 dwrr integer  

Distance to the 

closest regional 

walking route 

OpenStreetMap 
OSM 

Foundation 
AC 

7 dwrn integer  

Distance to the 

closest national 

walking route 

OpenStreetMap 
OSM 

Foundation  
AC 

8 dcamping integer  

Distance to the 

closest camping 

location 

TOP10NL 
Cadaster 

Netherlands 
AT 

9 dcaravan integer  

Distance to the 

closest caravan 

parking location 

TOP10NL 
Cadaster 

Netherlands 
AT 

10 dcross integer  

Distance to the 

closest bike cross 

circuit 

TOP10NL 
Cadaster 

Netherlands 
AT 

11 dgolf integer  
Distance to the 

closest golf course 
TOP10NL 

Cadaster 

Netherlands 
AT 

12 dheem integer 
Distance to the 

closest wild garden 
TOP10NL 

Cadaster 

Netherlands 
AT 

13 dhaven integer 

Distance to the 

closest non-

commercial haven 

TOP10NL 
Cadaster 

Netherlands 
AT 

14 dsafari integer 
Distance to the 

closest safari park 
TOP10NL 

Cadaster 

Netherlands 
AT 

15 dwater integer 

Distance to the 

closest waterbody 

(pond or lake) 

TOP10NL 
Cadaster 

Netherlands 
AT 
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16 dbath integer 

Distance to the 

closest authorized 

bathing location 

Swimming 

locations and 

water quality 

National 

Registry 
AT 

17 attr category 
Attractiveness of 

the location  

Attractiveness of 

the landscape 

Wageningen 

University & 

Research 

(WUR) / 

National 

Registry 

AT 

18 LU category 
Land use at 

location 
BBG2008 

Statistics 

Netherlands 

(CBS) 

AT 

19 LC category 
Land cover at 

location 
LGN7 

Wageningen 

University & 

Research 

(WUR) 

AT 

20 maxmeanhaz float 

Max. mean hazard 

in the period 2006-

2014 within forests 

Tick dynamics 
(Garcia-Marti et 

al, 2017) 
HZ 

21 maxstdhaz float 

Max. standard 

deviation of hazard 

in the period 2006-

2014 within forests 

Tick dynamics 
(Garcia-Marti et 

al, 2017) 
HZ 

 518 

Table 1. Features used in this work.  519 

  520 
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 521 

 522 

 523 

 524 

Figure 1. (a) Tick bite risk (2006-2016) as monitored by the NK and TR initiatives. We use as a proxy 525 

of tick bite risk the cumulative sum of tick bite reports per 1km grid cell. This image shows that tick 526 

bites are produced throughout the country, but the reports tend to be clustered around forests (e.g. 527 

Veluwe national park), or recreational areas (e.g. coastal areas). (b) Geographic locations. Provinces 528 

and national parks are labeled with capital letters, cities are labeled in lowercase.  529 

 530 

 531 

 532 

 533 

 534 

  535 
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Figure 2. Histogram of the tick bites per grid cell. As seen, after the process of spatial aggregation 537 

described in Section 3.1, a skewed distribution with zero-inflation is created. Note that the X-axis is 538 

represented in log-scale to ease the visualization of the distribution. The number of grid cells containing 539 

more than 30 – 40 tick bite reports is almost negligible, but the distribution spans until a maximum of 540 

353 tick bites per cell.  541 

  542 
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 543 

Figure 3. Tick activity per 1km grid cell. This tick activity estimation is provided by the data-driven 544 

model in (Garcia-Martí et al., 2017), which is capable of predicting daily tick activity. We run this 545 

model for each day during the period (2006-2014) and we calculated a robust long-term metric of 546 

hazard, showing the maximum mean tick activity for the entire period. As seen, hazard is minimum 547 

along the coastline and maximum in the northeast of the country.  548 

 549 
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 551 

 552 

Figure 4.  Proposed approach to couple RF and count data models (Poisson: POI, negative binomial: 553 

NB, zero-inflated Poisson: ZIP, and zero-inflated negative binomial: ZINB). First, the ensemble of 554 

decision trees is used to segment the samples into groups with similar characteristics. These trees are 555 

shallow trees, so that each of the leaf nodes contains a few hundred of samples. Second, we plug the 556 

selected count data models to each of the leaf nodes in the ensemble. The predictions yielded by the 557 

count data models are subsequently averaged to obtain the final prediction for each RF and count data 558 

model combination. 559 
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Figure 5. (a) Human exposure to tick bites classified in three categories. (b) Class 1 in this map 

correspond to the classes from (a), class 2 represents tick bites reported outside forests, class 3 

represents forests with no tick bites recorded, and class 4 shows locations where no tick bites were 

reported during the study period. These results can be found in (Garcia-Marti et al., 2018), and we cross 

them with the tick bite risk maps obtained in this work to explore the risk per human exposure category 

(Figure 9).  
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Figure 6. Histograms of original (red) and predicted (blue) distributions for an ensemble with 20 trees and an increasing number of samples per leaf node. Note 

that for visualization purposes, the axes have been limited and the zeros are summarized in the text box within each subplot, thus showing the number of true 

zeros, predicted zeros and the associated percentage. The first four columns correspond to the count data models, whereas the last column shows the performance 

of the canonical RF. As seen, POI and ZIP can predict for a wider range of values, whereas NB and ZINB are good at predicting zeros and the low part of the 

distribution.  
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Figure 7. Modified Taylor diagrams showing the performance of the models based in three metrics: 

standard deviation, RMSD, and a correlation coefficient (left: Spearman’s, right: Kendall Tau), which 

are represented by the Y, circular, and radial axes, respectively. Each of the colored symbols represents 

an ensemble with a concrete number of tree estimators (T) and samples per leaf node (S). The models 

better performing are located under the arc created by RMSD=2, since they present a high 

Pearson/Kendall coefficient, low RMSD, and a fair standard deviation. Out of these selected models, 

we can see that 2 ZIP and 1 ZINB models present a higher skill to model overdispersion (i.e. std. dev. 

> 4), whereas the small cluster of NB and ZINB models under the arc are better suited to predict zero-

inflation. As seen, experiments with in the range of 200-600 samples per leaf node seem to perform 

optimally in both diagrams.  
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Figure 8. Tick bite risk maps produced by combining RF with each of the count data models. The upper row (a-e) shows the general overview of the models, 

whereas the bottom row shows a close-up for the ZIP (f) and ZINB (g) models. The NB (b) and ZINB (d) models are better suited to delineate regions with low 

or inexistent tick bite risk, thus they present sharper declines between different land uses. The ZIP (c) model is capable of predicting the risk of tick bite over a 

range of values, this is why its associated map presents smooth and gradual changes across the study area. POI (a) and RF (e) are over/under predicting, 

respectively, since the former finds risk in most locations of the country, whereas the latter yields and almost-homogeneous prediction. The visual inspection 

of the zoomed models (f, g) identify popular places for recreation intensely visited by citizens. The forested areas between Utrecht, Apeldoorn, and Arnhem, 

together with the recreational areas along the coast are regions where tick bite risk is particularly high. 
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Figure 9. Tick bite risk classified based on the human exposure classes from Figure 5. The subplots 

show the predicted distributions per human exposure class for each of the count data models (a-d) and 

RF (e), and the type of human exposure using the original volunteered observations from NK and TR 

(f). The models present a different skill at predicting for each of the exposure classes. For example, ZIP 

and ZINB yield predictions for the low exposure class very similar to the original ones, whereas ZIP 

has analogous predictive capabilities for the forests with a low recreational intensity. Note, however, 

that although ZIP and ZINB can model the medium exposure class reasonably, none of the used models 

are able to capture the high skewness present in the high exposure class. The canonical RF is not able 

to predict the over dispersion of the original dataset.  
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