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 ABSTRACT 11 

Proprioception, the sense of body position, movement, and associated forces, remains poorly 12 
understood, despite its critical role in movement. Most studies of area 2, a proprioceptive area of 13 
somatosensory cortex, have simply compared neurons’ activities to the movement of the hand 14 
through space. By using motion tracking, we sought to elaborate this relationship by 15 
characterizing how area 2 activity relates to whole arm movements. We found that a whole-arm 16 
model, unlike classic models, successfully predicted how features of neural activity changed as 17 
monkeys reached to targets in two workspaces. However, when we then evaluated this whole-18 
arm model across active and passive movements, we found that many neurons did not 19 
consistently represent the whole arm over both conditions. These results suggest that 1) neural 20 
activity in area 2 includes representation of the whole arm during reaching and 2) many of these 21 
neurons represented limb state differently during active and passive movements. 22 

1 INTRODUCTION 23 

Moving in an uncontrolled environment is a remarkably complex feat. In addition to the 24 
necessary computations on the efferent side to generate movement, an important aspect of 25 
sensorimotor control is processing the afferent information we receive from our limbs, essential 26 
both for movement planning and for the feedback it provides during movement. Of the relevant 27 
sensory modalities, proprioception, or the sense of body position, movement and associated 28 
forces, is arguably the most critical for making coordinated movements (Ghez and Sainburg 29 
1995; Gordon et al. 1995; Sainburg et al. 1995; Sainburg et al. 1993; Sanes et al. 1984). 30 
However, despite its importance, few studies have explicitly addressed how proprioception is 31 
represented in the brain during natural movement; touch, vision, and the motor areas of the brain 32 
have received far more attention.  33 
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One brain area likely important for mediating reach-related proprioception is the proximal arm 34 
representation within area 2 of primary somatosensory cortex (S1) (Jennings et al. 1983; Kaas et 35 
al. 1979; London and Miller 2013). Though this area receives a combination of muscle and 36 
cutaneous inputs (Hyvärinen and Poranen 1978; Padberg et al. 2018; Pons et al. 1985), the few 37 
studies examining it during reaching have found that a model involving simply the translation of 38 
the hand approximates neural activity quite well (London and Miller 2013; London et al. 2011; 39 
Prud'homme and Kalaska 1994; Weber et al. 2011). Interestingly, this finding fits with 40 
psychophysical data showing that humans are better at estimating the location of the hand than 41 
joint angles (Fuentes and Bastian 2010), as well as our conscious experience of reaching to 42 
objects, which typically focuses on the hand. However, recent computational studies have shown 43 
that while neural activity may appear to be tuned to the state of a limb’s endpoint, features of this 44 
tuning might be a direct consequence of the biomechanics of the limb (Chowdhury et al. 2017; 45 
Lillicrap and Scott 2013). Consistent with those results, we have recently observed, using 46 
artificial neural networks, that that muscle lengths were better predictors of area 2 activity than 47 
were hand kinematics (Lucas et al. 2019). 48 

As in the classic reaching studies of M1 (Caminiti et al. 1991; Georgopoulos et al. 1982; 49 
Georgopoulos et al. 1986), the appeal of the hand-based model of area 2 neural activity is its 50 
reasonable accuracy despite its simplicity. However, the recent emphasis on studying less 51 
constrained, more natural movements (Mazurek et al. 2018) is pushing the limits of such simple 52 
models (Berger and Gail 2018; Hasson et al. 2012; Sharon and Nisky 2017). As in the motor 53 
system, it is increasingly important to characterize proprioceptive regions’ responses to reaching 54 
more fully. Here, we used two experiments that altered the relationship between hand and whole-55 
arm kinematics. In the first experiment, we found that neurons in area 2 have a consistent 56 
relationship with whole-arm kinematics during active reaching within two disjoint workspaces. 57 
Whole-arm kinematics predicted neural activity significantly better than the hand-only model, 58 
and were able to effectively explain neural activity changes across workspaces. In the second 59 
experiment, we compared area 2 responses to active reaching and passive perturbations of the 60 
hand. While some neurons were predicted well with only kinematic inputs, others were not, 61 
adding to the evidence that area 2 may receive efferent information from motor areas of the brain 62 
(London and Miller 2013; Nelson 1987).  63 

2 RESULTS 64 

For the experiments detailed in this paper, we recorded neural signals from three Rhesus 65 
macaques (Monkeys C, H, and L) using Utah multi-electrode arrays (Blackrock Microsystems) 66 
implanted in the arm representation of Brodmann’s area 2 of S1 (Figure 1). After implantation, 67 
we mapped sensory receptive fields of each neuron, to examine how the multi-unit activity on 68 
each electrode responded to sensory stimulation, noting the modality (deep or cutaneous) and 69 
location of each field. We classified an electrode as “cutaneous” if we could find a receptive 70 
field on the arm or torso in which brushing the skin caused an increase in activity. “Deep” 71 
electrodes were those that responded to joint movement or muscle palpation and did not appear 72 
to have a cutaneous receptive field. With these criteria, it is likely that some of the electrodes we 73 
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marked cutaneous actually responded to both deep and cutaneous stimuli. However, as we were 74 
most interested in the distribution of receptive field types over the array, we did not test for such 75 
mixed modality neurons. 76 

Figure 1 shows the resulting sensory maps from the mapping session for each monkey in which 77 
we were able to test the most electrodes. We found a mix of deep and cutaneous receptive fields 78 
across each array, largely matching the description of area 2 from previous studies (Hyvärinen 79 
and Poranen 1978; Pons et al. 1985; Seelke et al. 2011). Compared to the two bordering regions, 80 
area 1 tends to have a higher fraction of cutaneous responses, and area 5 tends to have a higher 81 
fraction of deep responses (Seelke et al. 2011), suggesting that our arrays were implanted largely 82 
in area 2. For Monkeys C and H, we found a rough proximal to distal arm gradient, running from 83 
anterior to posterior across the array (Figure 1, black arrows), consistent with the somatotopy 84 
found by (Pons et al. 1985). There were too few well-mapped neurons from Monkey L to 85 
determine a meaningful gradient. 86 
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 87 
Figure 1: Array locations and receptive field maps from one mapping session for each monkey. A – 88 
locations of Utah arrays implanted in area 2 of Monkeys C, H, and L. IPS, intraparietal sulcus; CS 89 
central sulcus. B – map of the receptive field modality (deep, cutaneous, or mixed) for each electrode. C – 90 
map of receptive field location (see legend on bottom right). Open circles indicate both untested 91 
electrodes and tested electrodes with no receptive field found. Black arrows on maps in C show 92 
significant gradient across array of proximal to distal receptive fields (see Methods). 93 

We trained each of these monkeys to grasp a two-link planar manipulandum and make reaching 94 
movements to targets presented on a screen in front of them (Figure 2). During these sessions, 95 
we collected interface force from a six degree of freedom load cell attached to the manipulandum 96 
handle. We also tracked the locations of markers on the monkey’s arm using a custom motion 97 
tracking system based on a Microsoft Kinect. Our experiments included two components: one 98 
comparing reaching movements in two different workspaces and one comparing active and 99 
passive movements. 100 
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 101 
Figure 2: Behavioral task. Monkey controls a cursor on screen (yellow) with a two link manipulandum to 102 
reach to visually presented targets (red). We track the locations of markers (see Methods) on the 103 
monkey’s arm (green) during the task, using a Microsoft Kinect. 104 

2.1 SOMATOSENSORY AREA 2 REPRESENTS THE MOVEMENT OF THE WHOLE ARM DURING REACHING 105 
Previous literature has characterized area 2 primarily in terms of the hand trajectory through 106 
space (London and Miller 2013; Prud'homme and Kalaska 1994; Weber et al. 2011), likely in 107 
part due to the difficulty of tracking the motion of the full arm, and the then recent finding that 108 
motor cortex could be well explained simply by the direction of hand movement (Caminiti et al. 109 
1991; Georgopoulos et al. 1982). Given advances in motion tracking capability and subsequent 110 
observations of the dependence of M1 on arm posture (Morrow et al. 2007; Scott and Kalaska 111 
1995), we set out to characterize more fully, how neural activity in area 2 corresponds to 112 
reaching movements.  113 

In particular, we aimed to characterize how much could be gained by using models incorporating 114 
the movement of the whole arm, as opposed to just the hand. A challenge in comparing these 115 
models is that for the typical, center-out reaching task in a small workspace, the behavioral 116 
signals used in our models are highly correlated. Because a high correlation means that a linear 117 
transform can accurately convert one set of signals into another, all models would make very 118 
similar predictions of neural activity.  119 

To deal with this problem, we trained the monkeys to reach to randomly-generated targets 120 
presented in two different workspaces (Figure 3). This had two important effects. First, the 121 
random locations of the targets lessened the stereotopy of the movements, allowing for the 122 
collection of more varied movement data than from a center-out paradigm. Second, the average 123 
postures in the two workspaces were quite different, such that while the signals of different 124 
models were still correlated within a given workspace, this correlation (and the mapping between 125 
sets of behavioral signals) changed significantly between workspaces. This forced the models to 126 
make different predictions of neural activity across the two workspaces. By comparing modeled 127 
and observed changes in neural activity, we could more reliably discriminate between models. 128 

This idea is exemplified in Figure 3D. When tested in the two workspaces, this example neuron 129 
changed both its tuning curve and the direction in which it fired maximally (its preferred 130 
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direction, or PD), as did many neurons we recorded. The corresponding predictions of the hand-131 
only and whole-arm models differed, which allowed us to compare the accuracy of the two 132 
models. We recorded three of these two-workspace sessions with each of Monkeys C and H and 133 
two sessions with Monkey L. 134 

 135 
Figure 3: Example neural activity for two-workspace task. A – Two-workspace behavior. On each trial, 136 
monkey reaches with manipulandum (black) to randomly placed targets in one of two workspaces: one 137 
close to the body and contralateral to the reaching hand (pink) and the other distant and ipsilateral 138 
(green). Trials in the two workspaces were interleaved randomly. B – Example neural raster plot from 139 
one session for two randomly drawn trials in each workspace. Dots in each row represent activity for one 140 
of the simultaneously recorded neurons. Black dashed lines indicate starts and ends of trials, and colored 141 
lines and boxes indicate times of target presentation, with color indicating the workspace for the trial. C 142 
– Firing rate plot for an example neuron during four randomly drawn trials from the distal (green) 143 
workspace. Black trace represents neural firing rate, smoothed with a 50 ms Gaussian kernel. Colored 144 
traces represent unsmoothed firing rates predicted by hand-only (orange), and whole-arm (red) models. 145 
D – Actual and predicted tuning curves and preferred directions (PDs) computed in the two workspaces 146 
for an example neuron. Each trace represents the tuning curve or PD calculated for one cross-validation 147 
fold (see Methods). Leftmost plot shows actual tuning curves and PDs, while other plots show curves and 148 
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PDs for activity predicted by each of the models. Each panel shows mean movement-related firing rate 149 
plotted against direction of hand movement for both workspaces. Darker vertical bars indicate preferred 150 
directions. 151 

2.1.1 Model overview 152 
We tested several kinematic models of area 2 activity that could be divided into hand-only and 153 
whole-arm models (see Methods for a full description of all the models). We’ve chosen to 154 
represent the two sets with two of the models, which we termed, for simplicity, the “hand-only” 155 
and “whole-arm” models. The hand-only model stems from classic, endpoint models of limb 156 
movement-related neural activity (Bosco et al. 2000; Georgopoulos et al. 1982; Prud'homme and 157 
Kalaska 1994). It assumes neurons relate only to the Cartesian coordinates of hand position and 158 
velocity. The whole-arm model builds on the hand-only model by adding the Cartesian 159 
kinematics (position and velocity) of the elbow, in order to account more fully for movement of 160 
the whole arm. Surprisingly, the performance of this representation of the whole arm was similar 161 
to, or even better than more complicated biomechanical models based on the 7 degree-of-162 
freedom joint kinematics or musculotendon lengths (see Supplementary Info). We aimed to test 163 
how well the hand-only and whole-arm models predicted features of neural activity during 164 
reaching, in order to determine the importance of whole-arm kinematics for explaining neural 165 
activity.  166 

For us to consider the whole-arm model to be an effective one for area 2, it should satisfy three 167 
main criteria. First and most direct, it should explain the variance of neural firing rates across the 168 
two workspaces better than the hand-only model, as is the case in the example in Figure 3C. 169 
Second, the mapping between neural activity and whole-arm kinematics should not change 170 
between the individual workspaces, meaning that the accuracy of a model trained over both 171 
workspaces be similar to that trained in a single workspace. Last, the model should be able to 172 
capture features of neural activity that it was not explicitly trained on, for example, the changes 173 
in directional tuning shown in Figure 3D. 174 

2.1.2 Whole-arm model explains more variance of area 2 neural activity than hand-only model 175 
To assess how well our models fit area 2 neural activity, we used repeated k-fold cross-validation 176 
(see Methods for more details). Goodness-of-fit metrics like R2 or variance-accounted-for (VAF) 177 
are ill-suited to the Poisson-like statistics of neural activity; instead, we used the likelihood-based 178 
pseudo-R2 (Cameron and Windmeijer 1997; 1996; McFadden 1977). Like VAF, pseudo-R2 has a 179 
maximum value of 1, but it can be negative for models that fail even to predict the mean firing 180 
rate during cross-validation. In general, the values corresponding to a good fit are lower for pR2 181 
than for either R2 or VAF, with a value of 0.2 usually considered a “good” fit (McFadden 1977). 182 
We found that for this measure, the whole-arm model out-performed the hand-only model 183 
(Figure 4). Of the 288 neurons recorded across the 8 sessions, 238 were significantly better 184 
predicted by the whole-arm model than the hand-only model, and for the other 50, there was no 185 
significant difference (using 𝑝 < 0.05; see Methods for more details). 186 
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 187 
Figure 4:Goodness-of-fit comparison analysis. Scatter plots compare the pseudo-R2 (pR2) of the whole-188 
arm model to that of the hand-only model for each monkey. Each point in the scatter plot represents the 189 
pR2 values of one neuron, with whole-arm pR2 on the vertical axis and hand-only pR2 on the horizontal. 190 
Different colors represent neurons recorded during different sessions. Filled circles represent neurons for 191 
which one model’s pR2 was significantly higher than that of the other model. In this comparison, all filled 192 
circles lie above the dashed unity line, indicating that the whole-arm model performed better than the 193 
hand-only model for every neuron in which there was a significant difference.  194 

2.1.3 Whole-arm model captures a consistent relationship between area 2 and arm kinematics 195 
A reasonable benchmark of how well the whole-arm model fits the two-workspace data is its 196 
ability to match the accuracy of models trained in the individual workspaces. It is possible to 197 
imagine a scenario in which a model might achieve a good fit by capturing a global relation 198 
across the two workspaces without capturing the information local to either workspace. This 199 
situation is akin to fitting a line to data distributed along an exponential curve. In this analogy, 200 
we would expect a piecewise linear fit to each half of the data to achieve significantly better 201 
goodness-of-fit.  202 

We tested this scenario by training whole-arm models on the individual workspaces, and 203 
comparing the resulting pR2 with that calculated from the model fit to data from both 204 
workspaces. The symbols lying very close to the unity line in each panel of Figure 5 indicate that 205 
the full model explained just as much neural variance as did the individual models. This suggests 206 
that the whole-arm model describes a consistent, generalizable relationship between neural 207 
activity and arm kinematics across the two workspaces.  208 
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 209 
Figure 5: Dependence of whole-arm model accuracy on workspace location of training data. Each panel 210 
compares a model trained and tested in the same workspace (either near or far) to a model trained on 211 
data from both workspaces. Each dot corresponds to a single neuron, where color indicates the recording 212 
session. Dashed line is the unity line. 213 

2.1.4 Whole-arm model captures changes in area 2 directional tuning between workspaces 214 
From previous studies of area 2, we know that at least within a single workspace, neural activity 215 
is tuned approximately sinusoidally to the direction of hand movement (London and Miller 2013; 216 
Prud'homme and Kalaska 1994; Weber et al. 2011). Figure 3D shows the directional tuning 217 
curves for an example neuron, along with the tuning curves predicted by both models. Because 218 
we trained each model on data from both workspaces, they needed to capture a single 219 
relationship between movement and neural activity. As shown in the example in Figure 3D, the 220 
hand-only model predicted essentially the same tuning curve for both workspaces, with the 221 
exception of a baseline shift due to the position component. In contrast, the whole-arm model 222 
predicted altered tuning curves, which matched the actual ones well.  223 

To quantify this model accuracy over all neurons, we calculated the correlation between the 224 
model-predicted and actual tuning curves in the two workspaces. With this measure, the whole-225 
arm model once again won most of the pairwise comparisons (Figure 6). Only two out of 288 226 
neurons were significantly better predicted by the hand-only model (using 𝑝 < 0.05), while 138 227 
of 288 neurons were significantly better predicted by the whole-arm model. 228 
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 229 
Figure 6: Tuning curve shape correlation analysis. Scatter plot compares tuning curve shape correlation 230 
between whole-arm and hand-only models. Filled circles indicate neurons significantly above or below 231 
the dashed unity line. As for pR2, most filled circles lie above the dashed line of unity, indicating that the 232 
whole-arm model was better at predicting tuning curve shape than the hand-only model.  233 

Of the 288 recorded neurons, 260 were significantly tuned to movement direction in both 234 
workspaces. Thus, in addition to the tuning curve correlation analysis, we also examined the PD 235 
in the two workspaces. For many neurons, the PD changed significantly between workspaces, as 236 
in the leftmost panel of Figure 3D. Figure 7A shows the actual PD shifts for all neurons plotted 237 
against the PD shifts predicted by each model. The large changes in PD, shown on the horizontal 238 
axes of the scatter plots, are a clue that the hand-only model does not fully account for area 2 239 
neural activity; if it had, the PD changes should have been insignificant (in principle, zero), as 240 
shown by the generally small hand-only model-predicted changes (first row of Figure 7A). 241 
Additionally, and perhaps counterintuitively, the actual changes included both clockwise and 242 
counter-clockwise rotations. However, we found that the whole-arm model predicted both types 243 
of PD changes quite well, indicated by a clustering of the scatter plot points in Figure 7A along 244 
the dashed diagonal line. Based on the circular VAF (cVAF; see Methods for details) of the 245 
predicted PD changes, Figure 7B shows that the whole-arm model once again out-performed the 246 
hand-only model, with an average cVAF over all neurons of 0.75 compared to 0.57. We made 247 
pairwise comparisons between models for each session. In every session but one, the whole-arm 248 
model out-performed the hand-only model. In the remaining session, the difference between the 249 
two models was not significant (𝑝 > 0.05). These results lead to the same conclusion as the pR2 250 
and tuning curve correlation analyses: the kinematics of the whole-arm are important predictors 251 
of area 2 activity, and can explain differences between activity in the two workspaces that classic 252 
models cannot. 253 
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 254 
Figure 7: Model predictions of PD shift. A – Scatter plots of model-predicted PD shifts plotted against 255 
actual PD shifts. Each dot represents the actual and modeled PD shifts of a single neuron, where 256 
different colors correspond to neurons recorded during different sessions. Dashed diagonal line shows 257 
perfect prediction. Horizontal histograms indicate distributions of actual PD shifts for each monkey. 258 
Vertical histograms indicate distributions of modeled shifts. Note that both horizontal and vertical axes 259 
are circular, meaning that opposing edges of the plots (top/bottom, left/right) are the same. Horizontal 260 
histograms show that the distribution of actual PD shifts included both clockwise and counter-clockwise 261 
shifts. Clustering of scatter plot points on the diagonal line for the whole-arm model indicates that it was 262 
more predictive of PD shift. B – plot showing circular VAF (cVAF) of scatter plots in A, an indicator of 263 
how well clustered points are around the diagonal line (see Methods for details). Each point corresponds 264 
to the average cVAF for a model in a given session (indicated by color), and the horizontal dashed lines 265 
indicate the cVAF for perfect prediction. Error bars show 95% confidence intervals (derived from cross-266 
validation – see Methods). Pairwise comparisons between model cVAFs showed that the whole-arm 267 
model out-performed the hand-only model in all but one session, in which the two models were not 268 
significantly different.  269 

2.2 AREA 2 REPRESENTS PASSIVE MOVEMENTS DIFFERENTLY FROM ACTIVE REACHES 270 
Given our success at modeling neural activity across workspaces with the whole-arm model, we 271 
set out to examine its effectiveness in a task that compared area 2 activity during active reaches 272 
and passive limb perturbations.  273 
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For this experiment, the monkey performed a center-out reaching task to four targets. On half of 274 
these trials, the monkey’s hand was bumped by the manipulandum during the center-hold period 275 
in one of the four target directions (Figure 8A; see Methods section for task details). This 276 
experiment included two sessions with each of Monkeys C and H. As in the earlier study 277 
performed by our group (London and Miller 2013), we analyzed behavior and neural activity 278 
only during the 120 ms after movement onset for which the kinematics of the hand were similar 279 
in active and passive trials (Figure 8B and C). This is also the time period in which we can 280 
reasonably expect there not to be a voluntary reaction to the bumps in the passive trials. 281 

Despite the similar hand kinematics in the active and passive movements, we found that whole-282 
arm kinematics were quite different between the two conditions. Averaged over the sessions, a 283 
linear discriminant analysis (LDA) classifier could predict the movement type 89% of the time, 284 
using only the whole-arm kinematics in the analysis window, meaning that these whole-arm 285 
kinematics were highly separable based on movement condition. Considering our results from 286 
the two-workspace experiment, we would thus expect that the activity of area 2 neurons would 287 
also be highly separable.  288 

As reported earlier, area 2 neurons had a wide range of sensitivities to active and passive hand 289 
movements (London and Miller 2013). Figure 8D shows this difference for the neurons recorded 290 
during one session from Monkey C. As with our separability analysis for arm kinematics, we 291 
used LDA to classify movement type based on individual neurons, calling this prediction rate the 292 
neuron’s “separability index” (Figure 8E). We found that many neurons had an above chance 293 
separability index, as we would expect from neurons representing whole-arm kinematics.  294 
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 295 
Figure 8: Active vs. passive behavior. A – Schematic of task. On active trials (black), monkey reaches 296 
from center target to a target presented in one of four directions, indicated by the black circles. On 297 
passive trials, manipulandum bumps monkey’s hand in one of the four target directions (red circles). B – 298 
Speed of hand during active (black) and passive (red) trials, plotted against time, for one session. Starting 299 
around 120 ms after movement onset, a bimodal distribution in passive movement speed emerges. This 300 
bimodality reflects differences in the impedance of the arm for different directions of movement. 301 
Perturbations towards and away from the body tended to result in a shorter overall movement than those 302 
to the left or right. However, average movement speed was similar between active and passive trials in 303 
this 120 ms window, which we used for data analysis. C – Neural raster plots for example active and 304 
passive trials for rightward movements. In each plot, rows indicate spikes recorded from different 305 
neurons, plotted against time. Vertical dashed lines delimit the analysis window. D – Histograms of firing 306 
rates during active (black) and passive (red) movements for 20 example neurons from one session with 307 
Monkey H. E – Separability index for each neuron during the session, found by testing how well linear 308 
discriminant analysis (LDA) could predict movement type from the neuron’s average firing rate on a 309 
given trial. Black dashed line indicates chance level separability. Error bars indicate 95% confidence 310 
interval of separability index. 311 
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There is thus a clear analogy between this experiment and the two-workspace experiment—both 312 
have two conditions which altered both the kinematics of the arm and the neural responses. 313 
Continuing the analogy, we asked how well our two models could predict neural activity across 314 
active / passive conditions. As with the two-workspace experiment, we fit both the hand-only 315 
and whole-arm models to neural activity during both active and passive movements, and found 316 
that the whole-arm model again tended to out-perform the hand-only model (Filled circles above 317 
the dashed unity line in Figure 9). However, there were many more neurons (open circles) for 318 
which the difference between models was insignificant compared to the two-workspace 319 
experiment (Figure 4).  320 

 321 
Figure 9: Goodness-of-fit comparison analysis for active/passive experiment (same format as figure 4). 322 
Each dot represents a single neuron, with color indicating the recording session. Filled circles indicate 323 
neurons that are significantly far away from the dashed unity line. 324 

As in the two-workspace experiment, we compared models trained within an individual (active 325 
or passive) condition, to those trained in both conditions (Figure 10). A number of neurons had 326 
consistent relationships with arm kinematics, indicated by the dots with positive pR2 values lying 327 
close to the unity line. Surprisingly however, unlike our results from the two-workspace 328 
experiment (see Figure 5), many neurons in the active/passive task did not have this consistent 329 
relationship, indicated by the many neurons with negative pR2 values for the model trained over 330 
both conditions.  331 
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 332 
Figure 10: Dependence of whole-arm model accuracy on active and passive training data (same format 333 
as figure 5). Plots in the upper row contain colored arrows at the edges indicating neurons with pR2 334 
value beyond the axis range, which we omitted for clarity. 335 

The initial question of this experiment remains, however: does the neural separability index stem 336 
simply from arm kinematics? If this were true, then neurons with high separability index should 337 
have a consistent relationship to arm kinematics. To test this, we compared each neuron’s pR2 338 
value when trained on both conditions (our proxy for model consistency) against its separability 339 
index (Figure 11). Interestingly, we found the opposite result—model consistency actually 340 
correlated negatively with the separability index. Essentially, this means that neurons responding 341 
to active and passive movements differently are likely not drawing this distinction based on arm 342 
kinematics, as those are the neurons for which we could not find a consistent whole-arm model. 343 
Instead, this suggests that neurons in area 2 distinguish active and passive movements by some 344 
other means, perhaps an efference copy signal from motor areas of the brain (Bell 1981; London 345 
and Miller 2013; Nelson 1987). 346 
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 347 
Figure 11: Neural separability index predicts whole-arm model inconsistency. A – Scatter plots 348 
comparing the consistency of the whole-arm model against the separability index. Conventions are the 349 
same as in figure 10. B – correlation between model consistency and separability index. Each dot 350 
represents the correlation between model consistency and separability index for a given session, with 351 
error bars representing the 95% confidence intervals. 352 

3 DISCUSSION 353 

3.1 SUMMARY 354 
In this study, we explored, in two separate experiments, how somatosensory area 2 represents 355 
arm movements. In the first experiment, a monkey reached to targets in two separate 356 
workspaces. We found that a model incorporating whole-arm kinematics explained area 2 neural 357 
activity well, especially when compared to the hand-only model typically used to explain these 358 
neurons’ responses. Our results from the experiment thus suggest that area 2 represents the state 359 
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of the whole arm during reaching. In the second experiment, we tested the whole-arm model’s 360 
ability to explain area 2 neural activity both during reaching, and when the hand was 361 
unexpectedly displaced passively. As in the first experiment, these two conditions differed both 362 
kinematically and in the neural responses to movement. However, we found that while some 363 
neurons maintained a consistent relationship with arm kinematics across the two conditions, 364 
many others did not. Furthermore, those neurons most sensitive to movement type were also 365 
those most poorly modeled across conditions. The results from this second experiment suggest 366 
that for some neurons, area 2 relates to arm kinematics differently for active and passive 367 
movements. 368 

3.2 MODEL COMPLEXITY 369 
A significant difference between the hand and whole-arm models is their number of parameters, 370 
which make the whole-arm models more complex and expressible. There are two concerns with 371 
testing models of differing complexity, the first dealing with model training and evaluation, and 372 
the second with interpretation of the results. 373 

In training and evaluating our models, we had to make sure that the complex models did not 374 
overfit the data, resulting in artificially high performance on the training dataset but low 375 
generalizability to new data. However, because we found through cross-validation that the more 376 
complex models generalized to test data better than the simpler models, they were not 377 
overfitting. Consequently, the hand-based models are clearly impoverished compared to the 378 
whole-arm models. 379 

The second concern is in interpreting what it means when the more complex models perform 380 
better. One interpretation is that this is an obvious result; if the added degrees of freedom have 381 
anything at all to do with area 2 neural activity, then the more complex models should perform 382 
better. In fact, our main goal was primarily to improve our understanding of this area of S1 by 383 
exploring how incorporating measurements of whole-arm kinematics could help explain its 384 
function. As a result, we found that the whole-arm model not only out-performed the hand-only 385 
model, but it also predicted changes in PD across the two workspaces well in its own right. 386 
Furthermore, as demonstrated by the findings from our second experiment, the more complex 387 
model does not necessarily lead to a satisfactory fit. Despite its increased complexity and its 388 
success in the two-workspace task, the whole-arm model could not find a consistent fit for many 389 
neurons over both active and passive movements. As such, the active/passive experiment serves 390 
as a useful control for the two-workspace findings.  391 

3.3 COORDINATE FRAME VS. INFORMATIONAL CONTENT 392 
Because of their differing dimensionality, the signals from the hand-only model and those from 393 
whole-arm model do not have a one-to-one relationship: there are many different arm 394 
configurations that result in a given hand position. Thus, a comparison between the hand-only 395 
and whole-arm models is mainly a question of information content (do area 2 neurons have 396 
information about more than just the hand?). In contrast, signals predicted by the various whole-397 
arm models (see Supplementary Information) do have a one-to-one (albeit nonlinear) 398 
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relationship to each other. Knowledge of the hand and elbow position should completely 399 
determine estimated joint angles and musculotendon lengths, indicating that these models should 400 
have the same informational content.  As such, a comparison between these models (as in the 401 
Supplementary Information) is purely one of coordinate frame. While the interpretation for a 402 
comparison of information content is straightforward, interpreting the results of a comparison 403 
between coordinate frames is not. One major issue is that these comparisons only make sense 404 
when using linear models to relate neural activity to behavior. Once nonlinear models are 405 
considered, as in our study with artificial neural networks (Lucas et al. 2019), coordinate frames 406 
with one-to-one correspondence become nearly equivalent, and much more difficult to compare 407 
meaningfully. 408 

Clear parallels exist between this and earlier studies seeking to find a unique representation of 409 
movement in motor areas. Over the last few decades, a controversy involving the exact nature of 410 
the neural representation of movement has played itself out in the literature surrounding motor 411 
cortex, with some advocating a hand-based representation of motor control (Georgopoulos et al. 412 
1982; Georgopoulos et al. 1986; Moran and Schwartz 1999) and others a muscle-based 413 
representation (Evarts 1968; Fetz et al. 1989; Morrow et al. 2007; Oby et al. 2012). Recently, the 414 
motor control field started turning away from questions of coordinate frame and towards 415 
questions of neural population dynamics and information processing (Churchland et al. 2010; 416 
Elsayed et al. 2016; Gallego et al. 2017; Kaufman et al. 2014; Perich et al. 2018; Russo et al. 417 
2018; Sussillo et al. 2015). Part of the motivation for this pivot in viewpoint is that it became 418 
increasingly clear that a “pure” coordinate frame of movement representation is unlikely to exist 419 
(Fetz 1992; Kakei et al. 1999). Further, studies tended to use correlation between neural activity 420 
and behavioral variables as evidence that the neurons represent movements in a particular 421 
coordinate frame. However, as noted above, these correlations could often be explained by 422 
multiple coordinate frames, casting doubt on the conclusiveness of the exact coordinate frame of 423 
representation (Mussa-Ivaldi 1988).  Consequently, in our study, we put aside the question of the 424 
coordinate frame of area 2, focusing instead on what we can gain by modeling area 2 in terms of 425 
whole-arm kinematics. 426 

A major question this study leaves open is that of how information about reaching is processed 427 
by different areas of the proprioceptive neuraxis. While we might expect a muscle spindle-like 428 
representation at the level of the dorsal root ganglia (DRG) or the cuneate nucleus, removed from 429 
the receptors by one and two synapses, respectively, this representation likely changes as the 430 
signals propagate through thalamus and into S1. Even different areas of S1 may have different 431 
representations. Area 3a, which receives input mostly from muscle afferents (Heath et al. 1976; 432 
Kaas et al. 1979; Phillips et al. 1971; Yamada et al. 2016), seems more likely to retain a muscle-433 
like representation than is area 2, which integrates muscle afferent input with that from 434 
cutaneous receptors (Hyvärinen and Poranen 1978; Padberg et al. 2018; Pons et al. 1985). 435 
Likewise, area 5 may have an even higher-level representation, as it receives input from both 436 
somatosensory (Mountcastle et al. 1975) and motor cortices (Padberg et al. 2018), and appears to 437 
depend on attention (Chapman et al. 1984; Omrani et al. 2016). As it becomes increasingly 438 
feasible to record from several of these areas simultaneously (Richardson et al. 2016; Suresh et 439 
al. 2017; Weber et al. 2006), future experiments could examine how these areas project 440 
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information to each other, as has been explored in motor and premotor cortices (Churchland et 441 
al. 2010; Elsayed et al. 2016; Kaufman et al. 2014; Perich et al. 2018), without modeling the 442 
more complex cortical areas explicitly in terms of particular behavioral variables “encoded” by 443 
single neurons. 444 

3.4 POSSIBLE EVIDENCE OF EFFERENCE COPY IN AREA 2 445 

Our inability to find a consistent model across conditions suggests a difference between neural 446 
activity during active and passive movements that can’t be captured by our whole-arm model. 447 
One possible explanation for this is that area 2 may represent arm kinematics nonlinearly. 448 
Because we modeled area 2 activity with a generalized linear model (GLM; see methods), we 449 
implicitly discounted this possibility. The fact that the whole-arm kinematics for the two 450 
conditions are highly discriminable (89% separable on average) means that the different 451 
conditions correspond to different zones of kinematic space. Following the analogy of fitting a 452 
line to data distributed on an exponential curve, it is possible that the neurons with inconsistent 453 
linear relationships to arm kinematics may simply reflect a single nonlinear relationship, with 454 
different linear approximations in the two zones. Indeed, several of these neurons had high pR2 455 
for models trained within condition (top left quadrants of Figure 10). 456 

Another possible explanation for this finding is that voluntary movements may change the 457 
afferent activity from the moving limb. This could be caused by altered descending gamma drive 458 
to muscle spindles that changes their sensitivity (Loeb et al. 1985; Prochazka and Wand 1981; 459 
Prochazka et al. 1976). Another possibility is that of an efference copy signal sent to the 460 
brainstem or S1 from motor areas during active movements (Bell 1981; London and Miller 2013; 461 
Nelson 1987). Many studies suggest that we use internal forward models of our bodies and 462 
environment to coordinate our movements and predict their sensory consequences (Shadmehr 463 
and Mussa-Ivaldi 1994; Wolpert et al. 1995). A key piece of this framework is comparing the 464 
actual feedback received following movement with the feedback predicted by the internal model, 465 
which generates a sensory prediction error. Recent studies suggest that S1 is important for 466 
updating the internal model using a sensory prediction error (Mathis et al. 2017; Nasir et al. 467 
2013). Thus, one potential avenue to study the effect of efference copy in S1 would be to 468 
examine how motor areas communicate with area 2 during active and passive movements. 469 

3.5 RELEVANCE FOR BCI 470 
One motivation for this work is its potential to augment brain-computer interfaces (BCI) for 471 
restoring movement to persons with spinal cord injury or limb amputation. As BCI for motor 472 
control gets more advanced (Collinger et al. 2013; Ethier et al. 2012; Kao et al. 2015; Young et 473 
al. 2018), it will become more necessary to develop a method to provide feedback about 474 
movements to the brain, potentially using intracortical microstimulation (ICMS) to activate 475 
somatosensory areas. While ICMS in S1 has seen some success in providing feedback about 476 
touch (Flesher et al. 2016; Romo et al. 1998; Salas et al. 2018; Tabot et al. 2013), the path 477 
towards providing proprioceptive feedback remains relatively unexplored. At least one study did 478 
use electrical stimulation in S1 for feedback during movement, using the stimulation to specify 479 
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target direction with respect to the evolving hand position (Dadarlat et al. 2015). In that study, 480 
monkeys used the ICMS to reach to targets, even in the absence of visual feedback. However, 481 
target-location information is very different from the information normally encoded by S1, and 482 
the monkeys required several months to learn to use it. To our knowledge, no study has yet 483 
shown a way to use ICMS to provide more biomimetic proprioceptive feedback during reaching. 484 
Previously, our lab attempted to address this gap by stimulating a small number of electrodes in 485 
area 2 based on neural activity recorded from them during normal reaching movements. In that 486 
experiment, the monkey reported the direction of a mechanical bump to his arm that occurred 487 
simultaneously with the ICMS. The ICMS biased one monkey’s reports of the mechanical bump 488 
direction toward the PDs of the stimulated electrodes. Key to this finding was the fact that any 489 
bias in reporting actually decreased the reward rate, suggesting that the ICMS was 490 
indistinguishable from the perception of the bump itself (Tomlinson and Miller 2016). 491 
Unfortunately, the result could not be replicated in other monkeys; while the ICMS often biased 492 
their reports, the direction of the bias could not be explained by the PDs of the stimulated 493 
electrodes. One potential reason may be that the stimulation paradigm in those experiments was 494 
derived from the classic, hand-based model and the assumption that area 2 represents active and 495 
passive movements similarly. As this paper has shown, both of these assumptions have important 496 
caveats. It is possible that a stimulation paradigm based on a whole-arm model may be more 497 
successful, due to its greater accuracy at predicting neural activity (Figure 7). It is also possible 498 
that the stimulus model would need to include information about forces in addition to 499 
kinematics. Regardless of the exact model, prospects for stimulating S1 to create natural 500 
proprioceptive sensations would likely improve given a more accurate generative model of S1 501 
activity. 502 

In addition to developing better models for S1 activity, it will be important to consider the 503 
implications of the difference between sensation for perception versus action. These two broad 504 
purposes for sensation are thought to involve distinct pathways in both vision and touch 505 
(Dijkerman and De Haan 2007; Mishkin and Ungerleider 1982; Sedda and Scarpina 2012). It is 506 
quite plausible that this distinction exists for proprioception as well (Dijkerman and De Haan 507 
2007). However, studies of the effects of ICMS in S1 tend to use perceptual reporting to test the 508 
effect of stimulation (Salas et al. 2018; Tomlinson and Miller 2016; Zaaimi et al. 2013), thereby 509 
not directly addressing how effectively ICMS can be used as feedback for action. Even in the 510 
study conducted by Dadarlat et al., movements guided by ICMS were slower and contained more 511 
submovements that those guided by even a noisy visual signal, suggesting that monkeys used the 512 
ICMS as a learned sensory substitute, rather than as a biomimetic replacement for 513 
proprioception. As such, that study was also likely a cognitive one, engaging the perceptual 514 
stream rather than the action stream of proprioception (see (Deroy and Auvray 2012; Elli et al. 515 
2014) for discussion of the limits of sensory substitution). As we better characterize how S1 516 
represents movements, we hope to develop a stimulation paradigm in which we can engage both 517 
streams, to enable users of a BCI both to perceive their limb, and to respond rapidly to 518 
movement perturbations.   519 
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4 CONCLUSION 520 

Our goal in conducting this study was to improve our understanding of how area 2 neural activity 521 
represents arm movements. We began by asking what we would learn about area 2 when we 522 
tracked the movement of the whole arm, rather than just the hand. The results of our first 523 
experiment showed that a model built on these whole-arm kinematics was highly predictive of 524 
area 2 neural activity, suggesting that it indeed represents the kinematic state of the whole arm 525 
during reaching. In our second experiment, we sought to extend these findings to similar 526 
movements when the limb is passively displaced. There, we found that while some neurons 527 
consistently represented arm kinematics, others did not, suggesting that the area may process 528 
active and passive movements differently, possibly with the addition of efference copy inputs. 529 

5 ACKNOWLEDGEMENTS 530 

We would like to thank Brian London for initial discussions of the active vs. passive result and 531 
Tucker Tomlinson, Christopher VerSteeg, and Joseph Sombeck for their help with training and 532 
caring for the research animals. Additionally, we would like to thank them, along with Matt 533 
Perich, Juan Gallego, Sara Solla, and the entire Miller Limb Lab for discussions and feedback 534 
that greatly improved this work. 535 

This research was funded by National Institute of Neurological Disorders and Stroke Grant No. 536 
NS095251 and National Science Foundation Grant No. DGE-1324585. 537 

6 METHODS AND MATERIALS 538 

Key Resources Table 

Reagent 
type 
(species) 
or 
resource 

Designation Source or 
reference Identifiers Additional information 

software, 
algorithm MATLAB MathWorks RRID:SCR_001622 

All code developed for 
this paper available on 
GitHub (See relevant 
sections of Methods) 

All surgical and experimental procedures were fully consistent with the guide for the care and 539 
use of laboratory animals and approved by the institutional animal care and use committee of 540 
Northwestern University under protocol #IS00000367. 541 
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6.1 BEHAVIOR 542 
We recorded data from a monkey while it used a manipulandum to reach for targets presented on 543 
a screen within a 20 cm x 20 cm workspace. After each successful reaching trial, the monkey 544 
received a pulse of juice or water as a reward. We recorded the position of the handle using 545 
encoders on the manipulandum joints. We also recorded the interaction forces between the 546 
monkey’s hand and the handle using a six-axis load cell mounted underneath the handle. 547 

For the two-workspace experiment, we partitioned the full workspace into four 10cm x 10cm 548 
quadrants. Of these four quadrants, we chose the far ipsilateral one and the near contralateral one 549 
in which to compare neural representations of movement. Before each trial, we chose one of the 550 
two workspaces randomly, within which the monkey reached to a short sequence of targets 551 
randomly positioned in the workspace. For this experiment, we only analyzed the portion of data 552 
from the end of the center-hold period to the end of the trial. 553 

For the active vs. passive experiment, we had the monkey perform a classic center-out (CO) 554 
reaching task, as described in (London and Miller 2013). Briefly, the monkey held in a target at 555 
the center of the full workspace for a random amount of time, after which one of four outer 556 
targets was presented. The trial ended in success once the monkey reached to the outer target. On 557 
50% of the trials (deemed “passive” trials), during the center hold period, we used motors on the 558 
manipulandum to deliver a 2 N perturbation to the monkey’s hand in one of the four target 559 
directions. After the bump, the monkey returned to the center target, after which the trial 560 
proceeded like an active trial. From only the successful passive and active trials, we analyzed the 561 
first 120 ms after movement onset. Movement onset was determined by looking for the peak in 562 
handle acceleration either after the motor pulse (in the passive condition) or after 200 ms post-go 563 
cue (in the active condition) and sweeping backwards in time until the acceleration was less than 564 
10% of the peak. 565 

6.2 MOTION TRACKING 566 
Before each reaching experiment, we painted 10 markers on the outside of the monkey’s arm, 567 
marking bony landmarks and a few points in between, a la (Chan and Moran 2006). Using a 568 
custom motion tracking system built from a Microsoft Kinect, we recorded the 3D locations of 569 
these markers with respect to the camera, synced in time to the other behavioral recordings. We 570 
then aligned the Kinect-measured marker locations to the lab frame by aligning location of the 571 
Kinect hand marker to the location of the handle in the manipulandum coordinate frame. Code 572 
for motion tracking can be found at https://github.com/limblab/KinectTracking.git. 573 

6.3 NEURAL RECORDINGS 574 
We implanted 100-electrode arrays (Blackrock Microsystems) into the arm representation of area 575 
2 of S1 in these monkeys. For more details on surgical techniques, see (Weber et al. 2011). In 576 
surgery, we roughly mapped the postcentral gyrus by recording from the cortical surface while 577 
manipulating the arm and hand to localize their representations. To record neural data for our 578 
experiments, we used a Cerebus recording system (Blackrock). This recording system sampled 579 
signals from each of the 96 electrodes at 30 kHz. To conserve data storage space, the system 580 
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detected spikes online using a threshold set at -5x signal RMS, and only wrote to disk a time 581 
stamp and the 1.6 ms snippet of signal surrounding the threshold crossing. After data collection, 582 
we used Plexon Offline Sorter to manually sort these snippets into putative single units, using 583 
features like waveform shape and inter-spike interval. 584 

6.4 SENSORY MAPPINGS 585 
In addition to recording sessions, we also occasionally performed sensory mapping sessions to 586 
identify the neural receptive fields. For each electrode we tested, we routed the corresponding 587 
recording channel to a speaker and listened to multi-unit neural activity while manipulating the 588 
monkey’s arm. We noted both the modality (deep or cutaneous) and the location of the receptive 589 
field (torso, shoulder, humerus, elbow, forearm, wrist, hand, or arm in general). We classified an 590 
electrode as cutaneous if we found an area of the skin, which when brushed or stretched, resulted 591 
in an increase in multi-unit activity. We classified an electrode as deep if we found activity to be 592 
responsive to joint movements and/or muscle palpation but could not find a cutaneous field. As 593 
neurons on the same electrode tend to have similar properties (Weber et al. 2011), we usually did 594 
not separate neurons on individual electrodes during mapping. However, when we did, we 595 
usually found them to have similar receptive field modality and location.  596 

In Monkeys C and H, we found a gradient of receptive field location across the array, 597 
corresponding to a somatotopy from proximal to distal. To quantify this gradient, we assigned 598 
each receptive field location a score from 1 to 7 (with 1 being the torso and 7 being the hand), 599 
and we fit a simple linear model relating this location on the limb to the x and y coordinates of 600 
electrodes on the array. We show the calculated gradients for Monkeys C and H as black arrows 601 
in Figure 1 (both significant linear fits with 𝑝 < 0.05). Monkey L’s array had too few neurons to 602 
calculate a significant linear model. 603 

6.5 NEURAL ANALYSIS 604 
Code for the following neural analyses can be found at https://github.com/raeedcho/s1-605 
kinematics.git. 606 

6.5.1 Preferred directions 607 
We used a simple bootstrapping procedure to calculate PDs for each neuron. On each bootstrap 608 
iteration, we randomly drew timepoints from the reaching data, making sure that the distribution 609 
of movement directions was uniform to mitigate the effects of any potential bias. Then, as in 610 
(Georgopoulos et al. 1982), we fit a cosine tuning function to the neural activity with respect to 611 
the movement direction, using equations 1a-b.  612 

𝑓((𝜏) = 𝑏. + 𝑏0 ∗ sin5𝜃7(𝜏)8 + 𝑏9 ∗ cos(𝜃7(𝜏))  (1𝑎) 613 

= 𝑏. + 𝑟( ∗ cos(𝜃7(𝜏) − 𝑃𝐷() 																	(1𝑏) 614 

where 615 

 𝑃𝐷( = 𝑎𝑡𝑎𝑛2(𝑏0, 𝑏9) and 𝑟( = 𝑠𝑞𝑟𝑡(𝑏09 + 𝑏99) 616 
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Here, 𝑓((𝜏) is the average firing rate of neuron 𝑖 for a given time point 𝜏, and 𝜃7(𝜏) is the 617 
corresponding movement direction, which for the active/passive task was the target or bump 618 
direction, and for the two-workspace experiment was the average movement direction over a 619 
time bin. We took the circular mean of 𝑃𝐷( and mean of 𝑟( over all bootstrap iterations to 620 
determine the preferred direction and the modulation depth respectively, for each neuron. 621 

As the PD analysis is meaningless for neurons that don’t have a preferred direction of movement, 622 
we only analyzed the PDs of neurons that were significantly tuned. We assessed tuning through a 623 
separate bootstrapping procedure, described in (Dekleva et al. 2018). Briefly, we randomly 624 
sampled the timepoints from reaching data, again ensuring a uniform distribution of movement 625 
directions, but this time also randomly shuffled the corresponding neural activity. We calculated 626 
the 𝑟( for this shuffled data on each bootstrap iteration, thereby creating a null distribution of 627 
modulation depths. We considered a neuron to be tuned if the true 𝑟( was greater than the 95th 628 
percentile of the null distribution. 629 

6.5.2 Models of neural activity 630 
For the two-workspace analyses, both behavioral variables and neural firing rate were averaged 631 
over 50 ms bins. For the active/passive analyses, we averaged behavioral variables and neural 632 
firing rates over the 120 ms period following movement onset in each trial. We modeled neural 633 
activity with respect to the behavior using Poisson generalized linear models (outline in 634 
(Truccolo et al. 2005)) shown in equation 2a, below. 635 

𝑓 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), 𝜆 = exp	(𝑋𝛽)  (2𝑎) 636 

In this equation,	𝑓 is a 𝑇 (number of time points) x 𝑁 (number of neurons) matrix of average 637 
firing rates, 𝑋 is a 𝑇 x 𝑃 (number of behavioral covariates, explained below) matrix of behavioral 638 
correlates, and 𝛽 is a 𝑃 x 𝑁 matrix of model parameters. We fit these GLMs by finding 639 
maximum likelihood estimation of the parameters, 𝛽U . With these fitted models, we predicted 640 
firing rates (𝑓U) on data not used for training, shown in equation 2b, below. 641 

𝑓U = exp	(𝑋𝛽U)  (2𝑏) 642 

We tested six firing rate encoding models, detailed below. Of these six models, the first two 643 
(hand-only and whole-arm) were the ones shown in the main text, with results from the other 644 
models detailed in Supplementary Information. Note that each model also includes an offset 645 
term, increasing the number of parameters, 𝑃, by one. 646 

• Hand-only: behavioral covariates were position and velocity of the hand, estimated by using 647 
the location of one of the hand markers, in three-dimensional Cartesian space, with origin at 648 
the shoulder (𝑃 = 7). 649 

• Whole-arm: behavior covariates were position and velocity of both the hand and elbow 650 
markers in three-dimensional Cartesian space, with origin at the shoulder. This is the 651 
simplest extension of the extrinsic model that incorporates information about the 652 
configuration of the whole arm (𝑃 = 13) 653 
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• Hand kinematics+force: behavioral covariates were position and velocity of the hand, as 654 
well as forces and torques on the manipulandum handle, in three-dimensional Cartesian 655 
space (𝑃 =13). 656 

• Egocentric: behavior covariates were position and velocity of the hand marker in spherical 657 
coordinates (𝜃, 𝜙, and 𝜌), with origin at the shoulder (𝑃 = 7). 658 

• Joint kinematics: behavioral covariates were the 7 joint angles (shoulder 659 
flexion/abduction/rotation, elbow flexion, wrist flexion/deviation/pronation) and 660 
corresponding joint angular velocities (𝑃 =15). 661 

• Muscle kinematics: behavioral covariates were derived from the length of the 39 modeled 662 
muscles (Chan and Moran 2006) and their time derivatives. However, because this would 663 
result in almost 78 (highly correlated) covariates, we used PCA to extract 5-dimensional 664 
orthogonal basis sets for both the lengths and their derivatives. On average, five 665 
components explained 99 and 96 percent of the total variance of lengths and length 666 
derivatives, respectively. Behavioral covariates of this model were the projections of the 667 
muscle variables into these spaces during behavior (𝑃 = 11). 668 

We used repeated 5-fold cross-validation to evaluate our models of neural activity, given that the 669 
models had different numbers of parameters, 𝑃. On each repeat, we randomly split trials into five 670 
groups (folds) and trained the models on four of them. We used these trained models to predict 671 
neural firing rates (𝑓Z[) in the fifth fold. We then compared the predicted firing rates from each 672 
model to the actual firing rates in that test fold, using analyses described in the following 673 
sections. This process (including random splitting) was repeated 20 times, resulting in n=100 674 
sample size for each analysis result. Thus, if a more expressive model with more parameters 675 
performs better than a simpler model, it would suggest that the extra parameters do provide 676 
relevant information about the neural activity not accounted for by the simpler models. 677 

6.5.3 Statistical tests and confidence intervals 678 
To perform statistical tests on the output of repeated 5-fold cross-validation, we used a corrected 679 
resampled t-test, outlined in (Ernst 2017) and (Nadeau and Bengio 2003). Here, sample mean 680 
and variance are calculated as in a normal t-test, but a correction factor needs to be applied to the 681 
standard error, depending on the nature of the cross-validation. Equation 3a-c shows a general 682 
case of this correction for R repeats of K-fold cross-validation of some analysis result 𝑑]^. 683 

�̂�a =
1

𝐾 × 𝑅ee𝑑]^

f

^g0

h

]g0

  (3𝑎) 684 

𝜎ja9 =
1

(𝐾 × 𝑅) − 1ee(
f

^g0

h

]g0

𝑑]^ − 𝜇ak)9  (3𝑏) 685 

𝑡lmnm =
�̂�a

o( 1
𝐾 × 𝑅 +

1/𝐾
1 − 1/𝐾)𝜎ja

9
  (3𝑐) 686 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/643205doi: bioRxiv preprint 

https://doi.org/10.1101/643205
http://creativecommons.org/licenses/by/4.0/


26 
 

We then compare the t-statistic here (𝑡lmnm) to a t-distribution with 𝐾 × 𝑅 − 1 degrees of 687 
freedom. Note that the correction applied is an extra term (i.e., 0/h

0r0/h
) under the square root, 688 

compared to the typical standard error calculation. Note that we performed all statistical tests 689 
within individual sessions or for individual neurons, never across sessions or monkeys. 690 

6.5.4 Bonferroni corrections 691 
At the beginning of this project, we set out to compare three of these six models: hand-only, 692 
egocentric, and muscle kinematics. In making pairwise comparisons between these models, we 693 
used 𝛼 = 0.05 and a Bonferroni correction of 3, for the three original comparisons. In this 694 
analysis, we found that the muscle model performed best. As we developed this project, 695 
however, we tried the three other models to see if they could outperform the muscle kinematics 696 
model, eventually finding that the whole-arm model, built on Cartesian kinematics of the hand 697 
and elbow outperformed it. As this appeared to be primarily due to modeling and measurement 698 
error in the muscle model (see Supplementary Information), we decided to focus on the hand-699 
only and whole-arm model. Despite only making one pairwise comparison in the main text, we 700 
chose to use a Bonferroni correction factor of 6: three for the original three pairwise comparisons 701 
and one more for each additional model we tested, which were compared against the best model 702 
at the time, and could have changed the end result of this project. 703 

6.5.5 Goodness-of-fit (pseudo-R2) 704 
We evaluated goodness-of-fit of these models for each neuron by using a pseudo-R2 (𝑝𝑅9) 705 
metric. We used a formulation of pseudo-R2 based on a comparison between the deviance of the 706 
full model and the deviance of a “null” model, i.e., a model that only predicts the overall mean 707 
firing rate (Cameron and Windmeijer 1997; 1996; Heinzl and Mittlböck 2003; Perich et al. 708 
2018). 709 

𝑝𝑅9 = 1 −
𝐷5𝑓(; 𝑓Z[8
𝐷5𝑓(; 𝑓(8

  (4𝑎) 710 

= 1 −
𝑙𝑜𝑔𝐿(𝑓() − 𝑙𝑜𝑔𝐿5𝑓Z[8
𝑙𝑜𝑔𝐿(𝑓() − 𝑙𝑜𝑔𝐿5𝑓(8

  (4𝑏) 711 

When computing the likelihood of a Poisson statistic, this is: 712 

= 1 −
∑ 𝑓(z
{g0 (𝜏) log~𝑓((𝜏)

𝑓Z[(𝜏)
� − �𝑓((𝜏) − 𝑓Z[(𝜏)�

∑ 𝑓(z
{g0 (𝜏) log ~𝑓((𝜏)

𝑓(
� − 5𝑓((𝜏) − 𝑓(8

  (4𝑐) 713 

This pR2 metric ranges from −∞ to 1, with a value of 1 corresponding to a perfectly fit model 714 
and a value of 0 corresponding to a model that only fits as well as the “null” model. In contrast 715 
with the general intuition for regular R2, a pR2 of ~0.2 is considered a “good” fit (McFadden 716 
1977). 717 
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6.5.6 Tuning curves 718 
We binned the trajectory into 16 bins, each 22.5 degrees wide, based on the mean direction 719 
across 50 ms of hand motion. For each directional bin, we calculated the sample mean and 95% 720 
confidence interval of the mean. In figures, we plotted this mean firing rate against the center-721 
point of the bin. 722 

6.5.7 Preferred direction shift 723 
We calculated PDs for each neuron in each workspace and found the predicted change in PD 724 
from the contralateral workspace to the ipsilateral workspace, given each model. We compared 725 
these changes to those observed for each neuron. The values of these PD shifts are shown in 726 
Figure 7 for all neurons tuned to movements in both workspaces, averaged over all 100 test 727 
folds. 728 

We computed a variance-accounted-for (VAF) metric, here called the “circular VAF” (cVAF) 729 
for each neuron (𝑖) in each fold as: 730 

𝑐𝑉𝐴𝐹( = 𝑐𝑜𝑠(𝛥𝜃��,( − 𝛥𝜃���,()  (5) 731 

As the cVAF metric is essentially the inner product of unit vectors with direction 𝛥𝜃��,( and 732 
𝛥𝜃���,(, it accounts for the circular domain of the PD shifts. Like regular VAF, the cVAF has a 733 
maximum value of 1 when 𝛥𝜃��,( and 𝛥𝜃���,( are the same, and decreases in proportion to the 734 
squared difference between 𝛥𝜃��,( and 𝛥𝜃���,(. We took the average cVAF over all neurons as 735 
the cVAF for the fold. In total, given the 20 repeats of 5-fold cross-validation, this gave us 100-736 
samples of the cVAF for each model in a given session. 737 

6.5.8 Separability index 738 
In the active/passive experiment, we calculated the separability index for each neuron by fitting a 739 
linear discriminant analysis (LDA) classifier, predicting trial type (active or passive) from the 740 
neuron’s average activity in the 120 ms after movement onset. As with the other neural analyses, 741 
we fit and evaluated each LDA classifier using our repeated 5-fold cross-validation scheme, 742 
calling the average test set classification percentage the neuron’s separability index. 743 

Our procedure for calculating the separability of the whole-arm kinematics was similar, simply 744 
substituting the whole-arm kinematics for the neural activity when training and testing the LDA 745 
classifier. 746 

7 SUPPLEMENTARY INFORMATION 747 

7.1 WITHIN CLASS MODEL COMPARISONS 748 
Over the course of this project, we analyzed several different models of area 2 activity. We 749 
categorized these models into two classes based on whether they contained information about the 750 
hand or the arm in different coordinate frames. Of these models, we picked the hand-only and 751 
whole-arm models to represent the two model classes in the main paper, as we found that the 752 
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other within-class models offered little additional insight into area 2 activity. For completeness, 753 
however, this section expands on the comparisons between within-class models. 754 

7.1.1 Hand model comparison 755 
Two of our models used the kinematics of hand movement as behavioral covariates for area 2 756 
neural activity: the hand-only model in the main paper and the egocentric model, which 757 
represents hand kinematics in a spherical coordinate frame with origin at the shoulder. While the 758 
egocentric model, or a model like it, has been proposed as a possible coordinate frame for 759 
representation of the limb (Bosco et al. 1996; Caminiti et al. 1990), we found that it performed 760 
rather poorly at explaining neural activity in area 2 from the two-workspace task. Figure 7 – 761 
figure supplement 1A and B show comparisons between the hand-only model and the egocentric 762 
model in terms of pR2 and tuning curve correlation, as in the main paper. These comparisons 763 
show that the hand-only model tended to out-perform the egocentric model. Further, the 764 
egocentric model predicted large shifts in PD between the two workspaces (Figure 7 – figure 765 
supplement 1C) that did not match up at all to the actual PD shifts. 766 
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 767 
Figure 7 – figure supplement 1: Comparison between hand-only model and egocentric model. A – pR2 768 
comparison, as in Figure 4. B – tuning curve correlation comparison, as in Figure 6. C – Modeled PD 769 
shift compared to actual PD shift for egocentric model, as in Figure 7A.  770 

7.1.2 Arm model comparison 771 
In addition to the whole-arm model detailed in the main paper, we tested two models of area 2 772 
activity based on biomechanics: one based on joint kinematics and the other based on 773 
musculotendon lengths. To find these behavioral covariates, we registered these marker locations 774 
to a monkey arm musculoskeletal model in OpenSim (SimTK), based on a model of the macaque 775 
arm published by (Chan and Moran 2006), and which can be found at 776 
https://github.com/limblab/monkeyArmModel.git. After scaling the limb segments of the model to 777 
match those of each monkey, we used the inverse kinematics analysis tool provided by OpenSim 778 
to estimate the joint angles (and corresponding muscle lengths) required to match the model’s 779 
virtual marker positions to the positions of the actual recorded markers. Previously, Chan and 780 
Moran used this model to analyze the joint and muscle kinematics as a monkey performs a center 781 
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out task (Chan and Moran 2006). Here, we use the musculoskeletal model to predict neural 782 
activity. 783 

Figure 7 – figure supplement 2A and B show comparisons of pR2 and tuning curve correlation 784 
between the whole-arm model detailed in the paper and these two biomechanical models. We 785 
found that the three models provided similar predictions, but surprisingly, the whole-arm model 786 
generally outperformed the biomechanical models. Figure 7 – figure supplement 2C shows the 787 
predicted PD shifts from these models, as in Figure 7A. We found that neither biomechanical 788 
model could predict PD shifts as well as the whole-arm model, though the muscle model in 789 
particular appeared to perform well. 790 

As a control for errors introduced into the muscle model by processing marker data with 791 
OpenSim, we performed the cVAF analysis on a whole-arm model where hand and elbow 792 
kinematics were derived from joint angles of the musculoskeletal model, rather than directly 793 
from the marker locations captured by the motion tracking system. We re-ran the model 794 
prediction analysis for only the muscle model, marker-derived whole-arm model, and OpenSim-795 
based whole-arm model. Unsurprisingly, we found average cVAFs similar to those from the 796 
main analysis for the marker-derived whole-arm model (0.75). However, the cVAF for the 797 
OpenSim-based whole-arm model (0.67) dropped to that for the muscle model (0.67). This 798 
suggests that the difference in predictive capability between the muscle and whole-arm models 799 
stems at least in part from errors introduced in OpenSim modeling, rather than from the whole-800 
arm model necessarily being the better model for area 2 neural activity. 801 
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 802 
Figure 7 – figure supplement 2: Comparison between whole-arm model and biomechanical models (joint 803 
kinematics and musculotendon length). Same arrangement as in Figure 7 – figure supplement 1.  804 
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7.1.3 Discussion of arm model comparisons 805 
As proprioceptive signals originate in the muscles, arising from muscle spindles and Golgi 806 
tendon organs, we expected to find that the muscle model would outperform the other models. 807 
However, there are several potential reasons why this was not so. The most important ones can 808 
be divided into two categories loosely tied to 1) errors in estimating the musclulotendon lengths, 809 
through motion tracking and musculoskeletal modeling, and 2) the fidelity of the muscle model 810 
to the actual signals sent by the proprioceptors. 811 

In the first category, the main issue is that of error propagation. The extra stages of analysis 812 
required to compute musculotendon lengths (registering markers to a musculoskeletal model, 813 
performing inverse kinematics to find joint angles, and using modeled moment arms to estimate 814 
musculotendon lengths) introduce errors not present when simply using the positions of markers 815 
on the arm. As a control, we ran the whole-arm model through two of these extra steps by 816 
computing the hand and elbow positions from the joint angles of the scaled model, estimated 817 
from inverse kinematics. The results of this analysis showed that the performance of the whole-818 
arm model with added noise dropped to that of the muscle model, indicating that there are, in 819 
fact, errors introduced in even this portion of the processing chain.  820 

The other potential source of error in this processing chain stems from the modeled moment 821 
arms, which might not accurately reflect those of the actual muscles. In developing their 822 
musculoskeletal model, Chan and Moran collected muscle origin and insertion point 823 
measurements from both cadaveric studies and existing literature (Chan and Moran 2006). 824 
However, due to the complexity of some joints, along with ambiguity of how the muscle wraps 825 
around bones and other surfaces, determining moment arms purely by bone and muscle geometry 826 
is a difficult problem (An et al. 1984). Because moment arms are irrelevant for determining hand 827 
and elbow kinematics, we could not subject the whole-arm model to the error introduced by this 828 
step. 829 

In addition to the questions of error propagation and musculoskeletal model accuracy is the 830 
question of whether our muscle model was truly representative of the signals sensed by the 831 
proprioceptors. The central complication is that spindles sense the state of the intrafusal fibers in 832 
which they reside, and have a complex, nonlinear relation to the musculotendon length that we 833 
used in our muscle model. Factors like load-dependent fiber pennation angle (Azizi et al. 2008), 834 
or tendon elasticity (Rack and Westbury 1984) can decouple muscle fiber length from 835 
musculotendon length. Additionally, intrafusal fibers receive motor drive from gamma motor 836 
neurons, which continuously alters muscle spindle sensitivity (Loeb et al. 1985; Prochazka and 837 
Wand 1981; Prochazka et al. 1976) and spindle activity also depends on the history of strain on 838 
the fibers (Haftel et al. 2004; Proske and Stuart 1985). Altogether, this means that while the 839 
musculotendon lengths we computed provide a reasonably good approximation of what the arm 840 
is doing, they may not be a good representation of the spindle responses themselves. Spindle 841 
activity might be more accurately modeled when given enough information about the 842 
musculotendon physiology. However, to model the effects of gamma drive, we would either 843 
have to record directly from gamma motor neurons or make assumptions of how gamma drive 844 
changes over the course of reaching. In developing models of neural activity, one must carefully 845 
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consider the tradeoff between increased model complexity and the extra error introduced by 846 
propagating through the additional requisite measurement and analysis steps. Given our data 847 
obtained by measuring the kinematics of the arm with motion tracking, it seems that the 848 
coordinate frame with which to best explain area 2 neural activity is simply the one with the 849 
most information about the arm kinematics and the fewest steps in processing. However, this 850 
does not rule out the idea that area 2 more nearly represents a different whole-arm model that 851 
may be less abstracted from physiology, like musculotendon length or muscle spindle activity. 852 

Still, this model comparison shows that even after proprioceptive signals reach area 2, neural 853 
activity can still be predicted well by a convergence of muscle-like signals, even though the 854 
signals have been processed by several sensory areas along the way. One potential explanation 855 
for this is that at each stage of processing, neurons simply spatially integrate information from 856 
many neurons of the previous stage, progressively creating more complex response properties. 857 
This idea of hierarchical processing was first used to explain how features like edge detection 858 
and orientation tuning might develop within the visual system from spatial integration of the 859 
simpler photoreceptor responses (Felleman and Van Essen 1991; Hubel and Wiesel 1959; 1962). 860 
This inspired the design of deep convolutional artificial neural networks, now the state of the art 861 
in machine learning for image classification (Krizhevsky et al. 2012). Unlike previous image 862 
recognition methods, these feedforward neural networks are not designed to extract specific, 863 
human-defined features of images. Instead, intermediate layers learn to integrate spatially 864 
patterned information from earlier layers to build a library of feature detectors. In the 865 
proprioceptive system, such integration, without explicit transformation to some intermediate 866 
movement representation, might allow neurons in area 2 to serve as a general-purpose library of 867 
limb-state features, whose activity is read out in different ways for either perception or use in 868 
motor control. 869 

7.1.4 Hand kinematic-force model 870 
Overall, our main results showed that the whole-arm model better captures firing rates and 871 
features of the neural activity than does the hand-only model. One consideration in interpreting 872 
these results is the fact that the whole-arm model is almost twice as expressive as the hand-only 873 
model, due to its greater number of parameters. While we took care to make sure the models 874 
were not overfitting (see Methods for details on cross-validation), a concern remains that any 875 
signal related to the behavior may improve the fits, simply because it provides more information. 876 
To address this concern, we would ideally compare these results with those from a model with 877 
the same number of parameters, but with behavioral signals uncorrelated with elbow kinematics, 878 
e.g., kinematics of the other hand. Unfortunately, due to experimental constraints, we only 879 
collected tracking information from the reaching arm. As a substitute, we also tested a model we 880 
titled “hand kinematic-force”, which builds on the hand-only kinematic model by adding the 881 
forces and torques on the manipulandum handle. This model is similar to one proposed by 882 
(Prud'homme and Kalaska 1994) and has the same number of parameters as the whole-arm 883 
model. While the handle forces and torques are likely correlated with the elbow kinematics, this 884 
model serves as a reasonable control to explore the particular importance of whole-arm 885 
kinematics to area 2. 886 
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Figure 7 – figure supplement 3 shows comparisons between the whole-arm model and the hand 887 
kinematic-force model on the three metrics we used. We found that the pR2 and the tuning curve 888 
correlation values for both models were comparable, with some neurons better described by the 889 
whole-arm model and others by the kinematic-force model. However, we also found that the 890 
hand kinematic-force model often could not predict large changes in PD as well as the whole-891 
arm model could (Figure S3C and 7). In four out of eight sessions, the whole-arm model had a 892 
significantly higher cVAF than the hand kinematic-force model. In the other sessions, there was 893 
no significant difference. While the two models made similar activity predictions, the better PD 894 
shift predictions suggest that the whole-arm model is a better model for area 2 neural activity. 895 

 896 
Figure 7 – figure supplement 3: Comparison between whole-arm model and hand kinematic-force model 897 
(shortened as “Kin-Force”). Same format as Figure 7 – figure supplements 1 and 2.  898 
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