
Estimating MIC distributions and cutoffs

through mixture models: an application to

establish M. Tuberculosis resistance.

Clara Grazian1

1 Università degli Studi “Gabriele d’Annunzio”, Italia

Abstract

Antimicrobial resistance is becoming a major threat to public health

throughout the world. Researchers from around the world are at-

tempting to contrast it by developing both new antibiotics and patient-

specific treatments. It is, therefore, necessary to study these treat-

ments, via phenotypic tests, and it is essential to have robust methods

available to analyze the resistance patterns to medication, which could

be applied to both new treatments and to new phenotypic tests. A

general method is here proposed to study minimal inhibitory concen-

tration (MIC) distributions and fixed breakpoints in order to separate

sensible from resistant strains. The method has been applied to a new

96-well microtiter plate.

Keywords: mixture model ; Dirichlet processes ; censored data ;

MIC distributions ; antimicrobial resistance

Public health authorities throughout the world are becoming more
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and more concerned about antimicrobial resistance (AMR), due to

the reduced ability of standard compounds to treat infectious diseases

WHO (2017); European Commission (2017); Gelband et al. (2015).

Antimicrobial resistance mechanisms have been observed in bacteria

Tenover (2006); Zignol et al. (2006); Kohanski et al. (2010), in fungi

Perea et al. (2001); Vandeputte et al. (2011); Gulshan and Moye-

Rowley (2007) and in viruses Unemo and Nicholas (2012); Yim et al.

(2006); Harrigan et al. (2005).

Methods used to tackle the rise in AMR include a wiser prescrip-

tion of antimicrobials, in order to develop patient-specific treatments

that take into account known resistance patterns. Such patterns are

studied through antimicrobial susceptibility testing (AST) to identify

at which concentration of a particular drug the growth of the pathogen

is inhibited. In this respect, microtiter plates allow the effectiveness of

several drugs to be tested at the same time on a single clinical isolate.

Traditionally, AST methods generally rely on the definition of crit-

ical concentrations (CC), i.e. values used to differentiate between re-

sistant and sensitive isolates which are specific to the antimicrobial

agent and to the test method.

Antimicrobial data, obtained through dilution methods Wiegand

et al. (2008) are registered as minimum inhibitory concentration (MIC)

values, expressed in milligrams per litre (mg/l). MIC is defined as the

minimal concentration of an antimicrobial substance that inhibits the

visual growth of a pathogen after incubation. Since this type of test

is more accurate than diffusion tests, MICs are considered the golden

standard of susceptibility tests Turnidge and Paterson (2007). Ac-
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cording to the experiment design adopted to obtain MIC values, the

data of a specific drug is usually obtained in the form of a distribution.

In this paper, MIC values obtained from dilution experiments on

a 96-well microtiter plate containing a liquid growth medium (broth)

are analyzed, where the same dose of pathogen is cultured in each

well, but in the presence of successively increasing antimicrobial con-

centrations. The MIC value is identified as the concentration of the

first well which does not allow pathogen to grow. By convention, if no

growth is observed in any well, the MIC is set to the lowest concentra-

tion available and, if growth is inhibited at each concentration level,

the MIC is set to an agreed higher level of antimicrobial concentration

that has not studied on the plate.

To the best of the author’s knowledge, neither clinical breakpoints

nor epidemiological cutoffs have been defined for any microtiter plate.

The aim of this work is to propose and compare statistical methods

in order to define such thresholds.

Although the methods presented in this paper may be applied to

any pathogen and any dilution method, the attention has been focused

on M. Tuberculosis, given the importance of the resistance mechanisms

developed by this pathogen. There is proof that the trend of the new

cases of tuberculosis is decreasing Dheda et al. (2017), but the num-

ber of cases resistant to one or more drugs, in particular to first-line

drugs (rifampicin, ethambutol, isoniazid and pyrazinamide) is increas-

ing WHO (2015); Falzon et al. (2015). There are two main causes of

the development of drug resistance, that is, either the prescription of

suboptimal treatments or direct transmission.
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The detection of resistance in microbiology laboratories is expected

to become faster and less expensive in order to provide essential guid-

ance to define more tailored and effective treatment schemes, and the

identification of thresholds to discriminate resistant from sensitive iso-

lates is essential. The critical concentrations of most of the anti-TB

drugs have been recently revised and updated by the World Health Or-

ganisation WHO (2018), through an extensive study of the literature,

and it has emerged that the identification of critical concentrations is

not a simple task, as is usually assumed. However, the identification

of critical concentrations is an essential step for any subsequent anal-

ysis; for instance, it could be important, in genome-wide association

studies Hirschhorn and Daly (2005), to define phenotypic subgroups

in order to identify the mutations associated with specific levels of re-

sistance more clearly, in particular for those antimicrobials for which

only a few resistant cases are observed (for example, when studying

bedaquiline which is a new treatment for tuberculosis): in these cases,

a GWAS study would describe a “wild-type” structure rather than

genomic features associated with resistance.

Establishing a reliable phenotypic labeling of resistance during

drug susceptibility tests is an essential step to develop reliable test-

ing methods and to perform analysis on the identification of resistant

mutations.
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1 The dataset: resistance prediction

by CRyPTIC

The CRyPTIC Consortium (Comprehensive Resistance Prediction for

Tuberculosis: an International Consortium) has been created in order

to collect and study around 20, 000 isolates of M. Tuberculosis and de-

fine a catalogue of mutations associated with resistance to 14 antitu-

berculosis compounds: three first line drugs (isoniazid INH, rifampicin

RIF, ethambutol EMB), other drugs already used in practice as antitu-

berculosis compounds (amikacin AMI, kanamycin KAN, ethionamide

ETH, phage-antibiotic synergy PAS, levofloxacin LEV, moxifloxacin

MXF), two new compounds (delamanid DLM, bedaquiline BDQ) and

two repurposed compounds (clofazimine CFZ, linezolid LZD).

As part of the project, the CRyPTIC Consortium have designed

a UKMYC5 96-well microtiter plate. The plate has been tested by

seven laboratories in Asia, Europe, South America and Africa by us-

ing 19 external quality assessment (EQA) strains, including the most

studied strain of tuberculosis, H37Rv. Samples vere inoculated either

2 or 10 times and each plate was then incubated for 21 days. Two

researchers from each laboratory were asked to independently identify

the MIC values for each plate at four moments after incubation (day

7, day 10, day 14 and day 21) with three reading methods: Vizion

imaging system, a mirrored box and an inverted-light microscope. A

full description of the experiment and of the results in terms of repro-

ducibility of the plate are available in Rancoita et al. (2018). Since the

authors identified the highest level of reproducibility for readings at
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Table 1: Number of isolates for each compound analysed in the CRyPTIC
plate

Compound n Compound n
AMI 828 KAN 828
BDQ 825 LEV 828
CFZ 830 LZD 829
DLM 824 MXF 829
EMB 830 PAS 830
ETH 825 RFB 829
INH 825 RIF 829

day 14 with the Vizion imaging system, we will focus only on data rel-

ative to this subset. Moreover, Rancoita et al. (2018) also shown that

the compound PAS seems to not perform well on the plate, therefore

it will be discarded in the following of the CRyPTIC study. For these

reason, the outcome relative to PAS will be presented in this work,

but considered more uncertain.

Notice that, as already stated, the isolates analysed in the study

were subcultured several times, therefore there are repeated observa-

tions for the same sample, feature that will be considered in the model

we will present. Table 1 shows the number of plates analysed for each

drug, while Figure 1 shows the barplots of the MIC distributions for

each compound: it is evident that some drugs show a classic bimodal

distribution (RIF, RFB, INH, AMI, KAN and partially PAS), some

others show a clear distribution for the sensitive cases (BDQ, CFZ,

DLM), while others show a more unimodal distribution (EMB, LZD)

or show distributions more spread around all the concentration range

(ETH, LEV, MXF). After the validation experiment, the plate design

has been changed, following the findings obtained by the analysis. We

decided that the present work will use results obtained with the first
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Figure 1: Barplots of the MIC distributions for each drug.

plate design only, so that all the results are comparable.

Figure 1 also shows an important feature of the dataset and, in

general, of the problem of studying MIC distributions: the data are

censored. Firstly, the MIC value is only partially known at the bound-

ary of the concentration range analysed; this is particularly evident

for AMI, CFZ, DLM, INH, KAN, RFB and RIF. Secondly, the MIC

values are not continuous variables, they are observed at fixed level of

concentrations (interval-censoring).

2 Statistical approaches to MIC dis-

tributions

For a single drug, defining the epidemiological cutoffs (ECOFFs) is

essentially a binary classification problem, with the aim to separate
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the wild type isolates from the non-wild type ones, where the wild-

type group includes the isolates with no acquired resistance. Visual

inspection is the most straightforward way to analyze MIC data (Mac-

Gowan and Wise, 2001). From a statistical point of view, it is possible

to assume that the wild-type group of isolates follows a log-normal dis-

tribution (Turnidge et al., 2006) and to identify the cutoffs by fitting

a log-normal cumulative distribution by sequentially adding subsets

of isolates. The optimal fit of the wild-type subpopulation is obtained

when the minimal absolute difference between the estimated number

of wild-type isolates and the observed number of isolates is achieved;

the cutoffs is a reasonable upper limit of the wild-type distribution.

More sophisticated statistical methods based on the analysis of wild-

type isolates only are also available (Jaspers et al., 2014).

The empirical distributions described in Figure 1 show that the

MIC values have a complex structure and standard models does not

seem to appropriately fit the data. Different from the “local” meth-

ods, the “global” methods aim at modelling the whole mixing dis-

tribution (Jaspers et al., 2016): the identification of epidemiological

cutoffs become a model-based classification problem. We propose to

use an approach based on mixture models. These are very flexible

tools used in various scientific areas, which can be used to tackle ei-

ther clustering or density estimation problems. The reasons to fit a

Bayesian mixture model is motivated by two aspects. First, it seems

more appropriate to model the whole mixing structure rather than

only the wild-type group of isolates, since the classification is unsu-

pervised and the microtiter plates under study are characterized by
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biological noisiness; moreover, there exist overlapping areas in the dis-

tributions which could not be appropriately classified. The standard

way to define a wild-type group is by looking at those isolates with no

known conferring-resistance mutations. However, the complete pat-

terns of resistance are not known for most of the drugs under analysis

and for the new drugs are almost completely unknown. Secondly, the

Bayesian framework allows for the natural incorporation of variabil-

ity, taking into account biological errors in the definition of the MIC

values.

Consider a random variable Y = (Y1, . . . , Yn) of size n. A mix-

ture model assumes that the distribution of Yi can be written as a

composition of distributions known in closed form

g(yi) =
K∑
k=1

πkfk(yi) (1)

where fk(·)’s are the component probability distributions of the mix-

ture and πk’s are known as mixture weights and are such that 0 ≤

πk ≤ 1 and
∑K

k=1 πk = 1. Even if the probability distributions fk(·)

are free to come from any family (and they can also model either

discrete or continuous random variables), in many applications it is

usually assumed that all the distributions in the mixture come from

the same family denoted by different parameters.

The number of component K is, in general, unknown and can be

considered both unknown but finite (finite mixture models) or infinite

(nonparametric mixtures). We refer the reader to Titterington et al.

(1985) and Frühwirth-Schnatter (2006) for comprehensive books on

finite mixture models and to Hjort et al. (2010) for a description of
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Bayesian nonparametric methods, including infinite mixture models.

This type of modelling fits well when it is assumed that there are

underlying subgroups in the population and which are present with

proportions π1, . . . , πK : in the present work, the bacterial popula-

tion under analysis can be considered heterogeneous, more specifically

two main subgroups can be identified, one representing the wild-type

susceptible population, i.e. organisms with no acquired resistance,

and one representing the non-wild-type population containing isolates

which have developed some level of resistance to certain antimicro-

bials. However, the resistance mechanism is complicated: while the

wild-type group tend to be clearly unimodal (Finch et al., 2010), and,

often, considered log-normally distributed (Turnidge et al., 2006), the

non-wild-type subgroup can be defined by several resistance mecha-

nisms, which may confer different degrees of resistance. An example

(Huyen et al., 2013) is the difference between mutations involving

katG gene (associated to high level of resistance to INH - resistant to

≥ 1.6µg/ml in the UKMYC5 CRyPTIC plate) with respect to muta-

tions involving inhA gene (associate to intermediate levels of resistance

to INH resistant to 0.2µg/ml in the UKMYC5 CRyPTIC plate). For

these reasons, we consider the number of components K as unknown.

The model-based classification separates the isolates in the wild-

type subgroup when

π1f1(yi)

π1f1(yi) + (1− π1)f2(yi)
≥ 0.5. (2)

Here, the estimation of the MIC distributions is instrumental to

establish cuttofs to classify the isolates into levels of resistance to the
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antimicrobials. It has to be briefly noted that mixture models can also

be used in the general setting of density estimation, where the under-

lying separation in subgroups has not necessarily a biological meaning;

for example, if we consider susceptibility/resistance as a gradual and

continuous scale with no clear distinction between two groups, mixture

models can still be used to estimate the MIC distribution.

There exist several proposals in the literature to model the MIC

distributions through mixture models. The most famous is using mix-

ture of two Gaussian distributions for the logarithm of the MIC val-

ues (Craig, 2000; Annis and Craig, 2005). However, although the MIC

values can be considered ideally continuous, they are registered as dis-

crete values, more specifically as counts for every dilution. Moreover,

as already stated, considering a fixed and known number of compo-

nents is a strong assumption when the mechanism of resistance are

not yet fully understood.

3 The proposed models

We decide to implement a Bayesian analysis (Robert, 2007), so to

have posterior distributions (and relative credible intervals) of all the

parameters involved in the model. As part of the analysis, it is neces-

sary to define prior distributions for all the parameters in the model,

describing the prior knowledge the experimenter has about them. We

have decided to use the default prior proposed in Grazian et al. (2018)

for the number of components since it has been shown to have a good

balance between conservativeness and accuracy and standard vague
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priors for the rest of the parameters as in Richardson and Green

(1997), in order to reduce the influence of the prior on the posterior

distribution. Bayesian estimation of mixture models is a non-standard

problem, therefore Monte Carlo Markov chains (MCMC) methods are

needed to approximate the posterior distribution (Robert and Casella,

2013).

Define a family of random distributions F = (Fx, x ∈ X ), indexed

by a categorical covariate x, which may be a vector: x = (d, s), where

d = (1, . . . , 14) represents the tested drug and s = (1, . . . , 19) repre-

sents the particular strain tested.

Moreover, let y1, . . . ,yn be observations representing MIC values

observed for isolates 1, . . . , n. Each isolate have been tested several

times, therefore yxi represents the i-th repetition under condition x.

Mixture of Gaussian distributions

First, we assume a Gaussian mixture model for the MIC values

g(yi;µ, σ
2) =

K∑
k=1

πkN (yi | µk, σ2k) i = 1, . . . , n (3)

where µk and σ2k are the mean and the variance of the k-th component

respectively and yi = yxi.

Since each strain has been subcultured several times, the MIC

value related to each strain has been identified on several plates, see

Table 2. Therefore, the distribution g(·) depends on the set of covari-

ates x, specifying the tested compound and strain. In particular, we
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Table 2: Number of plates for each isolates analysed
WHO Id Strain ns Compound ns

TJK98 574 W2566 671
ATW121749 666 W2249 392
ATW132481 546 W791 657
ATW132484 644 ALB28 364
VI-25 DLM 560 ALB29 362
W3821 600 TNS1218 335
W8610 644 TNS1959 322
W5136 713 ZH1231 348
W9218 335 ZH1242 279
H37rV 2677

assume that

yi|x,k = ad,k + bs,d,k + εi,k (4)

εi,k ∼ N (0, σ2k)

where ad,k is an intercept specific to the tested compound and bs,d,k is

an intercept specific to the tested strain with respect to compound d.

Equation 4 shows that a mixture model can be interpreted in a

missing data framework: one could suppose the existence of a la-

tent variable Zi taking the values in {1, . . . ,K} with probabilities

{π1, . . . , πK} and labelling the component to which the observation

belongs; in other words, the conditional density of Yi diven Zi = k

corresponds to the Gaussian distribution N (µk, σ
2
k). It follows that

Zd = (Z1,d, . . . , Zns,d) is distributed according to a multinomial dis-

tribution. This latent variable representation is useful for increase the

computational efficiency of MCMC algorithms (Diebolt and Robert,

1994).

This approach is extremely flexible, since it considers both the

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 20, 2019. ; https://doi.org/10.1101/643429doi: bioRxiv preprint 

https://doi.org/10.1101/643429
http://creativecommons.org/licenses/by-nc-nd/4.0/


possibility that there are more than two subgroups in the data, by

allowing to consider intermediate levels of resistance, and the possi-

bility that the data are not exactly distributed as Gaussian variables:

in particular, the “non-wild-type” component may be defined as a

convolution of Gaussian distributions itself.

Gaussian latent representation through mixture

models

Although the previously proposed approach is very flexible, it does not

take into account the censored nature of the data: MIC values are not

actually continuous, they are rounded to the next two-fold dilution.

Moreover, the data are essentially truncated to the minimum and to

the maximum dilution chosen for the plate.

It is, then, possible to consider a mixture of distributions, where

the discrete nature of the data is taken into account by rounding con-

tinuous (for instance, Gaussian) distributions. We introduce a latent

variable Y∗ ∈ R which is related to the observed variable Y repre-

senting the registered MIC value, so that:

yi,ds =



dilution1,d y∗i,ds < dilution1,d

...

dilutionj,d dilution(j−1),d ≤ y∗i,ds < dilutionj,d

...

dilutionmax,d y∗i,ds ≥ dilutionmax,d

i.e. the observed yi assumes values in the set of the dilutions chosen for

14
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the drug d depending on a Gaussian latent variable y∗i which can take

value out of the set of the dilutions and which has the distribution de-

scribed in Equation (3). Given a set of values representing the different

dilutions {ci}∞i=0 taking values in {−∞, dilution1,d, . . . , dilutionj,d, . . . ,+∞},

the probability mass function p for y is defined as

p(yi,ds = dilutionj,d) =

∫ aj+1

aj

g(y∗)dy∗.

where y∗ is assumed to follow the distribution given in (3). This

approach may be seen as a latent Gaussian representation, along the

line of Albert and Chib (1993). The mixing nature of the data is

transferred to an implicit and richer variable which is censored and

then observed only at a discrete scale.

There exist several approaches which generalize the algorithm pro-

posed by Albert and Chib (1993) to mixture models, in particular in

a nonparametric setting; for example, Kotta et al. (2005) proposes a

nonparametric estimation based on infinite mixture models. Never-

theless, in this work we prefer to use a parametric mixture model with

unknown number of components, in order to introduce the informa-

tion that a small number of components is expected. In particular,

Miller and Harrison (2014) shows an inconsistency of Dirichlet process

priors to estimate the right number of components; in this respect, we

have performed a separate analysis based on Dirichlet process priors,

showing that the number of components has always been estimated

as the maximum number of dilutions (results not shown here).

It is straightforward to define the corresponding Gibbs-sampler

algorithm, which is described in Figure 2:
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• Step 1: Generate y∗i from the full conditional distributions:

ui ∼ Unif(0, 1)

y∗i = Φ−1(ui;µzi , σ
2
zi)

• Step 2: Update K

• Step 3: Update the latent variable Zi following a multinomial

distribution with probabilities

Pr(Zi = k)
πk[Φ(yi + 2 | µk, σ

2
k)− Φ(yi | µk, σ

2
k)]∑K

h=1 πh[Φ(yi + 2 | µh, σ2
h)− Φ(yi | µh, σ2

h)]
(5)

• Step 4:

– Step 4a: Update π

– Step 4a: Update µ

– Step 4a: Update σ2

4 Applications

The methods proposed in Section 3 is now applied to the dataset

described in Section 1. The goal of the analysis is to estimate the

distributions of the MIC values for each of the drugs evaluated on the

microtiter plate and to identify breakpoints for the plate itself. The

estimated method is based on MCMC simulations, and the evaluation

of the convergence is available in the Supporting Information.

The ECOFFs identified with the censored Gaussian mixture model

have been compared with three other methods: the critical concen-
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yi p(yids)

y∗i
∑K

k=1 πkN (µk σ
2
k)

K π µ σ

Figure 2: Graph representing the model: the circles are variables and the
rectangle the observations. The latent variable Y ∗i is assumed to follow a
hyperprior defined as a Gaussian mixture model with parameters given in
the grey circles.

trations identified in the recent WHO report WHO (2018) for MGIT,

which is generally considered as the golden standard; the empirical

cumulative distribution function approach for the wild-type group

(identified as the only isolate H37Rv), as suggested by the European

Committee on Antimicrobial Susceptibility Testing (EUCAST) and

implemented in the ECOFFinder program EUCAST (2017), with two

threshold quantiles (q = 0.90 and q = 0.95).

When a Gaussian mixture model is fitted directly to the data,

the number of components is always estimated between three or four

components (which are values unlikely for most of the compounds) and

ECOFFs tend to be identified at lower levels (the obtained results are

shown in the Supporting Information).

Figure 6 shows that the densities have been estimated correctly;

an interesting property of the proposed method is that it is possible to

deal with both interval censoring (related to the fact that the obser-

vations are registered at fixed dilutions) and censoring at the bounds
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(related to the fact that a minimal and a maximal dilution are chosen

to test the isolates): the means of the components can be estimated

out of the plate observational range.

Several comments can be made from an observation of Table 3. It

is evident that the correct choice of the level of the quantile is essential

to identify a reasonable ECOFF, and it may be changed according to

the drug. However, it is a priori difficult to fix this level. There are

drugs which clearly show a not-bimodal distribution, EMB, ETH and

LZD in particular. The CRyPTIC consortium decided to change the

concentrations considered in the study for these compounds, and in

this way ECOFFs will be identified better in the future.

As already mentioned, PAS does not seem to have a recognisable

distribution either, and it was removed from the study, therefore the

identified ECOFF should be considered with caution.

The censored GMM and the cumulative distribution approach with

a quantile of level 0.90 seems to produce similar results for the other

drugs. However, the second approach is more conservative and tends

to fix the critical concentrations at a lower level. The probability of

identifying all the isolates that show mutations known to confer resis-

tance to the specific drug as non-wild-type is higher for the cumulative

distribution approach (Table S2 in the Supplementary Information),

although it is similar to that obtained with the censored GMM for

most of the cases. Nevertheless, the probability of identifying the

isolates that show no mutation conferring resistance as sensitive (Ta-

ble S3 in the Supplementary Information) is higher for the censored

GMM. This shows that the choice of the method that should be used
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Table 3: Breakpoints identified for each drug with the different methods
METHOD

DRUG MGIT ECOFFinder ECOFFinder Censored
(0.90) (0.95) GMM

AMI 1 0.50 ¿8 1.13
BDQ 1 0.06 2 0.40
CFZ 1 0.50 ¿4 0.67
DLM 0.06 0.03 0.25 0.04
EMB 5 4 ¿8 15.90
ETH 5 1 2 16
INH 0.25 0.10 ¿1.6 0.11
KAN 2.50 16 16 16.34
LEV 1 0.50 8 1.36
LZD 1 1 ¿2 3.96
MXF 0.25 0.50 ¿4 0.63
PAS — 2 4 0.34
RFB 0.50 0.06 ¿2 0.17
RIF 1 0.25 1 0.17

depends on the goal of the study: when the genomic pattern of the

resistant isolates are less known, it may be better to consider a less

conservative approach in order to identify those mutations that are as-

sociated more with resistance in a clear way: this is the case of BDQ,

CFZ and DLM. When the goal is to analyze the unknown mutations

associated with an intermediate level of resistance in drugs that have

already been studied, it could be useful to apply different methods

and then to compare the results.

5 Conclusions

A general method has been proposed to approximate MIC distribu-

tions and identify critical concentrations. This method may be applied

to several testing situations and in the presence or absence of repeated
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(a) AMI (b) BDQ (c) CFZ (d) DLM

(e) EMB (f) ETH (g) INH (h) KAN

(i) LEV (j) LZD (k) MXF (l) PAS

(m) RFB (n) RIF

Figure 3: Identification of ECOFFs using a latent Gaussiam mixture model:
the blue line stands for estimated density, the locations of each component
are represented in green and the breakpoint is represented in red.
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tests on the same isolates.

The proposed method has the advantage of reducing the number of

necessary assumptions and inputs. Approaches based on the definition

of a wild-type group, such as the cumulative distribution approach,

can be influenced to a great extent by this definition, which is par-

ticularly sensitive when little is known about the genomic resistance

pattern or when the antimicrobials have been available for a long pe-

riod of time. This is the case of M. Tuberculosis: the first-line drugs

were introduced in the 1950s and 1960s, while the genes related to

the resistance to the new or repurposed drugs, such as bedaquiline,

clofazimine, linezolid and delamanid, are still unknown.

The approach has been compared with other available approaches

considering a dataset developed within the CRyPTIC project. The

study has included data that were collected during the first phase

of the project in order to validate the microtiter plate. The results

show that the proposed approach leads to the highest combination of

sensitivity and specificity for all of the considered drugs, as far as the

known genomic patterns of resistance are concerned.

At the moment, the dataset is somewhat limited. However this

is just the first attempt to define ECOFFs for the microtiter plate

used in the CRyPTIC project. As long as more data are collected and

more genomic mutations related to resistance will be identified, the

calibration of the breakpoints will be improved.
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Appendix 1: Study of convergence for

the mixture of Gaussian distributions

model
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Figure 4: Convergence for each drug: in each figure the MCMC chains are
shown relative to the likelihood function of the accepted values (above), the
prior distribution of the accepted values (middle) and the chain of the number
of components (below).
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Appendix 2: Study of convergence for

the mixture of Gaussian distributions

model
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Figure 5: Convergence for each drug: in each figure the MCMC chains are
shown relative to the likelihood function of the accepted values (above), the
prior distribution of the accepted values (middle) and the chain of the number
of components (below).
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Appendix 3: Definition of ECOFFs with

Gaussian mixture models
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Figure 6: Identification of ECOFFs by using a Gaussiam mixture model:
the estimated density is the blue line, the means of each components are
represented in green and the breakpoint is represented in red.
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Appendix 4: Genotype of the strains

Table 4: Genotype of the strains under analysis for each drug.
Strain MGIT Gene Mutation Drug
H37rV S - - -
TJK 98 R ddn Trp88* Delamanid

R katG Ser315Thr Isoniazid
R rpoB Ser450Leu Rifabutin
R rpoB Ser450Leu Rifampicin

ATW121749 S - - -
ATW132481 R Rv0678 DelA-Gln115-fs Bedaquiline

R Rv0678 DelA-Gln115-fs Clofazimine
ATW132484 R Rv0678 Tyr92* Bedaquiline

R Rv0678 Tyr92* Clofazimine
VI-25 DLM R rrs a1401g Amikacin

R embB Met306Val Ethambutol
R ethA DelT-Lys37-fs Ethionamide
R prom fabG1-inhA -34 c - Del Ethionamide
R katG Ser315Thr Isoniazid
R prom fabG1-inhA -34 c - Del Isoniazid
R rrs a1401g Kanamycin
R gyrA Ala90Val Levofloxacin
R gyrA Ala90Val Moxifloxacin
R rpoB Ala90Val Rifabutin
R rpoB Ala90Val Rifampicin

W3821 R ethA Asp357Tyr Ethionamide
R inhA Asn231Asp Ethionamide
R katG Ser315Thr Isoniazid
R gyrA Ala90Val Levofloxacin
R gyrA Ser91Pro Levofloxacin
R gyrA Ala90Val Moxifloxacin
R gyrA Ser91Pro Moxifloxacin
R rpoB Ser450Leu Rifabutin
R rpoB Ser450Leu Rifampicin

W8610 R rrs a1401g Amikacin
R rrs a1401g Kanamycin

W5136 R katG Ser315Thr Isoniazid
W9218 R rrs a1401g Amikacin

R embB Met306Ile Ethambutol
R katG Ser315Thr Isoniazid
R rrs a1401g Kanamycin
R rpoB Ser450Leu Rifabutin
R rpoB Ser450Leu Rifampicin

W2566 R embB Met306Ile Ethambutol
R katG Ser315Thr Isoniazid
R gyrA Ala90Val Levofloxacin
R gyrA Ala90Val Moxifloxacin
R rpoB Ser450Leu Rifabutin
R rpoB Ser450Leu Rifampicin

W2249 S - - -
W791 R gyrA Ala90Val Levofloxacin

R gyrA Ala90Val Moxifloxacin
ALB28 S - - -
ALB29 S - - -

TNS1218 R rpoB Ser450Leu Rifabutin
R rpoB Ser450Leu Rifampicin

TNS1959 R katG Ser315Thr Isoniazid
R rpoB Ser450Leu Rifabutin
R rpoB Ser450Leu Rifampicin

ZH1231 R prom fabG1-inhA −15c− > t Ethionamide
R prom fabG1-inhA −15c− > t Isoniazid

ZH1242 R katG Ser315Thr Isoniazid
R thyA Val261Gly PAS
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Appendix 5: Sensitivity and Specificity

Table 5: Percentage of isolates showing known mutations that confer resis-
tance to a specific drug and which have been identified as resistant by a
specific method.

METHOD
DRUG ECOFFinder (.90) ECOFFinder (.95) Censored GMM
AMI 100.00 0.00 100.00
BDQ 55.19 0.00 40.44
CFZ 14.21 0.00 14.21
DLM 100.00 62.20 96.34
EMB 73.01 0.00 25.77
ETH 86.59 68.90 0.00
INH 94.10 0.00 94.10
KAN 100.00 100.00 99.12
LEV 91.40 20.43 88.71
LZD 1.35 0.00 0.00
MXF 85.95 0.00 85.95
PAS 50.85 44.07 76.27
RFB 100.00 0.00 97.63
RIF 97.63 96.05 97.63
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Table 6: Percentage of isolates showing no known mutation that confer re-
sistance to a specific drug and which have been identified as sensitive by a
specific method.

METHOD
DRUG ECOFFinder (.90) ECOFFinder (.95) Censored GMM
AMI 95.31 100.00 97.24
BDQ 54.36 99.85 97.55
CFZ 97.11 100.00 97.11
DLM 81.03 98.81 94.03
EMB 97.79 100.00 98.38
ETH 54.15 85.31 100.00
INH 89.69 97.28 94.94
KAN 99.44 99.44 10.00
LEV 94.33 98.77 97.55
LZD 96.48 100.00 97.91
MXF 97.56 100.00 97.56
PAS 87.47 91.56 57.93
RFB 86.54 100.00 94.38
RIF 96.93 98.98 85.69
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