Abstract
What determines the assembly and stability of complex communities is a central question in ecology. Past work has suggested that mutualistic interactions are inherently destabilizing. However, this conclusion relies on assuming that benefits from mutualisms never stop increasing. Furthermore, almost all theoretical work focuses on the internal (asymptotic) stability of communities assembled all-at-once. Here, we present a model with saturating benefits from mutualisms and sequentially assembled communities. We show that such communities are internally stable for any level of diversity and any combination of species interaction types. External stability, or resistance to invasion, is thus an important but overlooked measure of stability. We demonstrate that the balance of different interaction types governs community dynamics. Mutualisms may increase external stability and diversity of communities as well as species persistence, depending on how benefits saturate. Ecological selection increases the prevalence of mutualisms, and limits on biodiversity emerge from species interactions. Our results help resolve longstanding debates on the stability, saturation, and diversity of communities.
Footnotes
Added new interaction models where mutualistic and exploitative interactions are interchangeable, and a discussion of the differences between the two models.