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Abstract 21 

Lean body mass (LBM), an important physiological measure, has a strong genetic determination. 22 

To clarify its genetic basis, a large-scale genome-wide association study (GWAS) of 23 

appendicular lean mass (ALM) was conducted in 450,580 UK Biobank subjects. A total of 717 24 

variants (p<5×10-9) from 561 loci were identified, which were replicated across genders 25 

(achieving p<5×10-5 in both genders). The identified variants explained ~11% phenotypic 26 

variance, accounting for one quarter of the total ~40% GWAS-attributable heritability. The 27 

identified variants were enriched in gene sets related to musculoskeletal and connective tissue 28 

development. Of interest are several genes, including ADAMTS3, PAM, SMAD3 and MEF2C, 29 

that either contain multiple significant variants or serve as the hub genes of the associated gene 30 

sets. Polygenic score prediction based on the associated variants was able to distinguish subjects 31 

of high from low ALM. Overall, our results offered significant findings on the genetic basis of 32 

lean mass through an extraordinarily large sample GWAS. The findings are important to not only 33 

lean mass per se but also other complex diseases, such as type 2 diabetes and fracture, as our 34 

Mendelian randomization analysis showed that ALM is a protective factor for these two diseases. 35 
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Introduction 37 

Lean body mass (LBM) is an important physiological index. The decline of LBM with aging, 38 

also known as sarcopenia, is a critical factor for functional impairment and physical disability 39 

and a major modifiable cause of frailty in the elderly [1, 2]. LBM is associated with bone mineral 40 

density (BMD), and hence may be also  relevant to risk for osteoporosis [3]. Other LBM-related 41 

conditions include dysmobility syndrome [4], sarcopenic obesity [5], and cachexia [6]. Overall, 42 

sarcopenia was responsible for an increased risk of mortality, with a hazard ratio of 1.29 to 2.39 43 

[7]. 44 

LBM has a significant genetic component, as evidenced by a high heritability of 50% to 80% 45 

as observed in twin studies [8, 9]. However, findings on specific genes for human lean mass 46 

variation remain limited even with the powerful genome-wide association study (GWAS) 47 

approach. A key reason for the limited findings, as in other human complex traits, is the modest 48 

sample size used in most GWAS so far performed in LBM [10-14], resulting in few SNPs (single 49 

nucleotide polymorphisms) identified with genome-wide significance.  50 

As a notable example, a recent large meta-analysis of GWAS amassed 20 cohorts of European 51 

ancestry with a total sample size of >38,000 for whole body lean mass (WBM) and of >28,000 52 

for appendicular lean mass (ALM) [15]. However, despite of the large sample used, the percent 53 

variance explained by the identified SNPs was still only 0.23% and 0.16% for WBM and ALM, 54 

respectively, suggesting that most of the heritability of LBM was still undetected. Therefore, 55 

even with such a large GWAS meta-analysis, it is still necessary to boost the sample size further 56 

so as to enhance the statistical power for detecting more causal SNPs underlying LBM.  57 

Here in this study, with a sample containing ~half-million subjects of European origin from 58 

UK Biobank (UKB), we performed a GWAS of appendicular lean mass (ALM). At the stringent 59 
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genome-wide significance level (p<5×10-9), we identified >700 variants that were replicated 60 

across genders. Our findings revealed a large number of genetic variants for LBM and 61 

contributed to the characterization of the genetic architecture of this important complex trait. 62 

Through this GWAS we demonstrated the power for mapping the genetic landscape of common 63 

human complex traits/diseases using extraordinarily large samples. 64 
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Results 66 

Basic characteristics of the studied UKB sample are listed in Supplementary Table 1. In this 67 

study, we quantified appendicular lean mass (ALM) by appendicular fat-free mass measured by 68 

electronic impedance. This measurement of lean mass is reliable based on its strong correlation 69 

with ALM measured by DXA in 4,294 UKB subjects (with a Pearson's correlation coefficient of 70 

0.96, p<2.2×10-16). 71 

Main association results 72 

Raw ALM was adjusted with appendicular fat mass (AFM) and the adjusted ALM (ALMadj) 73 

was the phenotype used for the GWAS. Following quality control (QC) of both ALMadj and 74 

genome-wide genotypes, data from 19.4 million variants with minor allele frequency 75 

(MAF) >0.1% and imputation quality score >0.3 were available in 244,945 female and 205,635 76 

male subjects. 77 

In each gender group, additive effect of each variant was tested on ALMadj with BOLT-LMM 78 

[16], controlling for age, age2, height and height2. The genomic inflation factor showed notable 79 

inflation in both gender groups (λfemale=1.92, λmale=1.77). To examine observed inflation for 80 

potential polygenic effects and other biases, linkage disequilibrium score regression (LDSC) 81 

analysis was performed [17]. The estimated mean chi-square and intercept were 2.34 and 1.12 82 

for females, and 2.53 and 1.15 for males, corresponding to an attenuation ratio (AR) of 0.098 and 83 

0.090, respectively. The AR estimates are comparable to those estimated in the subset of 369,968 84 

unrelated British white subjects (0.090 and 0.074 for females and males, respectively), who were 85 

extracted from the total sample. 86 

Using BOLT-REML [18], GWAS-attributable heritability was estimated, which was 0.381 87 

(s.e 3.30×10-3) and 0.394 (s.e 3.80×10-3) in females and males, respectively. LDSC estimated a 88 
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genetic correlation coefficient as high as 0.90 (s.e 0.01) between the two genders, implying that 89 

most GWAS-attributable heritability was shared across genders. 90 

Given the shared heritability across genders, across-gender meta-analysis was performed with 91 

the inverse variance weighted fixed-effects model to combine the gender-specific GWAS results. 92 

The meta-analysis signals have an AR of 0.115 (mean chi-square=3.69, intercept=1.31). 93 

Genome-wide significance (GWS) level was set to α=5×10-9, and a suggestive significance level 94 

was set to α=5×10-5. An association was declared to be "replicated" if it is 1) significant at the 95 

GWS level in the across-gender meta-analysis and 2) significant at the suggestive level within 96 

each gender.  97 

Based on the above criteria, a total of 589 loci were identified at GWS level in across-gender 98 

meta-analysis (p <5×10-9), which were also replicated (p <5×10-5) across genders. To check 99 

potential linkage disequilibrium (LD) among these loci, LD analysis was performed on 589 lead 100 

variants (each from one of the loci). It was found that 47 lead variants are not in linkage 101 

equilibrium with each other (LD r2>0.1) due to long-range LD. After removing 28 loci, the lead 102 

variants in the remaining 561 loci were all in linkage equilibrium (LD r2 <0.1). Therefore, these 103 

561 loci were treated as independent loci for downstream analysis. 104 

Approximate conditional association analysis and across-gender meta-analysis were 105 

recursively performed, which further identified an additional set of 156 conditionally significant 106 

variants (p<5×10-9 in across gender meta-analysis) that were replicated across genders (p<5×10-5 107 

within each gender). These additional variants were also in linkage equilibrium (LD r2<0.1) with 108 

the lead variants of the 561 loci. 109 

In total, 717 (i.e., 561+156) independent variants from 561 distinct loci were associated with 110 

ALMadj (Supplementary Table 2). Among the 717 lead variants, 172 achieved the strongest 111 
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significance level (p<5×10-9) in both genders (categorized here as the Tier 1 variants). Also, 144 112 

variants achieved p values <5×10-9 in females, and p values < 5×10-5 in males; 62 variants 113 

achieved p values < 5×10-9 in males, and p values < 5×10-5 in females (categorized here as the 114 

Tier 2 variants). At last, 339 variants achieved p values < 5×10-5 in both genders and p values < 115 

5×10-9 in across-gender meta-analysis (categorized here as the Tier 3 variants). 116 

Of the above identified loci, 17 were reported by GWAS or meta-analysis of DXA-derived 117 

lean mass [13, 15, 19]; 104 were reported by a study of electronic impedance measured lean 118 

mass in a subset UKB cohort subjects (N=155,961) [20]. 119 

We also evaluated the overlap of the identified loci with those identified for several obesity 120 

traits, including body mass index (BMI), waist circumference (WC), WC adjusted for BMI 121 

(WCadjBMI), waist-hip ratio (WHR) and WHR adjusted for BMI (WHRadjBMI). SNPs in 302 122 

loci (defined as the lead SNP + 500 kb flanking at each side) showed association with one or 123 

more obesity traits at the conventional significance level 5.0×10-8, while no trait was associated 124 

with the remaining 259 loci, demonstrating their novelty and possibly, specificity to lean, but not 125 

fat mass. 126 

Gender heterogeneity/specificity 127 

In addition to the 561 loci that are replicated across genders, our analysis also identified 152 128 

loci that are significant (p<5×10-9) in across-gender meta-analysis but not significant at the 129 

suggestive level (p<5×10-5) in either gender group (Supplementary Table 3). These loci may 130 

represent gender specific signals pending further replication.  131 

Of the 717 identified variants (of the 561 loci), 109 (15.2%) have a high level across-gender 132 

meta-analysis heterogeneity (I2>50%), all (except one) of which belong to Tiers 1 or 2 variants. 133 

A statistical test on gender difference in allele effect size showed that the difference is significant 134 
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in only 2 SNPs, rs2972156 (pdiff=2.49×10-12) and rs1933801 (pdiff=4.65×10-6), after accounting 135 

for multiple testing (α=0.05/717=6.97×10-5), suggesting that almost all of the identified variants 136 

may have similar effect sizes across genders. The two SNPs (rs2972156 and rs1933801) with 137 

different effect size between genders achieved p values of 1.30×10-46 and 2.40×10-26, 138 

respectively, in males and p values of 4.20×10-7 and 1.30×10-6, respectively, in females. 139 

Heritability distribution 140 

The 717 identified variants include 654 common variants (MAF>5%), 52 less common 141 

variants (5%≥MAF>1%) and 11 rare variants (MAF≤1%). Collectively, these variants explain 142 

10.82% phenotypic variance in the total sample, most of which (9.91%) is accounted for by 143 

common variants. As expected, variants with a smaller MAF generally have a larger per allele 144 

effect size (Figure 1). For example, the average per allele effect size in rare variants (mean 0.11, 145 

s.d 0.05) is 6-fold larger than common variants (mean 0.02, s.d 0.007). 146 

Applying the stratified LDSC analysis, the explained heritability was partitioned into 24 147 

functional categories [21]. Statistically significant enrichments were observed for 19 functional 148 

categories (p<0.05/24, Figure 2). In line with the observations by Finucane et al. [21], regions 149 

conserved in mammals showed the strongest enrichment of any category, with 2.6% of SNPs 150 

explaining an estimated 34.5% of SNP heritability (enrichment ratio (EA)=13.2, P=3.39×10-19). 151 

Other categories with significant enrichment included coding regions (EA=8.8, P=1.76×10-7), 3' 152 

UTR (EA=5.7, P=3.73×10-4), transcription starting site (EA=5.1, P=1.71×10-5), and H3K9ac 153 

histone marks (EA=5.1, P=2.07×10-15). Neither promoter nor 5'-UTR region showed significant 154 

enrichment, though 5'-UTR region had a high estimate of EA (15.5, p=0.03). 155 

A new function of the stratified LDSC method was used to assess focal tissues for heritability 156 

enrichment [22], using two gene expression datasets [23, 24]. A total of 19 tissues/cells are 157 
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enriched at a false discovery rate (FDR) <5% (Figure 2). About half (9) of them belong to 158 

musculoskeletal and connective system, including cartilage, chondrocytes, osteoblasts, 159 

fibroblasts, smooth muscle, myometrium, cervical vertebrae, synovial membrane and stromal 160 

cells. 161 

Candidate genes prioritization 162 

To prioritize candidate genes at the associated loci, we used multiple analytical strategies. A 163 

set of credible risk variants (CRVs) at each locus were defined as variants with high LD with the 164 

lead variant (r2>0.8). A total of 17,968 CRVs were defined (Supplementary Table 4). Based on 165 

the CRVs, 6 types of supporting evidence were used to prioritize 1,337 candidate genes. 166 

(Supplementary Tables 5-10). 167 

A number of genes have multiple lines of supporting evidence. Peptidylglycine 168 

Alpha-Amidating Monooxygenase (PAM) at 5q21.1, in particular, has all lines of supporting 169 

evidence. This locus contains two independent signals. The first is a mis-sense rare SNP 170 

rs78408340 (MAF=0.01%, p=6.10×10-10) inside PAM, and the second is a common SNP 171 

rs400596 located between PAM (129.5 kb from PAM) and SLC06A1 genes (237.2 kb from 172 

SLC06A1). Polymorphisms at rs400596 are associated with the PAM expression level in whole 173 

blood (p=2.51×10-21) [23] and associated with its protein level in peripheral blood (p= 174 

p=2.51×10-30) [25]. PAM is also prioritized by both SMR [26] and DEPICT [27], strengthening 175 

its functional relevance. 176 

Comparison between imputation and sequencing-based association signal  177 

Of the 717 identified variants, 42 are mis-sense coding ones. Forty of them, including 7 rare 178 

ones, are available in the recently released UKB exome sequencing data that contain a subset of 179 

~50,000 subjects from the whole UKB cohort. Using a set of 45,554 unrelated European subjects 180 
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who were both genotyped/imputed and sequenced, we compared the imputation-based 181 

association results with exome sequencing based results. The 7 rare variants appeared to have 182 

limited imputed dosage variation hence their imputation association p-values were not able to 183 

derive. In the sequencing data, 3 of these 7 variants were nominally significant (p<0.05, 184 

Supplementary Table 11), suggesting limited power in imputation-based association analysis 185 

(compared with sequence-based analysis) for rare variants. This limited power may be alleviated 186 

by increased sample size since in the whole UKB cohort these 7 rare variants achieved 187 

significant p values in imputation-based association analysis. 188 

Of the remaining 33 variants, the imputation-based and sequencing-based p-values were 189 

highly concordant. For example, the imputation-based p-values are within 2-fold difference of 190 

the sequencing-based p-values for up to 29 variants. Overall, these observations support that 191 

imputation-based association signals are close to the real sequencing-based association signals in 192 

a large sample. Therefore, imputation based GWAS may be able to identify true associations, 193 

even for those of rare variants. 194 

Mis-sense variants and the associated genes 195 

As mentioned above, of the 717 identified variants, 42 are mis-sense coding ones. Majority of 196 

these 42 mis-sense mutations are predicted to be deleterious according to more than one 197 

bioinformatics tool including PolyPhen2 [28], SIFT [29], PROVEAN [30] and Fathmm [31] 198 

(Supplementary Table 12), supporting their functional relevance.  199 

Mis-sense mutations are enriched among rare variants. Eight of the 11 rare variants are 200 

mis-sense mutations, which is in clear contrast to 34 mis-sense mutations among the remaining 201 

706 variants (odds ratio (OR)=55.37, Fisher's exact test p=7.11×10-9). Evidence of the 202 

enrichment became stronger by comparing 21 mis-sense mutations from 63 rare or less common 203 
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variants vs. 22 mis-sense mutations from 654 common variants (OR=14.36, Fisher's exact test 204 

p=5.75×10-13), suggesting that low frequency mutations are more likely to play a direct role in 205 

changing protein function. 206 

Genes containing mis-sense variants are listed in Table 1. In particular, the ADAMTS3 gene 207 

contains 3 rare or less common mis-sense variants (rs141374503 MAF=0.4% p=2.02×10-27; 208 

rs150270324 MAF=1.3%, p=2.36×10-14, and rs139921635 MAF=2.4%, p=4.06×10-15). In 209 

addition, it also contains multiple non-mis-sense variants, including 3 conditionally significant 210 

variants in its intron region: rs72653979 (MAF=7.8%, p=9.51×10-11), rs78862524 (MAF=5.5%, 211 

p =3.24×10-23) and rs769821342 (MAF=3.2%, p =1.27×10-14), and 2 in its flanking inter-genic 212 

region: chr4:73496010 (MAF=47%, p=3.87×10-21) and rs10518106 (MAF=6%, p=1.16×10-83). 213 

Though these SNPs are 367.0 kb apart at most, they are in linkage equilibrium with each other 214 

(LD r2<0.1). Together, the 8 variants from the ADAMTS3 gene explain 0.18% of phenotypic 215 

variance, making this region the most contributive locus. 216 

Gene-based and gene set enrichment analyses 217 

A total of 3,101 genes were significant at the gene-based genome-wide significance level 218 

(α=0.05/19,098=2.62×10-6, Supplementary Table 13), and 85 gene sets were significant at the 219 

gene set significance level (α=0.05/10,655=4.69×10-6, Supplementary Table 14).  220 

The most significant gene set is GO:0001501 'skeletal system development' (p=8.88×10-24), 221 

followed by GO:0031012 'proteinaceous extracellular matrix' (p=5.01×10-14), GO:0061448 222 

'connective tissue development' (p=1.10×10-13), GO:0048705 'skeletal system morphogenesis' 223 

(p=9.33×10-13) and GO:0031012 'extracellular matrix' (p=1.05×10-12). Additional gene sets with 224 

known function related to musculoskeletal and connective system, such as GO:0051216: 225 
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'cartilage development' (p=3.30×10-12) and GO:0042692 'muscle cell differentiation' 226 

(p=1.45×10-6), were also identified. 227 

Genes involved in multiple gene sets are likely to act as hub genes and may play a central 228 

regulatory role. From the list of significant gene sets, the most frequently involved gene is 229 

SMAD3 (gene-based association p=8.11×10-42), which was involved in 46 out of the 85 230 

significant gene sets. It was followed by SOX9 (p=0.05, in 44 gene sets), MEF2C (p=2.83×10-9, 231 

in 42 gene sets) and BMP4 (p=0.15, in 42 genes). All these 4 genes were reported by previous 232 

studies as important candidate genes for muscle development [32-35]. However, SOX9 is only 233 

nominally significant and BMP4 is not significant at single gene level, indicating that the 234 

significant pathway signals may not be contributed by the two genes. Altogether, there are 34 235 

genes, each of which was involved in more than 30 of the 85 significant gene sets.  236 

Protein-protein interaction (PPI) analysis using these 34 hub genes connects them into a tight 237 

interactional network (Figure 3). This network contains multiple genes that are important for 238 

skeletal muscle development, such as TGF signaling pathway genes (TGFB1, TGFB2 and 239 

TGFBR2), BMP signaling pathway genes (BMP2 and BMP4) and SMAD family genes (SMAD1, 240 

SMAD2, SMAD3 and SMAD4). 241 

Polygenic risk score profiling 242 

To assess the ability of the GWAS findings to predict ALM, a polygenic scoring analysis was 243 

performed in the subset of 369,968 unrelated British white subjects from the UKB cohort. Three 244 

quarters of the subjects (277,762 participants, including 149,329 females) were randomly 245 

selected as the training sample, with the remaining subjects (92,206 participants, including 246 

49,660 females) as the validation sample. 247 
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The training sample identifies 72,456 variants that achieved a p-value <1×10-5 for association 248 

with ALMadj. Using these variants as predictor, the predicted genome-wide polygenic score (GPS) 249 

and the real phenotype residual in the validation sample are significantly correlated (Pearson's 250 

correlation coefficient 0.22, 95% CI (0.21, 0.22), p<2.2×10-16). Mean phenotype residuals in the 251 

top tail are significantly higher than that in the bottom tail of the GPS distribution (Figure 4). 252 

For example, the predicted top 1% subjects have an increased average residual of 1.16 than the 253 

predicted bottom 1% participants (0.57 (s.d 0.96) vs. -0.59 (s.d 0.94)), corresponding to an 1.69 254 

kilo-gram (kg) increase of raw ALM (24.61 kg (s.d 5.89 kg) vs. 22.92 kg (s.d 5.27 kg)). In the 255 

female group, the predicted top 1% participants have on average 1.39 kg increase of raw ALM 256 

than the predicted bottom 1% participants (20.26 kg (s.d 2.75 kg) vs. 18.87 kg (s.d 2.45 kg)). In 257 

males, the increase is 2.29 kg (29.82 kg (s.d 4.18 kg) vs. 27.53 kg (s.d 3.56 kg)). These results 258 

demonstrate that the GPS prediction based on the current GWAS finding is capable of 259 

identifying subjects of high or low levels of ALM. 260 

Genetic correlations with other traits 261 

To test whether lean mass has a shared genetic etiology with other diseases and relevant traits, 262 

a genetic correlation analysis was performed with the LDSC method [17]. Here, ALM studied in 263 

our study is strongly genetically correlated with DXA-derived whole body lean mass and the 264 

ALM, which were studied by a previous GWAS meta-analysis [15] (rg=0.87 and 0.78) (Figure 265 

5). Furthermore, ALM is modestly correlated with BMI (rg=0.31). However, the correlation with 266 

BMD is low (rg=0.05). ALM is most negatively correlated with BMI adjusted leptin (rg=-0.41). It 267 

is also negatively correlated with body fat (rg=-0.17), suggesting a reverse developmental 268 

direction towards lean and fat mass. 269 

Mendelian randomization analysis 270 
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To investigate whether ALM is causally linked with other complex diseases, a Mendelian 271 

randomization analysis was performed with GSMR [26]. Ten diseases from a variety of 272 

categories were chose for evaluation, including fracture [36], type 2 diabetes (T2D) [37], asthma 273 

[38], insomnia [39], inflammatory bowel disease (IBD) [40], smoking addiction [41], coronary 274 

artery disease (CAD) [42], amyotrophic lateral sclerosis (ALS) [43], bipolar disorder [44] and 275 

autistic spectrum disorder (ASD) [45]. At the corrected significance level 5×10-3 (0.05/10), ALM 276 

is causally associated with type 2 diabetes (T2D, p=4.38×10-8) and fracture (p=1.18×10-3), but 277 

not with any other disease (Supplementary Table 15). Specifically, a negative association is 278 

observed between ALM and both diseases, indicating that ALM is a protective factor for both 279 

diseases. For T2D, an increase in the unit of one s.d of ALM residual corresponds to a decreased 280 

OR of 0.91 (95% CI [0.88, 0.94]). For fracture, an increase in the unit of one s.d. of ALM 281 

residual corresponds to a decreased OR of 0.95 (95% CI [0.92, 0.98]). 282 

  283 
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Discussion 284 

The incapacity in GWAS to detect and replicate specific genetic variants for human complex 285 

traits, contradicting to a trait’s established high heritability, e.g., height, was formally recognized 286 

as the “missing heritability” problem a decade ago [46, 47].  An explanation is the so called 287 

“polygenic model”, where hundreds or even thousands of common SNP variants act additively, 288 

with each contributing only a “tiny” fraction of the trait variation. The effect of each individual 289 

variant is so small that a GWAS with a limited sample size (n<20,000) may be extremely 290 

difficult, if not impossible, to detect (let alone replicate) a variant at the genome-wide 291 

significance threshold.  292 

The polygenic model was supported by the genome-wide complex trait analysis (GCTA), 293 

where trait similarity among unrelated subjects was correlated with and explained to a large 294 

fraction by similarity of common SNPs at genome-wide scale [48]. Furthermore, with sample 295 

sizes at the scale of hundreds of thousands, two GWAS indeed identified at genome-wide 296 

significance ~700 variants for adult height [49] and >100 loci for schizophrenia [50]. The 297 

successful stories offer a promising prospect for a GWAS with an extraordinarily large sample 298 

size to ultimately unravel the puzzling genetic architecture for human complex traits and 299 

common diseases. 300 

In this study of lean mass with around half million subjects, the largest sample used for 301 

GWAS of lean mass so far, a successful endeavor was accomplished again. More than 700 302 

variants were identified at the significance of genome-wide scale (p<5×10-9). In particular, more 303 

than half of these variants achieved genome-wide significance (p<5×10-9) in one gender and 304 

were replicated also in another gender (p<5×10-5). Overall, these >700 variants contributed ~11% 305 
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of ALM variation, again, the largest explainable fraction of variation for lean mass reported so 306 

far in a GWAS. 307 

Our findings of >700 variants are expected for a complex trait with a high heritability, 308 

particularly considering another trait with comparable heritability, height, which detected also 309 

~700 variants [49]. Interestingly, the majority loci in previous smaller GWAS [13] or 310 

meta-analysis [15] of lean mass are also significant in the present study, providing replication 311 

evidence from independent samples. 312 

The functional relevance of our identified variants is supported by the gene set enrichment 313 

analysis, where GO terms, including GO:0001501 'skeletal system development', GO:0061448 314 

'connective tissue development', GO:0051216 'cartilage development' and GO:0042692 'muscle 315 

cell differentiation', are among the top gene sets of significance. Specifically, the “hub genes” 316 

involved in these terms are tightly connected into a network that contains TGF pathway genes, 317 

BMP pathway genes and SMAD family genes, which are all important musculoskeletal 318 

development genes/pathways. This finding is concordant with developmental biology since cells 319 

from bone, cartilage, muscle and fat share the same progenitor, the mesenchymal stem cells, and 320 

pleiotropy of muscle and bone is well recognized in both humans [51] and animal models [52].  321 

Among the variants identified, those of several genes, such as SMAD3, MEF2C, ADAMTS3 322 

and PAM, are interesting and may need further investigation. The first two genes are the hub 323 

genes involved in half of the significant enriched gene sets. The third gene, ADAMTS3, contains 324 

8 variants, including 3 rare or less common mis-sense mutations, which in total explains ~0.2% 325 

of ALM variation. The fourth gene, PAM, has multiple lines of supporting evidence for its 326 

regulatory roles, e.g., containing a mis-sense rare SNP rs78408340 (MAF=0.01%, p=6.10×10-10). 327 

An intergenic variant, rs400596, is associated with the PAM expression level in whole blood 328 
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(p=2.51×10-21) [23] and associated with its protein level in peripheral blood tissue (p= 329 

p=2.51×10-30) [25]. These genes may represent the next candidates for functional and 330 

mechanistic analysis of lean mass regulation. 331 

In summary, we performed a GWAS using ~half-million subjects for lean mass. Owing to its 332 

high statistical power, our study identified a large number of variants mapped to GO terms with 333 

functional relevance to musculoskeletal development. The explained variation of ~11% of lean 334 

mass by the identified variants represents a significant leap in revealing the “hidden” heritability 335 

of this complex trait using GWAS. Our findings’ translational value is marked by lean mass’ 336 

importance to other complex diseases, such as type 2 diabetes and fracture, as our Mendelian 337 

randomization analysis showed that ALM is a protective factor for these two diseases. Overall, 338 

our study provides another example, where GWAS of substantially increased sample size may 339 

lead a way to ultimately and thoroughly delineate genetic architecture of human complex traits. 340 

This epitomizes the value of big data in genetic research of humans. 341 

  342 
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Materials and Methods 343 

Study participants 344 

Study sample came from the UK Biobank (UKB) cohort, which is a large prospective cohort 345 

study of ~500,000 participants from across the United Kingdom, aged between 40-69 at 346 

recruitment. Ethics approval for the UKB study was obtained from the North West Centre for 347 

Research Ethics Committee (11/NW/0382), and informed consent was obtained from all 348 

participants. This study (UKB project #41542) was covered by the general ethical approval for 349 

the UKB study. 350 

All the included subjects are those who self-reported as white (data field 21000). Subjects 351 

who had a self-reported gender inconsistent with the genetic gender, who were genotyped but not 352 

imputed or who withdraw their consents were removed. The final sample consisted of 450,580 353 

subjects, including 244,945 females and 205,635 males. 354 

Phenotype and modeling 355 

Body composition was measured by bioelectrical impedance approach. Appendicular lean 356 

mass (ALM) was quantified by the sum of fat-free mass at arms (data fields 23121 and 23125) 357 

and at legs (data fields 23113 and 23117). Appendicular fat mass (AFM) was quantified by the 358 

sum of fat mass at arms (data fields 23120 and 23124) and at legs (data fields 23112 and 23116). 359 

In each gender, covariates including AFM, age, age2, height and height2 were tested for 360 

significance in association with ALM using a step-wise linear regression model implemented in 361 

the R function stepAIC. Raw ALM values were adjusted by the significant covariates, and the 362 

residuals were normalized into inverse quantiles of standard normal distribution, which were 363 

used for subsequent association analysis. 364 
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A small subset of 4,294 subjects also received a dual-energy X-ray absorptiometry (DXA) 365 

body composition scan, and hence their DXA-derived ALM is also available. Therefore, raw 366 

ALM derived from DXA and from electric impedance was compared in these subjects by 367 

Pearson's correlation coefficient. 368 

Genotype quality control 369 

Genome-wide genotypes for all subjects were available at 784,256 genotyped autosome 370 

markers, and were imputed into UK10K haplotype, 1000 Genomes project phase 3 and 371 

Haplotype Reference Consortium (HRC) reference panels. A total of ~92 million variants were 372 

generated by imputation. We excluded variants with MAF<0.1% and with imputation r2<0.3. As 373 

a result, ~19.4 million well imputed variants were retained for subsequent genetic association 374 

analysis. 375 

Genetic association analysis 376 

In each gender group, we used BOLT-LMM to perform linear mixed model (LMM) analysis 377 

[16]. As the LMM analysis can adjust for population structure and relatedness, we included all 378 

eligible subjects into analysis, as recommended by BOLT [53]. We did not include principal 379 

components (PCs) of ancestry as covariates in the LMM analysis. 380 

After sex-specific associations were analyzed, we meta-analyzed the summary statistics of the 381 

two genders by inverse-variance weighted fixed-effects model with METAL [54]. The 382 

genome-wide significance (GWS) level was set at α=5×10-9, to account for both common and 383 

rare variants. The variants that passed this threshold in across-gender meta-analysis were then 384 

checked for replicability across genders based on a suggestive significance level 5×10-5 in each 385 

gender. The suggestive level was set so as to account for multiple testing of presumed maximal 386 

number of 1000 independent loci (0.05/1000). An association was defined as "replicated" if the 387 
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signal was significant at the GWS level (p<5×10-9) in the meta-analysis and was significant at 388 

the suggestive level (p<5×10-5) in both genders. 389 

This declaration of a replicated association was approximately same as a two-stage design, 390 

where the first stage involves selecting variants at the suggestive level (p<5×10-5) in one gender 391 

and the second stage involves replicating the selected variants at the same significance level 392 

(p<5×10-5) in another gender. An association locus was defined as a genomic region of 500 kb to 393 

both sides of a significant lead signal. 394 

Difference in effect size between female and male was examined by a two-tailed p-value from 395 

the z-score in the following equation 396 

� � ������� � �����

����	�������
 � ���������
 

, where βfemale and βmale are regression coefficients for females and males, and var(·) are their 397 

variances, respectively. 398 

Conditional association analysis 399 

To identify additional signals in regions of association, approximate joint and conditional 400 

association analysis was performed in each region using the GCTA tool [55].  401 

 402 

From the UKB sample, a reference sample of 100,000 unrelated subjects was generated for 403 

estimating LD pattern for subsequent analyses. The unrelated subjects were inferred with KING 404 

software [56], from whom the 100,000 subjects of the reference sample were randomly drawn. 405 

Quality control (QC) procedures applied to the reference sample included Hardy-Weinberg 406 

equilibrium (p>1×10-6) and MAF>0.1%.  407 
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A recursive conditional association analysis was performed. In each iteration, an approximate 408 

conditional analysis conditioning on the current list of lead variants was performed in each 409 

gender, followed by an across-gender meta-analysis to combine the gender-specific results. 410 

Again, a significant replicated association was defined as achieving both a conditional 411 

meta-analysis GWS signal (p<5×10-9) and a conditional suggestive signal (p<5×10-5) in both 412 

genders. In addition, each such identified variant is required to be independent of all variants in 413 

the lead SNP list (LD r2<0.1). The variant with the lowest p-value among such identified ones 414 

was added into the list of lead variants. Iterations of the conditional analysis were run until no 415 

significant signal can be identified. 416 

Overlap with loci in previous GWAS of obesity traits 417 

GWAS summary statistics for 5 obesity traits, including body mass index (BMI) [57], waist 418 

circumference (WC), WC adjusted for BMI (WCadjBMI), waist-hip ratio (WHR) and WHR 419 

adjusted for BMI (WHRadjBMI) [58], were downloaded from the GIANT consortium website. 420 

For each trait, SNPs located within all the 561 identified loci (lead SNP +500 kb flanking region 421 

at each side) were extracted from the GWAS summary statistics. Significance level for the 422 

obesity traits were set at the conventional level of 5.0×10-8. 423 

Exome sequencing association analysis 424 

During the preparation of this manuscript, the UKB released exome-sequencing data on a 425 

selected subset of ~50,000 participants. We compared the exome-sequencing based association 426 

results with that based on genotype imputation. To accomplish this, we generated an unrelated 427 

sample consisting of subjects who were both exome-sequenced and genotype-imputed. 428 

As the QC procedure, we removed subjects who were not self-reported as white, whose 429 

self-reported genders were inconsistent with their genetic genders, and who withdrew their 430 
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consents. The KING software was used to select unrelated subjects based on pairwise kinship 431 

matrix for up to 2nd degree relatedness [56]. The final sample consisted of 45,554 participants, 432 

including 24,740 females and 20,814 males. 433 

Sequence variant coordinates, which were annotated to the GRCH38 assembly, were 434 

converted back to the GRCH37 assembly with Liftover 435 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). For each subject, variants that were missing in the 436 

sequenced data were set to missing in the imputed data as well. In both datasets, genetic 437 

association with normalized phenotype residuals was analyzed with PLINK2 [59]. The top 10 438 

PCs were included as covariates to account for potential population stratification. 439 

Genetic architecture 440 

BOLT-REML was used to estimate heritability tagged by all the analyzed variants [18]. LD 441 

score regression (LDSC) method was used to estimate the amount of genomic inflation due to 442 

confounding factors such as population stratification and cryptic relatedness [17]. Pre-computed 443 

LD scores from the 1000 Genomes project European subjects were used for estimation. The 444 

relative contribution of confounding factors was measured by attenuation ratio (AR), which is 445 

defined as (intercept-1)/(mean chi^2−1), where intercept and mean chi^2 are estimates of 446 

confounding and the overall association inflation, respectively [17]. 447 

To compare AR with that estimated on unrelated subjects, a maximal subset of unrelated 448 

subjects from the total sample being analyzed were generated. Specifically, KING was used to 449 

extract a subset of unrelated subjects [56]. The resulting unrelated sample included 369,968 450 

participants (198,989 females and 170,979 males). In each gender, PLINK2 was used to perform 451 

genetic association analysis [59]. To account for genetic confounding, the top 10 PCs inferred 452 

from UKB were used as the additional covariates. 453 
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To calculate the variance explained by all independent lead variants, individual variant effect 454 

size was estimated with the formula 2f(1−f)β2, where f is allele frequency and β is regression 455 

coefficient associated with the variant. 456 

1Enrichment analysis 457 

Stratified LDSC was used to partition heritability from GWAS summary statistics into 458 

different functional categories [21]. The analysis was based on the ‘full baseline model’ created 459 

by Finucane et al. [21] from 24 publicly available main annotations that are not specific to any 460 

cell type. Significance level of enrichment was set at p < 2.08×10-3 (0.05/24). 461 

The stratified LDSC was used to also assess the enrichment of heritability into specific tissues 462 

and cell types [22]. This method analyzes gene expression data together with GWAS summary 463 

statistics, for which, the two pre-compiled gene expression datasets in LDSC were used. The first 464 

one is the GTEx project v6p [23] and the second one is the Franke lab dataset [24]. The GTEx 465 

dataset contains 53 tissues with an average of 161 samples per tissue. The Franke lab dataset is 466 

an aggregation of publicly available microarray gene expression datasets comprising 37,427 467 

human samples from 152 tissues. The total 205 (=53+152) tissues are classified into nine 468 

categories for visualization. Significance was declared at a false discovery rate (FDR)<5%. 469 

Candidate gene prioritization 470 

In each associated locus, a set of credible risk variants (CRVs) were defined as those variants 471 

in strong LD with the lead variant (r2>0.8, including lead variant). LD r2 measure was estimated 472 

based on the 100,000 unrelated reference sample with LDstore [60]. Six sources of information 473 

was used to evaluate a gene's causality: 1) being nearest to the lead CRV; 2) containing a 474 

mis-sense coding CRV; 3) being a target gene for a cis-eQTL CRV; 4) being a target gene for a 475 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/643536doi: bioRxiv preprint 

https://doi.org/10.1101/643536
http://creativecommons.org/licenses/by-nc-nd/4.0/


cis- protein QTL (cis-pQTL) CRV; 5) being prioritized by DEPICT analysis [27] and 6) being 476 

prioritized by SMR analysis [61]. 477 

Cis-eQTLs revealed by the GTEx (v7) project were accessed from the GTEx web portal 478 

(www.gtexportal.org/) [23]. Cis-eQTL information is available for over 50 tissues. We selected 479 

skeletal muscle and whole blood for our analysis. Cis-eQTL was searched within 500 kb distance 480 

from a target gene. Significant cis-eQTL was declared at p<5×10-5. 481 

Cis-pQTL information was accessed from Sun et al. [25]. GWAS summary statistics for 3,284 482 

proteins were downloaded from the study's website. Cis-pQTL was searched within 500 kb 483 

distance from a target gene. Significant cis-eQTL was declared at p<5×10-5. 484 

DEPICT is an integrative tool that takes advantage of predicted gene functions to 485 

systematically prioritize the most likely causal genes at loci of interest [27]. The input of 486 

DEPICT includes a list of variant identifiers, and the output contains all genes located in the loci 487 

and their p-values of being a candidate gene. All lead variants were submitted to DEPICT for 488 

analysis. Significant genes were declared at a false discovery rate (FDR)<5%. 489 

SMR (Summary data–based Mendelian Randomization) method [61] is another SNP 490 

prioritization program that integrates summary-level data from GWAS with data from eQTL 491 

studies to identify genes whose expression levels are associated with trait due to causal or 492 

pleiotropy effects. Here, the pleiotropy effect means that a SNP is causally associated with both 493 

gene expression and phenotypic variation. SMR uses SNPs as an instrumental variable and tests 494 

the causal relation of gene expression to phenotype variation. The results are interpreted as the 495 

effect of gene expression on phenotype free of confounding from non-genetic factors. We used a 496 

pre-compiled eQTL dataset in whole blood tissue [62] for estimation. 497 

Gene-based and gene set enrichment analyses 498 
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Gene-based association analysis was performed with MAGMA v1.6 [63], as implemented on 499 

the FUMA website (http://fuma.ctglab.nl/). GWAS meta-analysis summary statistics were 500 

mapped to 19,427 protein-coding genes, resulting in 19,098 genes that were covered by at least 501 

one SNP. Gene-based association test was performed taking into account the LD between 502 

variants. Gene-based significance level was set at stringent Bonferroni corrected threshold 503 

2.62×10-6, i.e., 0.05/19,098. 504 

The generated gene-based summary statistics were further used to test for enrichment of 505 

association to specific biological pathways or gene sets. A gene set’s association signal was 506 

evaluated by integrating all signals from the genes in the set with MAGMA [63]. A competitive 507 

gene set analysis model was used to test whether the genes in a gene set are more strongly 508 

associated with the phenotype than other genes. 509 

Gene sets were obtained through the MSigDB website 510 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp) [64]. Each gene was assigned to a gene 511 

set as annotated by gene ontology (GO) , Kyoto encyclopedia of genes and genomes (KEGG), 512 

Reactome and BioCarta gene set databases and other gene sets curated by domain experts or 513 

biomedical literature [64]. A total of 10,651 (4,734 curated and 5,917 GO terms) gene sets were 514 

used in this analysis. The significance level was set at a Bonferroni-corrected level of 515 

0.05/10,651= 4.69×10-6. 516 

Protein-protein interaction network was constructed with STRING [65]. STRING uses 517 

information based on gene co-expression, text-mining, and others, to construct protein interactive 518 

network. 519 

Polygenic risk score profiling 520 
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To assess the capability of the GWAS finding to predict ALM, a polygenic scoring analysis 521 

was conducted in the 369,968 unrelated subjects extracted from the main UKB sample. Three 522 

quarters of the individuals (277,762 subjects, including 149,329 females) were randomly selected 523 

as the training sample, and the remaining one quarter individuals (92,206 participants, including 524 

49,660 females) as the validation sample. Female and male subjects were pooled together for 525 

analysis. 526 

Raw phenotype was adjusted by age, age2, gender, height, height2 and the top 10 PCs, and the 527 

residuals were converted to the standard normal distribution quantiles for downstream analysis. 528 

Genetic association analysis was performed with PLINK2 [59].  529 

The same QC procedures as in the main analysis were used to process the variants. The 530 

variants achieving a p-value of <1×10-5 in the training sample were selected and used for 531 

prediction in the validation sample via LDpred approach [66]. LDpred infers the posterior mean 532 

effect size of each marker by using a prior on effect sizes and LD information from an external 533 

reference panel. Specifically, the validation sample with original genotypes was used as 534 

reference panel for LD estimation. The number of SNPs used to adjust LD from each side of the 535 

target SNP was set to 1000. Other software parameters were set to the default. 536 

Genetic correlations with other traits 537 

To test whether lean mass has a shared genetic etiology with other diseases and relevant traits, 538 

a genetic correlation analysis was performed with LDSC method [17]. An online web tool, 539 

LDHub (http://ldsc.broadinstitute.org/ldhub/), was used to estimate the genetic correlation 540 

between ALMadj and 49 complex traits and diseases. The standalone version of the software was 541 

used to estimate between ALMadj and two additional traits, ALM and total body lean mass, 542 

measured by the DXA scan, which are not available in the LDHub GWAS summary statistics 543 
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collections, and which were downloaded from the GEFOS consortium website 544 

(http://www.gefos.org). 545 

Both the LDHub and standalone analyses adopted same QC criteria. Specifically, only 546 

HapMap3 autosomal SNPs were included to minimize poor imputation quality [17]. SNPs were 547 

further removed given the following conditions: MAF<0.01, ambiguous strand (A/T or C/G), 548 

duplicated identifier, or reported sample size less than 60% of total sample size. LD scores 549 

pre-computed on the 1000 genomes project European individuals were used for calculation. 550 

Mendelian randomization analysis 551 

To investigate whether ALM (as exposure) is causally associated with complex diseases (as 552 

outcome), a Mendelian randomization analysis with GSMR was performed [26] on selected 10 553 

complex diseases, including fracture [36], type 2 diabetes (T2D) [37], asthma [38], insomnia 554 

[39], inflammatory bowel disease (IBD) [40], smoking addiction [41], coronary artery disease 555 

(CAD) [42], amyotrophic lateral sclerosis (ALS) [43], bipolar disorder [44] and autistic spectrum 556 

disorder (ASD) [45]. 557 

GWAS summary statistics for these diseases were downloaded from the respective websites. 558 

From the list of SNPs whose association signals with ALMadj were below 5×10-8, qualified SNPs 559 

were included based on the following criteria: concordant alleles between exposure and outcome 560 

GWAS summary statistics, non-palindromic SNPs with certain strand, MAF>1%, and allele 561 

frequency difference between exposure and outcome GWAS summary statistics <0.2.  562 

Independent SNPs were further clumped with PLINK2 [59] with independence LD threshold 563 

r2<0.05 and 1 MB window size. The clumped independent SNPs were examined for their 564 

pleiotropic effects to both exposure and outcome by the HEIDI test [26]. Significance level for 565 

the HEIDI test was set to α=1×10-5. After removing pleiotropic SNPs, the remaining independent 566 
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SNPs were taken as instrumental variables to test for the causal effect of exposure to outcome. 567 

The estimated causal effect coefficients are approximately equal to the natural log odds ratio (OR) 568 

for a case–control trait. The MR analysis significance level was set to 0.005 (0.05/10). 569 
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Figure Legends 730 

Figure 1. Main association results. 731 

Figure 1A, Per allele effect size versus minor allele frequency (MAF). X-axis is MAF at the 717 732 

identified variants and y-axis is per allele effect size (regression coefficient). Figure 1B, the Manhattan 733 

plot of the meta-analysis combining both genders. The horizontal red line indicates the genome-wide 734 

significance level (alpha= 5×10-9) in -log10 scale. All novel loci were marked in green. 735 

 736 

Figure 2. Heritability enrichment in different functional annotations and tissues. 737 

Figure 2A is enrichment of genome-wide association signals in 24 main annotations using LDSC 738 

regression. Y-axis represents the ratio of phenotypic variance explained by variants in a particular 739 

annotation category against that explained in the remaining regions. Error bars represent jackknife 740 

standard errors around the estimates of enrichment. A single asterisk indicates significance at p<0.05 after 741 

Bonferroni correction for the 24 hypotheses tested, and two asterisks indicates significance at p<0.01. 742 

Figure 2B is enrichment of genome-wide association signals in 206 cells/tissues from two different 743 

databases (Franke lab dataset and GTEx consortium dataset). The total cells/tissues were divided into 744 

9 categories. Each dot represents a specific cell/tissue and the tissues passing the cutoff of FDR < 5% at 745 

–log10 (p) = 2.75 were marked in large. 746 

 747 

Figure 3. Protein-protein interactional network. 748 

Thirty-four genes over-represented in 85 significant pathways were selected to construct a protein-protein 749 

interaction network with STRING, which bases the construction on knowledge of gene co-expression, 750 

text-mining, and others. 751 

 752 

Figure 4. Polygenic score prediction. 753 
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A total of 277,762 subjects were randomly selected as the training sample, and another 754 

independent 92,206 subjects were selected as the validation sample. The variants achieving a 755 

p-value of <1×10-5 in the training sample were selected and used for prediction in the validation 756 

sample via LDpred approach. Subjects in the two extreme tails of the predicted genome-wide 757 

polygenic score (GPS) distribution were compared in terms of raw phenotype mean (after 758 

correction). X-axis represents the fraction of subjects drawn from both extreme tails of the predicted 759 

GPS distribution. Y-axis represents mean ALMadj (±95% confidence interval). 760 

 761 

Figure 5. Genetic overlap with other traits. 762 

Genetic correlations (rg) between ALMadj and 51 traits and diseases were estimated. LD Score regression 763 

tested genome-wide SNP associations for these participants against similar data for various other traits 764 

and diseases containing Musculoskeletal system, anthropometrics, obesity, cognition, metabolism, 765 

psychiatry, reproduction and neuropsychiatric outcomes. Error bars represent standard errors on these 766 

estimates. Blue bars represent significantly positive correlation at the nominal level p<0.05; pink bars 767 

represent significantly negative correlation (p<0.05); grey bars represent non-significant correlation. 768 
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Table 1. Association results of 42 mis-sense variants. 770 

RSID CHR POS BAND 
Alleles 

FRQ Gene Protein change Condition 
Female (N=244,945) Male (N=205,635) Meta-analysis (N=450,580) 

(REF/ALT) B SE P B SE P B SE P H2 I2 
Rare 

                   rs148330006 1 86048526 1p22.3 C/G 0.008 CYR61 p.Ser316Cys Primary 0.14 0.015 4.70×10-22 0.1 0.016 1.80×10-11 0.12 0.011 4.31×10-30 2.52×10-4 60.3 
rs200219556 2 241974013 2q37.3 G/A 0.007 SNED1 p.Arg224His Secondary 0.07 0.016 8.85×10-6 0.07 0.017 1.13×10-5 -0.07 0.011 4.28×10-10 7.45×10-5 0 
rs141374503 4 73179445 4q13.3 C/T 0.004 ADAMTS3 p.Arg565Gln Secondary -0.17 0.021 4.50×10-16 -0.16 0.023 6.17×10-13 0.17 0.016 2.02×10-27 2.26×10-4 0 
rs148833559 5 172755066 5q35.2 C/A 0.001 STC2 p.Arg44Leu Primary -0.17 0.035 8.90×10-7 -0.26 0.039 4.50×10-12 0.21 0.026 2.34×10-16 1.28×10-4 63.1 
rs138940563 5 79375038 5q14.1 C/T 0.003 THBS4 p.Ala823Val Primary -0.09 0.023 3.70×10-5 -0.13 0.025 8.80×10-8 0.11 0.017 2.10×10-10 7.64×10-5 36.9 
rs78727187 5 127668685 5q23.3 G/T 0.006 FBN2 p.His1381Asn Secondary 0.07 0.017 2.68×10-5 0.12 0.019 6.81×10-11 -0.1 0.013 6.67×10-14 1.14×10-4 75.2 
rs78408340 5 102338739 5q21.1 C/G 0.009 PAM p.Ser539Trp Secondary 0.06 0.014 5.45×10-6 0.06 0.015 2.70×10-5 0.06 0.01 6.10×10-10 7.33×10-5 0 
rs139237114 9 110249816 9q31.2 G/A 0.004 KLF4 p.His287Tyr Secondary -0.08 0.02 2.62×10-5 -0.11 0.022 5.60×10-7 0.1 0.015 9.79×10-11 8.12×10-5 0 
Less common 

                   rs150270324 4 73178175 4q13.3 T/C 0.013 ADAMTS3 p.Asn585Ser Secondary -0.07 0.012 1.31×10-9 -0.06 0.013 2.97×10-6 -0.07 0.009 2.36×10-14 1.12×10-4 0 
rs139921635 4 73181637 4q13.3 G/T 0.024 ADAMTS3 p.Pro513Thr Secondary -0.06 0.009 5.58×10-11 -0.04 0.01 7.86×10-6 0.05 0.007 4.06×10-15 1.18×10-4 20.9 
rs11722554 4 5016883 4p16.2 G/A 0.038 CYTL1 p.Arg136Cys Primary -0.05 0.007 1.60×10-10 -0.04 0.008 1.20×10-8 0.04 0.005 5.02×10-18 1.44×10-4 0 
rs62621812 7 127015083 7q31.33 G/A 0.02 ZNF800 p.Pro103Ser Primary -0.1 0.01 6.90×10-26 -0.07 0.011 4.20×10-10 0.09 0.007 2.74×10-33 2.94×10-4 80.3 
rs117874826 11 64027666 11q13.1 A/C 0.015 PLCB3 p.Glu564Ala Primary 0.07 0.013 1.40×10-7 0.06 0.014 1.60×10-5 0.06 0.009 2.23×10-11 1.10×10-4 0 
rs61688134 12 22017410 12p12.1 C/T 0.014 ABCC9 p.Val734Ile Primary 0.06 0.011 3.90×10-7 0.05 0.013 1.50×10-5 -0.06 0.009 6.91×10-11 8.65×10-5 0 
rs78457529 16 24950880 16p12.1 C/T 0.012 ARHGAP17 p.Arg510Gln Secondary 0.12 0.012 1.08×10-20 0.08 0.014 1.16×10-9 -0.1 0.009 4.37×10-28 2.34×10-4 69.8 
rs60782127 16 16142079 16p13.11 G/T 0.014 ABCC1 p.Arg433Ser Primary -0.07 0.011 1.60×10-9 -0.06 0.013 2.60×10-5 0.06 0.009 2.91×10-13 1.02×10-4 0 
rs34934920 19 38976655 19q13.2 C/T 0.025 RYR1 p.Pro1787Leu Primary 0.05 0.009 1.10×10-7 0.04 0.009 1.90×10-5 -0.04 0.006 1.72×10-11 8.89×10-5 0 
rs62621197 19 8670147 19p13.2 C/T 0.037 ADAMTS10 p.Arg62Gln Primary -0.07 0.007 1.20×10-21 -0.06 0.008 2.10×10-15 0.07 0.005 5.60×10-36 3.27×10-4 0 
rs78648341 20 19915770 20p11.23 G/A 0.015 RIN2 p.Gly29Arg Primary -0.07 0.011 3.10×10-9 -0.05 0.013 1.20×10-5 0.06 0.008 4.05×10-13 1.10×10-4 0 
Common 

                   rs3850625 1 201016296 1q32.1 G/A 0.118 CACNA1S p.Arg1539Cys Primary 0.03 0.004 1.20×10-9 0.02 0.004 6.40×10-6 -0.02 0.003 1.26×10-14 1.13×10-4 7.3 
rs1047891 2 211540507 2q34 C/A 0.316 CPS1 p.Thr1412Asn Primary -0.03 0.003 6.70×10-26 -0.02 0.003 1.40×10-6 0.02 0.002 8.41×10-29 2.35×10-4 92 
rs1260326 2 27730940 2p23.3 C/T 0.396 GCKR p.Leu446Pro Primary -0.02 0.003 1.60×10-19 -0.02 0.003 2.20×10-14 -0.02 0.002 7.83×10-33 2.71×10-4 0 
rs11545169 3 184020542 3q27.1 G/T 0.161 PSMD2 p.Glu313Asp Primary 0.03 0.004 7.00×10-14 0.03 0.004 1.60×10-15 -0.03 0.003 2.56×10-27 2.24×10-4 0 
rs123509 3 42733468 3p22.1 C/T 0.248 KLHL40 p.Cys617Arg Primary 0.02 0.003 1.20×10-9 0.02 0.003 9.90×10-9 0.02 0.002 1.07×10-15 1.23×10-4 0 
rs34811474 4 25408838 4p15.2 G/A 0.231 ANAPC4 p.Arg465Gln Primary 0.02 0.003 1.10×10-7 0.02 0.003 1.20×10-9 -0.02 0.002 1.13×10-15 1.23×10-4 0 
rs1291602 5 130766662 5q31.1 C/T 0.159 CTC-432M15.3 p.Gln1452Arg Primary -0.02 0.004 3.80×10-7 -0.02 0.004 2.90×10-8 -0.02 0.003 2.21×10-13 1.03×10-4 0 
rs351855 5 176520243 5q35.2 G/A 0.297 FGFR4 p.Gly388Arg Primary -0.04 0.003 4.90×10-35 -0.03 0.003 2.80×10-24 0.03 0.002 3.16×10-55 4.68×10-4 0 
rs35523808 6 75834971 6q13 A/T 0.951 COL12A1 p.Glu2160Val Primary 0.05 0.006 1.60×10-13 0.05 0.007 7.40×10-12 -0.05 0.005 9.93×10-24 2.05×10-4 0 
rs10283100 8 120596023 8q24.12 G/A 0.056 ENPP2 p.Ser493Pro Primary -0.04 0.006 2.70×10-11 -0.04 0.006 9.50×10-10 -0.04 0.004 1.20×10-18 1.50×10-4 0 
rs41307479 9 116082647 9q32 C/G 0.221 WDR31 p.Cys256Ser Primary 0.01 0.003 2.00×10-5 0.02 0.004 3.70×10-6 0.01 0.002 1.30×10-9 7.04×10-5 0 
rs10761129 9 94486321 9q22.31 T/C 0.331 ROR2 p.Val819Ile Primary -0.01 0.003 3.70×10-7 -0.02 0.003 9.60×10-10 0.02 0.002 8.87×10-15 1.16×10-4 16.2 
rs2277339 12 57146069 12q13.3  T/G 0.104 PRIM1 p.Asp5Ala Primary 0.02 0.004 8.70×10-7 0.02 0.005 1.90×10-6 0.02 0.003 1.18×10-11 8.85×10-5 0 
rs12889267 14 21542766 14q11.2  A/G 0.167 ARHGEF40 p.Lys293Glu Primary 0.02 0.004 6.50×10-6 0.03 0.004 4.50×10-11 0.02 0.003 5.08×10-14 1.09×10-4 70.2 
rs117068593 14 93118229 14q32.13  C/T 0.19 RIN3 p.Arg204Cys Primary -0.04 0.003 8.30×10-34 -0.05 0.004 6.90×10-39 0.04 0.003 4.40×10-71 6.19×10-4 50.9 
rs35874463 15 67457698 15q22.33  A/G 0.058 SMAD3 p.Ile170Val Secondary 0.02 0.006 2.64×10-5 0.03 0.006 5.73×10-6 0.03 0.004 7.11×10-10 7.29×10-5 0 
rs72755233 15 100692953 15q26.3  G/A 0.112 ADAMTS17 p.Thr446Ile Primary -0.07 0.004 4.70×10-56 -0.06 0.005 7.40×10-38 0.06 0.003 6.16×10-91 7.86×10-4 0 
rs3817428 15 89415247 15q26.1  G/C 0.265 ACAN p.Asp2373Glu Primary -0.05 0.003 1.20×10-64 -0.05 0.003 9.70×10-45 -0.05 0.002 2.04×10-104 9.06×10-4 27 
rs36000545 17 79093822 17q25.3  A/G 0.396 AATK p.Phe1266Ser Primary 0.01 0.003 5.10×10-6 0.01 0.003 2.40×10-6 0.01 0.002 2.13×10-10 7.96×10-5 0 
rs61734651 20 61451332 20q13.33  C/T 0.071 COL9A3 p.Arg103Trp Primary 0.03 0.005 1.30×10-10 0.06 0.006 1.10×10-21 -0.04 0.004 1.20×10-28 2.61×10-4 87.1 
rs1291212 20 62340115 20q13.33 G/C 0.081 ZGPAT p.Ser61Arg Primary 0.04 0.005 2.50×10-18 0.03 0.005 6.30×10-10 0.04 0.004 7.46×10-25 2.06×10-4 49.7 
rs17265513 20 39832628 20q12 T/C 0.199 ZHX3 p.Asn310Ser Primary 0.03 0.003 1.20×10-17 0.02 0.004 4.90×10-12 0.03 0.003 5.56×10-28 2.32×10-4 0 
rs2830585 21 28305212 21q21.3 C/T 0.16 ADAMTS5 p.Arg614His Primary -0.02 0.004 2.60×10-8 -0.03 0.004 3.40×10-14 0.02 0.003 2.80×10-19 1.56×10-4 54.1 

Notes: Abbreviations: rsID, based on dbSNP; CHR, chromosome; POS, base positions; BAND, chromosome band; REF, reference allele; ALT, alternative allele; FRQ, frequency of alternative allele; B, 771 

beta coefficient of linear mixed model; SE, standard error of beta; P, P-value; H2, proportion of variance explained by this SNP; I2, I2 statistics of SNP in meta-analysis. Under condition column, 772 

Primary means it is an independent lead SNP identified before conditioning analysis and Secondary means it is a SNP identified in conditional analysis. Genomic coordinate was based on human 773 

genome assembly build 37 (GRCh 37). 774 
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