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Abstract

Combination therapy aims to prevent growth of organisms not resistant to all component
drugs, making it an obvious strategy for countering the global rise of multi-drug
resistance. However, success relies on preventing resistance from arising to all component
drugs before full inhibition is reached during treatment. Here, we investigated whether
bacterial populations can overcome combination therapy by evolving ‘multi-resistance’,
i.e. independent resistance mutations to multiple drugs, during single-drug and
combination antibiotic treatment. Using both experimental evolution and in silico
stochastic simulations, we studied resistance evolution in a common laboratory strain of
bacteria (Escherichia coli K-12 BW25113). Populations were exposed to either single-drug
or combination treatments involving rifampicin and nalidixic acid, with concentrations
increasing through time. For wild-type populations, multi-resistance was not detected in
any of the experimental populations, and simulations predict its evolution should be rare.
However, populations comprising mixtures of wild-type and ‘mutator’ strains were
readily capable of evolving multi-resistance. Increasing the initial frequency of mutators
resulted in a higher proportion of populations evolving multi-resistance. Experiments
and simulations produced the same qualitative-and in many cases, quantitative-insights
about the association between resistance, mutators and antibiotic treatment. In particular,
both approaches demonstrated that multi-resistance can arise through sequential
acquisition of independent resistance mutations, without a need to invoke multi-drug
resistance mechanisms. Crucially, we found multi-resistance evolved even when not
directly favoured by natural selection, i.e. under single-drug treatments. Simulations
revealed this resulted from elevated mutation supply caused by genetic hitch-hiking of
the mutator allele on single-drug resistant backgrounds. Our results suggest that
combination therapy does not necessarily prevent sequential acquisition of multiple drug
resistances via spontaneous mutation when mutators are present. Indeed both
combination and single-drug treatments actively promoted multi-resistance, meaning
that combination therapy will not be a panacea for the antibiotic resistance crisis.

Keywords antibiotic resistance, evolution, mutation rate, ramping selection, Bayesian
inference, stochastic simulations, individual-based model, Markov chains
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Introduction

The global threat of antimicrobial resistance is spurring research into the effective use of
existing drugs to prevent further resistance evolution. There has been sustained interest
in the use of combination therapy for preventing resistance evolution in viral, bacterial
and fungal infections, and in cancer (e.g. Devita et al., 1975; Bonhoeffer et al., 1997;
Livermore, 2005; Baym et al., 2016). Combination therapy uses multiple drugs
concurrently to treat a single infection, in contrast to other strategies involving more than
one drug, e.g. ‘mixing’ (assigning different antibiotics to different patients), and ‘cycling’,
(using two antibiotics alternately). Modelling has shown that combination therapy
provides an advantage of combination therapy over these other strategies (Tepekule et al.,
2017). Further, combination therapy has proved successful in a number of clinical
applications, particularly in the management of HIV, which has led to a substantial
decline in resistant infections (Lopez and Banerji, 2016; Antiretroviral Therapy Cohort
Collaboration, 2017). There is optimism that wider deployment could reduce evolution
of resistance in bacterial infections, where the burden of resistance is increasing rapidly
(Palmer and Kishony, 2013; Tyers and Wright, 2019). Considerable progress has been
made in characterising how the interactions between antibiotics used combinations affect
their ability clear infections and prevent the spread of resistance mutations (e.g.
Hegreness et al., 2008; Torella et al., 2010; Pena-Miller et al., 2013; Baym et al., 2016;
Barbosa et al., 2018).

The ability of combination therapy to block resistance evolution relies on preventing
preventing the establishment of a clonal lineage with ‘multi-resistance’, i.e. resistance to
more than one drug via multiple independent mutations (which we distinguish from
‘multi-drug resistance’ that arises through a single mutation, e.g. in multi-drug efflux
pump regulation). In bacteria, simultaneous acquisition of multi-resistance should be
exceedingly rare. For independent resistance mutations, the rate of simulatenous
multi-resistance is the product of mutation rates to resistance for each drug (with
per-drug estimates approximately 10−8 to 10−10 per genome replication, Krašovec et al.,
2017). Multi-resistance is therefore more likely to occur via sequentially acquiring
resistance to each component drug (Bonhoeffer et al., 1997). Although combination
therapy aims to prevent sequential acquisition, failure to achieve inhibitory
concentrations of all component drugs has been shown to permit sequential
multi-resistance evolution in multiple systems (Foo and Michor, 2009; Moreno-Gamez
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et al., 2015; Feder et al., 2017). Antibiotics do not reach fully inhibitory concentrations
immediately upon treatment, particularly when administered orally, which increases the
propensity for resistance (Felton et al., 2013). For combination treatments, this may allow
organisms to survive long enough to acquire sequential resistance mutations.

A particular complication of treating bacterial infections is heterogenetiy in mutation
rates within populations. Notably, ‘mutators’, i.e. organisms with mutation rates
10–1000-fold higher than wild-type, often arise due to defects in DNA mismatch repair
(reviewed in Marinus, 2012). Bacterial infections often comprise a mixture of wild-type
and mutator organisms at varying frequencies, e.g. in urinary tract infections caused by
Escherichia coli (4.2%–62.5% mutators, Couce et al., 2016), and in cystic fibrosis-associated
infections caused by Pseudomonas aeruginosa (∼53% mutators, Oliver et al., 2000; Maciá
et al., 2005). Mutators present at these frequencies have been shown to increase the rate of
adaptation of populations (e.g. Taddei et al., 1997; Giraud et al., 2001; Desai and Fisher,
2011; Raynes et al., 2018). By reducing the waiting time for mutations to occur, mutators
could exacerbate the problem of sub-inhibitory concentrations facilitating
multi-resistance evolution. Although there is an established link between mutator alleles
and multi-resistance (Chopra et al., 2003), whether the presence of mutators can enable
populations to evolve multi-resistance during the course of a combination treatment is yet
unknown.

Using a combination of experimental evolution and stochastic simulations, here we tested
whether mutators facilitate multi-resistance evolution during antibiotic treatment. We
measured the probability of drug resistance evolution in populations of bacteria varying
in the initial proportion of mutators exposed to no-drug, single-drug, or combination
treatments that increase in concentration over time. Experiments were performed with a
laboratory strain of bacteria (E. coli K-12 BW25113) and a mismatch repair-deficient
derivative (∆mutS), using the antibiotics rifampicin and nalidixic acid. Simulations were
parameterised with fitness and mutation rates measured independently from the
experiments. We found that mutators played a critical role in multi-resistance evolution
both experiments and simulations. In the absence of mutators, no multi-resistance was
observed experimentally, and simulations suggest it should be rare even when beneficial.
Strikingly, when mutators were present, we observed multi-resistance evolution in both of
the single-drug treatments and in the combination treatment. Different evolutionary
mechanisms explain multi-resistance in these treatments. In the single-antibiotic
treatments, multi-resistance arose due to genetic hitch-hiking of the mutator allele along
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with single-drug resistance, allowing increased mutational supply (de Visser, 2002). In
contrast, in the combination treatment, multi-resistance arose due to positive selection,
sweeping to high frequency as the concentration of both antibiotics increased. There was
no association between the mutator allele and fitness deficits. Given the prevalence of
mutators, multi-resistance evolution may present a real challenge to the wider
deployment of combination therapy against bacterial infections.

Methods

Strains and media

Selection experiments involved ‘wild-type’ E. coli strain K-12 substrain BW25113 [F-,
∆(araD-araB)567, ∆lacZ4787(::rrnB-3), λ-, rph-1, ∆(rhaD-rhaB)568, hsdR514], and a ∆mutS
‘mutator’ strain (as above, but with ∆mutS738::kan, indicating mutS replacement with a
kanamycin resistance cassette). ∆mutSwas originally constructed as part of the Keio
collection (Baba et al., 2006), and both strains were obtained from Dharmacon, Horizon
Discovery Group, UK. Strains were grown in Müller-Hinton broth (MH broth, 23 g/l,
Sigma-Aldrich, UK) or lysogeny broth [LB, 10 g/l tryptone (Fisher Scientific, UK), 5 g/l
Bacto yeast extract (BD Biosciences, UK), 10 g/l NaCl (Fisher Scientific, UK)], as indicated.
Solid medium was made by adding 12 g/l agar (BD Biosciences, UK) to either broth prior
to autoclaving. Stock antibiotic solutions were prepared at 10 mg/ml. Rifampicin (Fisher
Scientific, UK) was dissolved in methanol (Fisher Scientific, UK), and nalidixic acid
(Fisher Scientific, UK) was dissolved in double distilled water, with 1N NaOH (Fisher
Scientific, UK) added drop-wise until the antibiotic was solubilised. Strains were stored in
LB with 40% glycerol at −80 ◦C.

Selection experiment under single-drug and combination treatments

We used experimental evolution to determine the effect of mutators on multi-resistance
evolution under single and combination antibiotic treatments. Populations were founded
from a mixture of mutator and wild-type individuals. Independent overnight cultures of
wild-type and mutator were first grown separately in 5 ml MH broth. Volumetric
mixtures of the cultures were made at ratios of 0%, 10%, 25%, and 50% mutator culture.
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The actual proportions were measured by plating serial dilutions of the populations on
LB agar (total population count) and LB with 100 mg/l kanamycin agar (mutator count).
The initial mixtures were assayed for resistance to rifampicin or nalidixic acid by plating
on MH agar supplemented with rifampicin (50 mg/l) or nalidixic acid (30 mg/l); any
culture found to have resistance already present was discarded.

We used a serial transfer protocol, exposing populations to increasing concentrations of
antibiotics over a period of 6 days. The experiment was performed in 96-well microtitre
plates (Nunc, Fisher Scientific, UK) in 200 µl volumes grown at 37 ◦C with 200 rpm
shaking in an Innova 42R Incubator (Eppendorf, United Kingdom) for 22 h growth
periods (‘days’). Populations were initiated from the mixed cultures by diluting 1 µl of
each into 200 µl of fresh culture using a 96-pin replicator (Boekel Scientific, Feasterville,
PA, USA). At the end of each day, 1 µl of each population was pin replicated into 200 µl of
fresh growth medium. If populations were to achieve the same size each day, a 1/200
dilution would imply log2(200) ≈ 7.64 doublings per day. Four antibiotic treatment
regimes were used: no antibiotic, rifampicin only, nalidixic acid only, or rifampicin and
nalidixic acid combined. Antibiotic concentrations were doubled each day over the course
of 6 days (0.625, 1.25, 2.5, 5, 10, 20 mg/l of each individual antibiotic). Population density
was measured each day by optical density at 600 nm using a BMG POLARstar OPTIMA
(BMG Labtech, Ortenberg, Germany).

Detection and analysis of resistance

Following each daily transfer, we assayed resistance by pin replicating 1 µl of overnight
culture (equivalent to a random sample of 1/200th of the population) on MH agar
without antibiotic, or with rifampicin (50 mg/l), nalidixic acid (30 mg/l), or rifampicin
and nalidixic acid combined (50 mg/l and 30 mg/l, respectively). These concentrations
are indicative of resistance in the typical resistance genes for these antibiotics in E. coli,
rpoB and gyrA, respectively. Populations were assigned one of five categories: ‘sensitive’ if
they only grew on non-selective plates, ‘rifampicin resistant’ or ‘nalidixic acid resistant’, if
they grew on one of the two single-drug plates, ‘mixed resistant’ if they grew on both
single-drug selective plates but not combination selective plates, and ‘double resistant’
(i.e. multi-resistant to two antibiotics, the simplest form of multi-resistance) if they grew
on combination selective plates. Note these outcomes refer to detection of resistance, rather
than fixation, i.e. the frequency of resistant individuals is > 0 and ≤ 1. Evolved
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populations that grew on the combination plates at the end of the sixth day were grown
overnight in LB medium, and then stored at −80 ◦C.

We analysed resistance using a Bayesian categorical model, implemented in the brms
package (Bürkner, 2017, 2018) in R 3.5.3 (R Core Team, 2019). Resistance was treated as a
categorical response variable (categories defined above), with antibiotic treatment (‘no
antibiotic’, ‘rifampicin’, ‘nalidixic acid’, ‘combination’) and proportion of mutators (‘none’,
‘low’, ‘medium’, ‘high’) as categorical predictors. Row and column (i.e. position in the 96
well plate) were treated as random effects. We used Student’s t priors, with location µ and
scale σ estimated from a preliminary experiment, and degrees of freedom ν chosen to
reflect uncertainty in the location, i.e. t(ν � 7, µ � −5, σ � 2.5) for the intercept and
t(ν � 7, µ � 0, σ � 2.5) for other estimated parameters (see Figure S1 and Model M1 in the
supplementary information). From the model, we discuss main effects (i.e. the effect of a
predictor on the response averaged across all levels of the other predictors), and
interaction effects (i.e. the effect of a predictor being conditional on the value of another
predictor).

Fitness of single- and double-resistant clones

To determine fitness effects of single and double resistance, we selected five nalidixic acid
resistant and five rifampicin resistant clones arising from the wild-type BW25113 genetic
background via fluctuation tests (Luria and Delbrück, 1943), using the protocol
developed by Krašovec et al. (2014). Briefly, 1 ml LB cultures of E. coli K-12 BW25113 were
grown overnight in 96-well deep-well plates. The entire volume of each culture was
plated on MH agar supplemented with rifampicin (50 mg/l) or nalidixic acid (30 mg/l)
and incubated for 48 h. To select double-resistant clones, we performed a second
fluctuation test using resistant strains from the first, plating on the antibiotic to which
they were not already resistant. Colonies were isolated from selective plates, grown
overnight in LB medium, and then stored at −80 ◦C.

Growth curves of single- and double-resistant clones were generated by measuring
optical density at 600 nm every 30 min for 45 h using a BMG FLUOstar OMEGA with
Microplate Stacker (BMG Labtech, Ortenberg, Germany). Clones were grown in duplicate
at 37 ◦C under each of the antibiotic concentrations experienced during the selection
experiments. Cultures were initiated by first growing clones overnight in 200 µl MH
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broth, then diluted 1/200 into a total volume of 200 µl MH broth containing one or both
antibiotic(s). We assayed six concentrations (corresponding to the conditions described in
the selection experiment): 0.625, 1.25, 2.5, 5, 10, 20 mg/l each of rifampicin and/or
nalidixic acid. Wells exhibiting resistance emergence during the assay, as indicated by a
replicate growth curve diverging significantly from the mean, were excluded from
analysis. These data were used to determine parameters for the simulation model (as
described in the supplementary information). As a proxy for fitness, we also used this
growth curve data to estimate area under the curve (AUC) for the first 25 h of growth
using the SummarizeGrowth function from the R package growthcurver (Sprouffske and
Wagner, 2016). To determine whether double resistance conferred a benefit under
single-drug treatments, we fit a Bayesian multivariate regression model of AUC of
different strains in the presence of each treatment over all concentrations. Student’s t
priors were used for the intercept (ν � 7, µ � 10, σ � 2.5) and the other effects
t(ν � 7, µ � 0, σ � 2.5) (see Figure S2 and Model M2 in the supplementary information).
Effects of single-drug and double resistance were compared with point hypothesis tests
on the population-level effects from this model using 95% credible intervals (C.I.s).

Using the same protocol, growth curves for the double-resistant clones that evolved
during the selection experiment (all in the mutator genetic background) were measured
in antibiotic-free medium, and in 20 mg/l of the combination treatment. The association
between AUC, initial mutator frequency and treatment was analysed using a Bayesian
multivariate regression model. Student’s t priors were used for the intercept
(ν � 7, µ � 10, σ � 2.5) and the effect of mutator levels (ν � 7, µ � 0, σ � 2.5) for other
estimated parameters (see Model M3 in the supplementary information).

Stochastic population dynamics model

We numerically simulated resistance evolution using a stochastic population dynamic
model. The model describes four strains of type i ∈ {S, R,N,D}, where S is the sensitive
ancestor, R is rifampicin resistant, N is nalidixic acid resistant, and D is double resistant
(Figure 1). A similar model was considered by Nicholson and Antal (2019) for an
arbitrary number of genotypes. We denote the number of strain-i individuals in the
population by ni . Simulated populations were initiated with 5.71 × 106 individuals; this is
our estimate of the starting population size in the experiments obtained by serial dilution
plating. The initial population consisted of a fraction 1 − q of wild-type individuals, and a
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fraction q of mutators, for q taking a value of 0, 0.05, 0.1, or 0.3. Parameter values were
estimated empirically (growth rates and carrying capacities, given in Tables S7 and S8),
taken from the literature (mutation rate Krašovec et al., 2018), or were set to match the
experimental procedure (initial frequency of mutators, dilution, duration of experiment).
Mean growth rates and carrying capacities were estimated from kinetic growth curve
data from five single- and double-resistant clones in the wild-type E. coli K-12 BW25113
genetic background using MATLAB 2016a (see Figures S4 and S5 and supplementary
information).

Population growth is described as follows. Considering first population growth without
mutation, for each time step, each of the ni individuals of strain i produces one offspring
with probability bi � exp {∆tri (1 − nT/ki)} − 1 for nT/ki ≤ 1, where ri is the net growth
rate (per hour) for strain i, and ki is the carrying capacity. At stationary phase (i.e.
nT/ki ≥ 1), bi � 0 to ensure that ni remains constant. We have written nT �

∑
i ni for the

total number of individuals in the population. The quantity ∆t is the time step of our
simulations (we use ∆t � 0.25 h, although smaller time steps produced qualitatively
similar results; further details can be found in the supplementary information). In each
time step, the number of offspring of strain i is binomially distributed, Binomial(ni , bi).
Population growth periods were 22 h, equivalent to ’days’ of the experiment. At the end
of each day, a dilution occurs in which the number of individuals of type i transferred to
the next day is binomially distributed, Binomial(ni , 1/200). In the supplementary
information we show that, for growth without mutations, the mean number of
individuals of each strain follows the deterministic Leslie-Gower competition model
(Leslie and Gower, 1958, a discrete-time model conceptually similar to the Lotka-Volterra
competition model in continuous time, Volterra 1926; Lotka 1932).

Type R, N , and D individuals can also arise by mutation from new individuals that are
produced. We write µR for the probability with which an offspring acquires resistance to
rifampicin by mutation, and µN for the probability that the offspring acquires resistance
to nalidixic acid. We exclude the possibility that both resistance mutations can be newly
acquired in the same reproduction event. The number of individuals of type i arising by
mutation in any one time step is therefore Binomial(nS , bSµi) for i ∈ {R,N}. For i � D the
number of individuals generated through mutation is the sum of two binomial random
numbers, Binomial(nR , bRµN) and Binomial(nN , bNµR). We use the resistance mutation
rates µR � 6.7 × 10−9 and µN � 7.4 × 10−10 mutations per cell division, obtained from the
rich-media data in Krašovec et al. (2018).
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Simulations were written in C++ (source code available in the supplementary
information). To compare simulations with the experimental results, we drew a random
sample equivalent to 1/200th of all individuals from the simulated population whenever
data was taken from the simulation. Detection of type i was recorded for a given
population if a draw from Binomial(nT , ni/(200 · nT))was at least 1. This is equivalent to
the resistance detection assay for the experimental results.

Results

Mutators facilitate double resistance evolution under single-drug and
combination treatments

We subjected populations of bacteria with different initial mutator frequencies to
increasing concentrations of either single or combination antibiotic treatments. Figure 2
shows the number of populations with detectable resistance under different antibiotic
treatments (as detected by selective plating, though optical density revealed a similar
trend, Figure S3). Single-drug resistance was observed at some point during the
experiment for all initial mutator frequencies and treatments. When antibiotics were
present, the number of resistant populations generally increased through time, excepting
populations without mutators. However, the proportion of populations with resistance
was roughly U-shaped in the absence of antibiotics for all mutator frequencies (left
column of Figure 2). In contrast, multi-resistance was only observed when mutators were
present, and only in the presence of antibiotics. Where it was detected, multi-resistance
was preceded by single-drug resistance in every population except for one, providing
evidence for sequential, rather than simultaneous, acquisition of multi-resistance.

The relationship between resistance at the final time point, mutators and antibiotic
treatment was determined using a Bayesian categorical mixed-effects model (see Model
M1 in the supplementary information). The fit of a full model incorporating both main
effects and interactions was only marginally better than a main effects-only model, hence
we present parameter estimates from the latter (given in full in Table S1 in the
supplementary information). The main effect of mutators was positive for all resistance
types (i.e. having 95% C.I.s for the posterior greater than zero), with the exception of ‘low’
mutators and nalidixic acid resistance. While the mean effects of mutators increased with
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increasing mutator frequencies (low < intermediate < high, generally), the 95% C.I.s of
their posteriors overlapped. Single antibiotic treatments had predictable effects on
single-drug resistance, i.e. rifampicin resistance was more likely to occur under rifampicin
treatment, but not nalidixic acid treatment, and vice versa. All antibiotic treatments
increased the probability of double resistance evolving.

Fitness estimates suggest no selection for double resistance in single-antibiotic
treatments

The occurrence of double-resistant strains in single-antibiotic treatments is surprising. We
therefore used fitness assays to test whether there could be any positive selection for
double resistant strains in the presence of single antibiotics. To determine which
treatments should result in positive selection for resistance, we assayed fitness of sensitive,
single- and double-resistant clones under all conditions experienced during experimental
evolution. Fitness assays were conducted on clones derived from fluctuation tests using
the non-mutator wild-type BW25113, to minimise confounding effects of other mutations
arising during experimental evolution. For the combination treatment, there was a clear
advantage of double resistance over single-drug resistance for concentrations of 1.25 mg/l
and above (Figure 3). These concentrations correspond to time periods where double
resistance begins to be detected in the experiments. In contrast, there was no clear fitness
advantage of double resistance over rifampicin resistance in the rifampicin treatment
[difference in effect = -0.07, 95% C.I.: (−0.38, 0.23)], and a disadvantage over nalidixic acid
resistance in the nalidixic acid treatment [difference in effect = -0.75, 95% C.I.:
(−1.05,−0.45)]. This provides no evidence of a benefit to double resistance in single drug
treatments, suggesting that double resistance did not spread due to positive selection.

Mutators did not impair fitness of multi-resistant strains

Although we have established that mutators may increase the probability of observing
multi-resistance, a potential consequence of elevated mutation rates is the accumulation
of deleterious genetic variation. This may impair the fitness of multi-resistant clones
arising in mutators, suggesting they may be rapidly outcompeted by fitter clones if
antibiotics are removed. To determine the effect of initial mutator frequency on the fitness
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of evolved multi-resistant clones, we compared growth curves of clones that evolved in
mutator genetic background during combination treatment against clones in the
wild-type background. Recall that we used successive fluctuation tests to isolate double
resistant mutants in the wild-type background. This was performed so that we could
estimate fitness effects of resistance mutations with a minimum number of mutations at
other loci in the genome. We analysed the association between multi-resistant fitness and
mutator frequencies using a Bayesian multivariate regression model (see Model M3 in the
supplementary information). A model incorporating initial mutator frequency did not
improve fit over an intercept-only model, suggesting the initial frequency of mutators did
not have a large overall influence on fitness in either environment. However, the ‘low’
initial frequency of mutators was associated with lower fitness in the absence of
antibiotics, but we found no further evidence that the fitness of multi-resistant strains
arising in the mutator genetic background was lower than in the wild-type background in
either environment (Figure 4). Further, fitness of individual clones assayed in each
environment was positively correlated [residual r � 0.69, 95% C.I.: (0.56, 0.79)], providing
no evidence of a trade-off between fitness in the presence and absence of the combination
treatment. This suggests that there is no drawback to multi-resistance arising in mutator
genetic backgrounds, as might be expected if elevated mutation rates allow deleterious
mutations to accumulate (Söderberg and Berg, 2011).

Insight into evolutionary mechanisms using stochastic simulations

If double resistance does not confer a benefit under single-drug treatments, different
mechanisms must explain its prevalence under single-drug and combination treatments.
To gain a mechanistic insight into the drivers of double resistance evolution in these
treatments, we simulated resistance evolution using a stochastic population-dynamics
model involving diauxic logistic growth subject to competition among strains, mutation,
and periodic population dilutions. Model parameters were estimated from experimental
data on mutation rates of wild-type and mutator strains (Krašovec et al., 2017), and
growth rates of sensitive and resistant strains measured at each concentration of
antibiotic(s) (Figure 3). Figure 5 shows the proportions of populations evolving resistance
for 1000 replicate simulations (analogous to the experimental results shown in Figure 2).
A Bayesian categorical model fitted to simulations produced parameter estimates that
closely matched those from the experimental data, demonstrating that the simulations
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quantitatively recapitulate the experiments (Figure S7 and Model M4).

In particular, we reproduce the main experimental findings that double resistance was
constrained to populations treated with antibiotics, and that the presence of mutators
facilitated double resistance evolution. We found that a small fraction of purely wild-type
populations evolved double resistance (between 0/1000 and 15/1000 per treatment); this
is consistent with our experimental results (≤ 1/60 per treatment). As the model excludes
the possibility of double resistance emerging through a single reproductive event, this
suggests that double resistance can emerge without invoking multi-drug resistance
mechanisms (e.g. efflux pumps), simultaneous acquisition of two resistance mutations, or
recombination.

Figure 6 shows the interquartile range (25% and 75% quantiles) for simulated population
dynamics, i.e. numbers of sensitive, single-drug resistant, and multi-resistant bacteria.
Here we show the ‘intermediate’ (p � 0.1) initial mutator frequency (examples of
individual populations are shown in Figure S7, and the interquartile range for other initial
frequencies in Figure S8). In single-drug treated populations, mutators swept to high
frequency due to genetic linkage with single-drug resistance (i.e. in the same genome).
Multi-resistance then arose subsequently in a population now comprising mostly
single-resistant organisms, although reached only low relative frequency due to the
absence of selection for multi-resistance. In contrast, in combination-treated populations,
multi-resistance swept to fixation without fixation of single-drug resistance, due to direct
selection for multi-resistance. Increasing the frequency of mutators decreased variability
in the number of multi-resistant bacteria present at the end of the simulation (Figure S8).
This reveals different evolutionary mechanisms responsible for multi-resistance in
single-drug and combination treatments: genetic hitch-hiking of mutator alleles under
single-drug treatments, and direct selection for sequentially-evolved multi-resistance
under combination treatment.

Discussion

One of the primary motivations for the use of combination antibiotic therapy is reducing
the probability of resistance evolution (Pletz et al., 2017). Here, we study the evolution of
multi-resistance evolution to two antibiotics under single-drug and combination
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treatments. Using experiments and simulations, we demonstrated that mutators facilitate
the evolution of double resistance in bacterial populations comprising both wild-type and
mutator individuals (Figure 2). Double resistance occurred both in single-drug treatments
and the combination treatment, despite conferring no fitness advantage in single-drug
treatments (Figure 3). There was no fitness deficit associated with double resistance
having arisen in a mutator genetic background (Figure 4). We simulated resistance
evolution to explore the mechanisms responsible for double resistance (Figure 5).
Simulations showed that double resistance can arise via sequential acquisition of
resistance to each antibiotic, rather than simultaneously. Double resistance arose due to
genetic hitch-hiking of the mutator allele in single-drug treatments, and direct selection in
the combination treatment (Figure 6). Taken together, these results suggest that
combination therapy may not be a fool-proof strategy for preventing antibiotic resistance
evolution, given the prevalence of mutators in bacterial infections.

We showed that mutators facilitated multi-resistance evolution under single-drug and
combination treatments in both simulation and experiment (Figures 2 and 5). Our aim
with simulations was to predict the probability of multi-resistance evolution with a model
involving as few parameters as possible. This allowed us to demonstrate which biological
phenomena are necessary to predict multi-resistance evolution with reasonable accuracy.
Specifically, our model considers only eight possible genotypes (i.e. four resistance states
in wild-type and mutator genetic backgrounds), whereas in reality, there are many
possible resistance alleles. Further, the model does not include adaptive or compensatory
mutations at other loci. Finally, we specifically excluded double-mutation events and
multi-drug resistance mutations to demonstrate that multi-resistance could evolve in their
absence. The good quantitative match between experiment and simulation (Figure S9)
suggests that these aspects are not required for the model to predict single-drug
resistance and multi-resistance. However, there were two differences between model and
experiment that may have arisen from these simplifications. In the ‘no antibiotic’
treatment, we found that the relationship between rifampicin resistance and time was
U-shaped in the experiment and monotonic in the simulation (first columns of Figures 2
and 5). This difference may be explained by selective sweeps of adaptive mutations
replacing rifampicin resistance mutations, which are generally costly in rich medium in E.
coli K-12 (Reynolds, 2000) and also in other species (Hughes and Brandis, 2013). We also
detected more mixed resistance in the experiment, primarily in the nalidixic acid
treatment (third columns of Figures 2, 5 and S9). The simulation could have
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underestimated mixed resistance if there were additional fitness costs of double resistance
that were not captured by our model (e.g. differences in lag time). However, even with
inexact quantitative matches for these two resistance states in these two environments, the
key qualitative predictions hold. This demonstrates that insight into complex
evolutionary processes can be gained from relatively uncomplicated stochastic models.

Whether multi-resistance evolution evolves during the clinical application of antibiotic
combination therapy, and whether mutators influence this process, is yet unknown.
Resistance to HIV combination therapy emerging in clinical trials (6%-15% of patients Sax
et al., 2011) suggests this possibility, although the mutation rate of HIV is several orders of
magnitude larger than that of bacterial mutators (Cuevas et al., 2015). Sequencing and
resistance profiling of clinical bacterial isolates has demonstrated a link between
multi-resistance and elevated mutation rates. In particular, genetic defects in DNA
mismatch repair are associated with multi-resistance in multiple bacterial species, e.g.
chronic P. aeruginosa infections (Ferroni et al., 2009), clinical isolates of Acinetobacter
baumannii (Komp Lindgren et al., 2015), and in blood and urinary tract isolates of E. coli
(Miller et al., 2004; Baquero et al., 2004; Labat et al., 2005). Genetic hitch-hiking of mutator
alleles with resistance presents a challenge for infection management, as such infections
increase their evolutionary potential to develop resistance against future antibiotics and
other forms of bacterial control, such as vaccination (Bayliss et al., 2008) and phage
therapy (Pal et al., 2007). Further, there is little support for mutators suffering from
decreased fitness, both over short time scales studied here (Figure 4), and over
longer-term evolution (Couce et al., 2017), and may even compensate better for the costs of
resistance (Perron et al., 2010). This suggests that once multi-resistance in a mutator
lineage becomes established, it would be exceptionally difficult to eliminate. Collectively,
this raises the question of whether screening for mutators, in addition to antibiotic
susceptibility, would be valuable in clinical practice.

Although here we have focused on genetically-encoded mutators, environmental factors
influencing mutation rates may also contribute to multi-resistance evolution. Mutation
rate appears to be a phenotypically plastic trait across all domains of life (Krašovec et al.,
2017), though the precise mechanisms through which this operates has yet to be
established. Recent work has shown a link between mutation rate and efflux gene
expression (El Meouche and Dunlop, 2018). Environmental stress and mutagens can also
transiently elevate mutation rates, e.g. via stress-induced mutagenesis (Petrosino et al.,
2009), radical-induced DNA damage (Kohanski et al., 2010), or inhibition of DNA
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synthesis and activation of error-prone polymerases (Gillespie et al., 2005;
Henderson-Begg et al., 2006; Thi et al., 2011). This may explain the high rate of
multi-resistance in Mycobacterium tuberculosis, which is thought to have a relatively low
mutation rate (McGrath et al., 2013). Beyond increasing average mutation rates,
increasing the variability has also been shown to increase the probability of
multi-resistance (Alexander et al., 2017). Understanding the mechanistic underpinnings
of mutation rates, and the relationship with resistance, will open the possibility for drugs
that inhibit resistance evolution through suppressing mutations (Ragheb et al., 2018).

Our results suggest that indiscriminately pairing antibiotics could have drastic
consequences for the propensity for populations to evolve multi-resistance. Although
there are many potential combinations that can be generated by randomly pairing current
antibiotics (Wood, 2016), these findings indicate a need for a rational approach to
designing combination therapies. Antibiotics in the same classes as those used in our
experiments, the rifamycins and fluoroquinolones, are often components of combinations,
particularly against M. tuberculosis, where multiple antibiotic resistance is rampant
globally (Manson et al., 2017). Resistance to antibiotics in these classes arises readily due
to mutations in their ‘resistance determining regions’, in rpoB for the rifamycins
(Goldstein, 2014), or in gyrA (Gram negative bacteria) or parC (Gram positive bacteria) for
the fluoroquinolones (Redgrave et al., 2014). High-level resistance to either requires only a
single base pair mutation in their target genes, in contrast to other antibiotics that require
multiple mutations (e.g. trimethoprim, Palmer et al., 2015). This particular combination of
classes is therefore likely to perform particularly poorly. However, beyond testing a
specific combination treatment, our stochastic simulation model provides a framework for
evaluating new combinations based on experimental measurements of fitness and
mutation rates. Future investigation into the rational design of combination therapy is
needed to identify which efforts, such as minimising mutational target sizes, or matching
pharmacokinetics to minimise periods of sub-inhibitory concentrations, will help to
prevent the evolution of multi-resistance during combination treatment.
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Figures

Figure 1: Population dynamics model of multi-resistance evolution. The model describes
individuals of strains i ∈ {S, R,N,D} (sensitive, rifampicin resistant, nalidixic acid resistant,
double resistant). Each individual of type i produces an offspring with probability bi in each time
step. Of those, a rifampicin resistance mutation occurs with probability µR (if not already
rifampicin resistant), or a nalidixic acid resistance mutation occurs with probability µN (if not
already nalidixic acid resistant). Simultaneous acquisition of both mutations in one reproduction
event is not considered in the model (i.e. S cannot give rise to D).
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Figure 2: Emergence of antibiotic resistance in the presence and absence of selection
for resistance in populations with and without mutators. Multi-resistance emerged when
mutators were present (rows) under both mono- and combination antibiotic therapy (middle and
right columns, respectively), but not in the absence of antibiotics (left column). Stacked bars
show numbers of populations where each category of resistance was detected by selective
plating. ‘Rifampicin resistance’ and ‘nalidixic acid resistance’ indicate growth on either
rifampicin or nalidixic acid medium, respectively, but not on both nor in combination. ‘Mixed
resistance’ indicates growth on both rifampicin and nalidixic acid medium separately but not in
combination. ‘Double resistance’ indicates growth on both antibiotics separately and also in
combination. See Model M1 in the supplementary information.
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Figure 3: Fitness of sensitive, single-, and double-drug resistant strains at antibiotic
concentrations experienced during the resistance selection regime (AUC of OD600: area
under curve of growth curves measuring optical density at 600 nm over time). Resistant strains
(n � 5) were isolated in the wild-type E. coli K-12 BW25113 genetic background by fluctuation
test(s). Vertical line indicates minimum inhibitory concentration of the wild-type. Error bars are
±1 standard error across a minimum of two replicates, but are smaller than plotting symbols.
See Model M2 in the supplementary information.
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Figure 4: Fitness of double-resistant clones in 0 mg/l and 20 mg/l of the combination
treatment (defined as area under curve of growth curves measuring optical density at 600 nm
over time). Double resistant strains arising in the mutator genetic background during selection
(pink polygons) were not less fit than double mutants selected during successive fluctuation
tests in the wild-type E. coli K-12 BW25113 genetic background (white circles). Dashed
diagonal line indicates equal fitness in both environments. See Model M3 in the supplementary
information.
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Figure 5: Emergence of antibiotic resistance in stochastic simulations of resistance
evolution. Stacked bars show the number of populations with individuals of the types shown in
Figure 1. ‘Detection of’ refers to the types of individuals present in a random sample of 1/200 of
the population (simulating selective plating, see Methods), during each time step of the
simulation. ‘No resistance’ indicates only type S was sampled (no R, N, or D). ‘Rifampicin
resistance’ indicates at least one R (no N or D, any S), and ‘nalidixic acid resistance’ at least
one N (no R or D, any S). ‘Mixed resistance’ indicates at least one each of R and N (no D, any
S). ‘Double resistance’ indicates sampling at least one D (any S, R, or N). See Model M4 in
the supplementary information.
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Figure 6: Population dynamics of simulated resistance evolution. Panels show the
interquartile range (25% and 75% quantiles) of the number of bacteria of each resistance type
(colours) for four treatments (columns) from 1000 replicate stochastic simulations. Results from
the ‘intermediate’ (p � 0.1) initial mutator frequency are shown (other frequencies are shown in
Figure S8).
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