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Abstract 

Studying relationships among gene-product expression profiles is a common approach in 

systems biology. Many studies have generalized this subject to different levels of the central 

dogma information flow and assumed correlation of transcript and protein expression levels. 

All these efforts have updated the signaling network models and expanded the current 

signaling databases, which include interactions among the gene-products extracted based on 

either the literature or direct and indirect experiments. In fact, due to unavailability or high-

cost of the experiments, most of the studies do not look for the direct interactions (gene-

protein or protein-protein) and some of them are contradictory. In addition, it is now a 

standard practice to undertake enrichment analysis on biological annotations especially in 

omics research to make claims about the potentially implicated biological pathways in 

disease. Specifically, upon identifying differentially expressed genes, molecular mechanistic 

insights are proposed based on statistically enriched biological processes for disease etiology 

and drug discovery. However, it remains to be demonstrated that expression data may be used 

as a reliable source to infer causal relationships among gene pairs. In this study, using four 

common and comprehensive databases i.e. GEO, GDSC, KEGG, and OmniPath, we 

extracted all relevant gene expression data and all relationships among directly linked gene 

pairs in order to evaluate the rate of coherency or sign consistency. We illustrated that the 

signaling network was not more consistent or coherent with the measured expression profile 

compare to random relationships. Finally, we provided the pieces of evidence and concluded 

that gene-product expression data, especially at the transcript level, are not reliable or at least 

insufficient to infer biological relationships among genes and in turn describe cellular 

behavior. 
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1. Introduction 

In network biology, defining relationships among nodes is crucial for the downstream 

analysis (1). The most available high-throughput data to infer molecular relationships are 

arguably whole-transcriptome expression profiles analyzed with statistical models (2). A 

main challenge is extrapolating causality in signaling and regulatory mechanisms from a 

significant correlation between any given gene pair. A lot of spurious correlations among 

gene pairs may occur without any causal relationship that could happen indirectly or 

stochastically (3). Reverse engineering algorithms are developed to tackle this challenge and 

to infer gene networks and regulatory interactions from expression profiles (4).  

When considering signaling networks, their main players are proteins whose activity is 

often regulated by post-translational modifications such as phosphorylation. Hence, inference 

of signaling networks can be directly inferred from (Phospho)proteomic and protein-protein 

interaction data (5). This data is hard and expensive to acquire. Given the correlation between 

protein and gene expression, a common alternative approach is to use gene expression to 

estimate interactions between proteins. However, in general, the gene expression or 

transcriptomics discuss about what appears to happen in a biological system, while the 

signaling network exhaust to what makes it happens and has happened in a complex view of 

the system (6). This therefore begs the question whether gene expression profiles strengthen 

the logic i.e. activatory/inhibitory mechanism of signaling circuits. 

In this study, we aimed to examine the coherency between expression profiles and the 

type of relationship, in signaling networks, for all possible gene pairs. Imagine in a gene pair 

(A, B) where gene A activates gene B. If the expression profiles of both were correlated 

positively, we infer that expression data strengthen the logic of this signaling relationship and 

are thus coherent. In contrast, let gene A inhibit gene B. In this case, the coherent gene pairs 

are negatively correlated. If gene A activates gene B and there is negative correlation 

between them or if gene A inhibits gene B and there is positive correlation between them, we 

called an incoherent relationship between the gene pairs. In addition to these simple 

scenarios, we have also considered more complicated subgraphs in a signaling network (See 

Table 1) to answer the question raised above. 
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Figure 1: Visual overview of how information from different databases was integrated to analyze the 

coherency.  An edge list was constructed from KEGG and OmniPath databases. All the gene expression 

profiles for the edge list genes were then downloaded from GEO and GDSC databases. Next, data were 

preprocessed and a suitable structure, namely SignalingNet, was created for correlation analysis among 

the gene pairs. By interpreting the information from correlation tests and statistical proportional tests, 

coherency analysis was implemented on different forms of subgraphs. There is a total of four coherent 

conditions in panel A and four incoherent conditions in panel B. For instance, in panel A, if gene1 is up-

regulated and there is an activation between the gene pair, gene2 must be upregulated.  In panel B, if 

gene1 is up-regulated and there is an inhibitory relationship between the gene pair, gene2 is expected to 

be up-regulated. 
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For this, we used expression datasets in the Gene Expression Omnibus (GEO) (7) and 

Genomics of Drug Sensitivity in Cancer (GDSC) (8) to extract all relevant gene expression 

profiles. Two literature-curated databases for signaling pathways, namely the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (9) and OmniPath (10) were used to extract 

the type of relationships among directly linked gene pairs. Therefore, coherency analysis was 

undertaken independently for all four combinations of databases in parallel (see Fig. 1).  

  

Table 1: Details of different subgraphs present in all biological signaling networks. The dashed lines 

indicate multiple edges between nodes. The last two columns provide the number of each subgraph in the 

two signaling databases. 
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2. Materials and Methods 

In this study, four independent analyses were performed based on two gene expression 

databases i.e. GEO and GDSC and two signaling pathway databases i.e. KEGG and 

OmniPath (which integrates literature-curated human signaling pathway of 34 resources) in 

parallel (Fig. 1). Thus, the signaling pathway databases were independently used to 

reconstruct a whole signaling network and the gene expression databases were separately 

used to apply correlation analysis on each gene pair in the pathways to do and compare 

GEO/KEGG, GDSC/KEGG, GEO/OmniPath, and GDSC/OmniPath distinct analysis and 

findings. To briefly introduce the used databases, GEO is an NCBI international public 

repository that archives microarray and next-generation sequencing expression data. The 

GDSC database is the largest public repository that archives information about drug 

sensitivity in cancer cells and biomarkers of drug response in these cells.  In this work, gene 

expression profiles from GDSC cell lines and GEO studies were used to extract pairwise 

association between genes.  

2.1 Signaling network reconstruction 

Here, we focused on human signaling pathways based on available datasets. All human-

related signaling pathways were downloaded from the KEGG database. Using the 

KEGGgraph package (11), these pathways were imported into R (12). Edge information was 

extracted and each graph was converted to an edge list. Next, all edges were merged and a 

directed signed signaling network was reconstructed (Supplementary file 1, section 1 and 

Supplementary file 4). Eligible edges (see section 3.1) were then selected and correlation 

analysis was undertaken on eligible gene pairs. The pypath python module (10) was used to 

create an edge list based on the OmniPath database (see Supplementary file 4). This edge list 

was imported into R for other downstream statistical analysis on the gene pairs. 

2.2 Gene expression profiles extraction 

The standard GEO query format was used to identify all up- and down-regulated genes 

which were present in the KEGG and/or OmniPath edge lists. Gene expression profiles 

available in GDSC were downloaded for both edge lists, followed by preprocessing to 

remove repeated samples and non-informative datasets. Finally, for both GEO and GDCS, an 

expression matrix of XX genes and YY conditions? was created for all the edge list genes 

(Supplementary file1 sections 2 and 3. Supplementary files 5). 
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2.3 Mutual association analysis 

In the next step, for storing, manipulating and analyzing these data, an R list object was 

created containing all the gene expression profiles. Each element of this list represent an edge 

in the edge list comprising two rows for the source and target genes and multiple columns for 

the samples which contain normalized expression values for both (Supplementary files 6).  

To detect any inconsistency among the samples collected from diverse datasets, each 

element of SignalingNet was split into distinct elements based on the origin of datasets. It 

means that the correlation analysis was not performed on mixed heterogenous values and in 

this step, the relevant values were separately considered to do the following analysis.  After 

outlier detection, the Pearson correlation analysis was undertaken on each element of the 

SignalingNet. According to the statistical significance and the sign of the correlation 

coefficient, the coherent and incoherent edges were inferred (Supplementary file 1 sections 4 

and 5). 

2.4 Randomly selected unconnected gene pairs  

 The edge lists obtained in the previous step were converted into adjacency matrices using 

igraph package in R (13). Then, the adjacency matrix was self-multiplied more than the 

diameter of the network. After that, we randomly selected 1000 unconnected gene pairs for 

which the corresponding elements in the matrix were zero (gene pairs with no direct 

immediate and non-immediate interactions). For these gene pairs, that we call unconnected 

gene pairs (UGPs), the same downstream analyses were implemented to compare 

significance and sign of correlation for all types of connected gene pairs (Supplementary file 

1 section 6, Supplementary files 7).  

2.5 Complex subgraphs 

We extracted specific subgraphs from the signaling networks to investigate any 

relationship between gene expression profiles and complex structure of gene pairs. DNFBL, 

DPFBL1, and DPFBL2 are subgraphs of gene pairs which influence each other directly twice 

(see Table 1). These pairs are readily found by checking the source and target nodes in the 

edge lists (or upper and lower triangles in adjacency matrices). We then focused on 

connected gene pairs which also influence each other indirectly by a sequence of intermediate 

nodes. Using matrix self-multiplication, the weighted and un-weighted adjacency matrices of 

the component of eligible edges in signaling network are powered by the network radius 

magnitude. Considering that the network is directed and the adjacency matrix is not 
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symmetric, the feed-forward and feed-back loops i.e. MNFBL1-2, MPFBL1-2, MFFL1-2, 

and MNFFL1-2 are determined (Table 1).  For more detailed explanation, see Supplementary 

File 1 sections 7 and 8. 
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3. Results 

Table 2 provides overall details of the four parallel coherency analyses presented here 

including the dimension of the expression matrices generated from whole-transcriptome 

expression profiles, and the size and diameter of the giant component in each analysis. Of 

note, the number of unique edge list genes was higher in OmniPath than KEGG. In addition, 

the ratio of genes common to the edge list and gene expression profiles was also greater in 

OmniPath.  

  

Table 2: General properties and date retrieved of the signaling networks. The number of 

differentially expressed genes (DEGs) are also given, which are those common between the edge list genes 

and gene expression profile genes and identified by the GEO/GDSC database either up- or down-

regulated. Samples are all the samples in GEO and GDSC databases for which expression data were 

available for the given gene pair. The size of the giant component, the diameter of the network and the 

ratio of common genes between edge list genes and gene-expression-profile genes are presented in the last 

three columns respectively.  

 

3.1 Eligibility of the edges 

     For correlation analysis between any gene pair, we only considered gene expression 

datasets which have more than two samples. These gene pairs were considered as eligible 

edges for downstream statistical analysis.   

     The ratio of eligible edges to all edges was calculated for all four analyses (see Fig. 2B). 

The ratio of eligible edges in the OmniPath edge list was greater than KEGG based on both 

GDSC and GEO databases. Also, the ratio of eligible edges was greater in GDSC compared 

with GEO.  
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Figure 2: (A) The proportion of eligible and ineligible edges in the four parallel analyses. The 

numbers around each chart represent the number of edges at that point. (B) An exemplary of 

relationship between gene pair expression. These scatter plots contain Pearson coefficient correlations 

and fitted linear regression line. The X-axis and Y-axis values differ according to the expression profile of 

this gene pair in different gene expression dataset. Panel A depicts the gene expression profiles of this 

exemplary gene pairs in the edge list before pre-processing.  In panel B, the same gene pair’s expression 

profiles firstly separated to the four relevant datasets, then analyzed and depicted independently. 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/643866doi: bioRxiv preprint 

https://doi.org/10.1101/643866
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

3.2 Pre-processing of expression data 

Samples with expression data for the gene pairs may have come from different datasets and 

therefore should be separated and analyzed independently. Fig. 2A represents the effect of 

this preprocessing on a gene pair in our dataset. Briefly, in Fig. 2A, one of the non-

preprocessed datasets contains four different datasets with different sample size. The 

correlation coefficient is calculated to be 0.46. The same dataset has been separated into its 4 

constituent datasets and correlation analysis was done on each set individually. Different 

correlation values (including negative) are observable.  Therefore, the sample heterogeneity 

can easily affect any pairwise relationship. An edge is therefore considered as homogeneous 

if the correlation sign is consistent across all. These homogeneous edges were used for 

correlation analysis. 

3.3 defining coherency for each edge 

 After filtering out heterogeneous edges, a large list of homogeneous edges was 

constructed (Supplementary file 1 sections 3.5 - 3.7 and Supplementary files 6) for 

correlation analysis. The violin plots of Pearson correlation coefficients for each analysis are 

shown in Fig. 3A. The distribution of the coefficients shows a nearly uniform distribution for 

KEGG/GEO and OmniPath/GEO while for KEGG/GDSC and OmniPath/GDSC, it follows a 

normal distribution with the median at approximately zero. In addition to the issue of 

different sample size in GEO and GDSC, this suggests that for GDSC-based edges, 

correlations between the expression profiles of the gene pairs do not tend to show high 

positive or negative correlation. This means that for a given gene pair (A, B), over-expression 

or under-expression of A does not have a large effect on the expression of B regardless of the 

edge type.  
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Figure 3: (A) Distribution of Pearson correlation-coefficient values for the four parallel coherency 

analyses. (B) The ratio of coherent, incoherent and NA edges. The values around each pie chart represent 

the exact numbers.  

 

Fig. 3B depicts the ratios of coherent and incoherent edges along with the number of NAs 

which have the FDR-adjusted p-values larger than 0.05 and we could not declare about the 

coherency status by a likelihood greater than or equal to 95%. In addition, sum of the ratio of 
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incoherent edges and NA edges are more than the ratio of coherent edges in all four analyses. 

The ratio of coherent edges in OmniPath is totally more than KEGG. Also, the ratio of 

coherent edges in GDSC database is more than GEO. 

Fig. 4 shows the FDR-adjusted P-vlaues versus r correlation coefficients of activation and 

inhibition edges in all four analysis. A symmetric pattern of coefficients is recognizable  for 

both of activation and inhibition edges in all four analyses. This suggests that the correlation 

between a given gene pair is not largely affected by the sign of the interaction. In the other 

word, even activation edges illustrate an overrepresentation of strong positively correlated 

gene pairs in all four analysis, the inhibition edges do not display any enrichment in strong 

negative side of plots compared to strong positive side. It also shows that the majority of 

coherent gene pairs are related to activation not inhibition edges. In the next step, we tried to 

explore more and provide reasoning about the incoherent edges by focusing on more complex 

subgraphs in signaling network.  

 

  

 

Figure 4: The volcano plots of the activation and inhibition edges. The horizontal axis is the Pearson 

correlation coefficient and vertical axis shows log transformed FDR-adjusted P-values. The threshold line 

(blue) represents the significance cut-off value of 0.05. (A) and (B) are KEGG/GEO and OmniPath/GEO 

plots, and (C) and (D) plots correspond to KEGG/GDSC and OmniPath/GDSC analyses.  
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3.4 Correlation and coherency analysis on different subgraphs 

In this step, we explored whether more complex subgraphs are more coherent comparing 

with considering single edges. Otherwise speaking, we assumed that observing some 

incoherency of activation and inhibition edges depend on complex structure of signaling 

network and logical behavior of larger subgraphs should be considered to infer 

coherency (see Table 3).  

Similar to the simple activation or inhibition edges, correlations are computed and 

categorized considering the correlation sign for each mentioned subgraph and the calculated 

P-values. These data are available in Supplementary file 2 for all four analyses.  The ratio of 

subgraphs for KEGG/GEO analysis are presented in Table 3. 

     To statistically compare, the correlation analysis was also implemented on multiple sets of 

1,000 randomly unconnected gene pairs (UGP) and Mann-Whitney proportion test was then 

computed to compare all of the proportions illustrated in Table 3 and Fig. 5. Although the 

proportions of UGP are statistically different with the proportions of activation and 

inhibition, there is not any statistical differences between activatory and inhibitory interaction 

proportions (Supplementary File 3). It means that the connected genes are affected each other 

in respect to UGP but it may happen in a more complex way that it is not inferred by 

correlation analysis. The ratios of activation and inhibition edges are almost similar for all 

three small subgraphs i.e. DNFBL, DPFBL1 and DPFBL2 (see Fig. 5). Since the number of 

edges are very low, we aimed to continue our search for coherency in larger structure of 

subgraphs. We therefore investigated the large subgraphs which contain more than two edges 

i.e. MNFBLs, MPFBLs, MFFLs and MNFFLs. However, we did not observe any strong 

coherent relationship among the gene pairs again, suggesting that, depending on the structure 

of the subgraph, gene expression profiles do not match the logic of signaling circuits. 

Note that the ratios for the analysis based on OmniPath and GDSC is more uniformly 

distributed hold a candle to others and there is not any kind of dual feedback loop structures 

i.e. DNFBL and DPFBLs in OmniPath signaling network which can be controversy (Fig. 5). 
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Table 3: The ratio of eligible edges participating in different kinds of subgraphs for the KEGG/GEO 

analysis. Columns 3 to 5 are ratio of homogeneous edges with the specified p-value and Pearson 

correlation coefficient. Column 6 is the ratio of heterogeneous edges.  

  

 

Subgraphs Abreviation Pval < 0.05 & cor >0 Pval > 0.05 Pval <0.05 & cor < 0 Heterogeneous 

Randomly-selected unconnected gene pairs UGP 5,80 % 37,60 % 4,20 % 52,40 %

Activation Act 4,80 % 24,68 % 2,45 % 68,07 %

Inhibition Inh 5,14 % 26,35 % 2,75 % 65,76 %

Dual negative feedback loop DNFBL 0,00 % 20,00 % 7,50 % 72,50 %

Dual positive feedback loop1 DPFBL1 13,60 % 34,00 % 2,40 % 50,00 %

Dual positive feedback loop2 DPFBL2 0,00 % 41,67 % 0,00 % 58,33 %

Multiple negative feedback loop1 MNFBL1 6,70 % 16,04 % 3,66 % 73,60 %

Multiple positive feedback loop1 MPFBL1 7,94 % 15,10 % 3,01 % 73,95 %

Multiple negative feedback loop2 MNFBL2 5,58 % 19,30 % 3,02 % 72,09 %

Multiple positive feedback loop2 MPFBL2 4,62 % 16,43 % 3,49 % 75,46 %

Multiple feed-forward loop1 MFFL1 6,37 % 16,43 % 3,20 % 73,99 %

Multiple feed-forward loop2 MFFL2 7,67 % 17,52 % 4,06 % 70,76 %

Multiple negative feed forward loop1 MNFFL1 7,46 % 15,20 % 3,66 % 73,69 %

Multiple negative feed-forward loop2 MNFFL2 6,53 % 16,39 % 4,10 % 72,99 %

Complex

Simple

edges

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/643866doi: bioRxiv preprint 

https://doi.org/10.1101/643866
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Figure 5: The ratio of eligible and homogeneous edges involved in different subgraphs are 

represented by stacker bar plots for all four analyses. (A) and (B) are KEGG/GEO and OmniPath/GEO 

plots, and (C) and (D) plots correspond to KEGG/GDSC and OmniPath/GDSC.  
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4. Discussion  

 

 Recent high-throughput technologies, such as next-generation sequencing and mass 

spectrometry proteomics has uncovered the amount of expression in mRNA and protein 

levels (14). There is an obvious correspondence between mRNA and protein concentrations. 

Nonetheless, more than fifty percent of protein variation cannot be explained by variation in 

mRNA concentration (15). These unexplained variations come from organism-specific 

translational and post-translational regulations including protein degradation and gene 

sequence features. The correlation between mRNA and protein concentrations are highly 

considerable for some genes, but in some eukaryotes, it is very poor for genes of signal 

transduction and transcriptional regulation. These findings are true for worm and fly but are 

different for yeast. In yeast, genes engaged in signal transduction have high correlations 

between mRNA and protein concentrations (16). Recently, Larsen et al. demonstrated that 

there is not any causal relationship between the expression of transcription factors and their 

targets in the gene regulatory network of E. coli and thereupon the transcriptional regulation 

cannot be adequately addressed by the current static gene regulatory networks (17). 

Regulation of gene expression results in a certain concentration of proteins. These proteins 

may be involved in different signaling networks and they determine the cell's fate and 

behavior of the system (18). Transcription regulation is very important, although it is not 

sufficient to completely describe protein abundances because each gene has many features 

and regulatory elements (19).The data in different studies have discovered the roles of post-

transcriptional, post-translational and protein degradation regulations in controlling steady 

states of gene product abundances (20). These modifications apparently have shown their 

impacts in this study when we illustrated that there is a poor coherency in transducing the 

signals with the gene expression. As a result, Inferring a gene regulatory from transcript data 

is a difficult but important task (21). Only in some cases, the results are more reliable for 

constructing gene regulatory networks if the components of the system are mostly kinases 

and transition of the signals are related to the phosphorylation process (22). 

Although there is a general assumption that the expression level could strengthen or 

weaken the signal to transduce in signaling pathway, but we illustrated that in many 

instances, there is not a noticeable coherency between the mRNA level of gene pairs and the 

way (i.e. logic) they manipulate one another (Fig. 5). However, we also showed that there is a 

sort of association between the structure of the subgraphs and gene pair expression profiles. 
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Expression profiles of the unconnected gene pairs were statistically more independent than 

connected ones. To support this idea, two signaling databases and two gene expression 

databases were used and the similar results acquired in the analysis of all four combinations. 

Based on the correlation results in Fig. 3A, the volcano plots in Fig. 4 which exhibit no 

significant difference between activation and inhibition edges, the ratios in table 3 and Fig. 5, 

causal correlation can be inferred poorly at the transcript level at least in a multicellular 

eukaryotic such as human. Proportional tests in supplementary file 3, suggest that there is a 

statistical difference between UGP and other subgraphs and this demonstrates that structure 

of subgraphs affect the coherency. It is also strongly advocated to use information in 

signaling networks, or define relationships between the genes, assess the gene expression at 

both transcript and protein level or look for the direct inteartions.  

In this study, we aimed to focus on the impact of the relationship logic on the destination 

of any given stimulated signaling pathway which usually ignored in functional genomic 

studies. We demonstrated that differentially expressed genes have only a little information of 

the whole story of associated mechanism. Most of these kinds of altred expression are 

disappeared gradually and ignored by the whole system of signaling network either 

stimulated endogenously or exogenously.  
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Supplementary file legends 

 

Supplementary file 1: The experimental procedure based on KEGG/GEO analysis in 

detail. This file contains 9 sections. The first section describes how KEGG edge list with 

26,490 edges was built. Next, in the second section, downloading and merging the up-down 

gene expression profiles was explained for KEGG genes. Section three walks you through 

preprocessing of the expression profiles. In this step, a large list containing 1,969 experiments 

(GDS) was built. A large expression matrix called Exprtable with 40,903 samples in column 

and 3,187 genes in row was constructed. From this matrix a list called SignalingNet 

constructed having an element for each gene pair in the KEGG edge list. In the fourth section, 

each element of SignalingNet contains the expression values and correlation information for 

the source and the target genes. Section five includes the information for coherency of the 

edges and the number of activation and inhibition edges having specific p-value and 

correlation coefficient. Then, in the sixth section, 10 sets of 1,000 unconnected node pairs 

were built in which the genes never reach one another (based on KEGG information). The 

correlation analysis was also performed on these node pairs. In the seventh section, number 

of edges having specific p-value and correlation coefficient engaged in two-edge subgraphs 

were computed. Afterwards, in the eighth section, number of edges having specific p-value 

and correlation coefficient engaged in multiple-edge subgraphs were computed. Finally, in 

the ninth section, the results were summarized in some tables. 

Supplementary file 2: Correlation analysis of all four analyses. Results are the number 

of edges having specific p-values and correlations in different subgraphs. 

Supplementary file 3: The proportional statistical tests between the rows in the tables 

in supplementary file 2 for all four analysis in separate sheets. 

Supplementary file 4: The KEGG and OmniPath edge lists. 

Supplementary file 5: The large expression matrices constructed based on four 

analysis analyses. 

Supplementary file 6: The SignalingNet list for the four analyses. 

Supplementary file 7: The unconnected SignalingNet list for the four analyses.  
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