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Abstract: Matrix Factorization (MF) is an established paradigm for large-scale biological data 
analysis with tremendous potential in computational biology. 

We here challenge MF in depicting the molecular bases of epidemiologically described 
Disease-Disease (DD) relationships. As use case, we focus on the inverse comorbidity association 
between Alzheimer’s disease (AD) and lung cancer (LC), described as a lower than expected 
probability of developing LC in AD patients.  To the day, the molecular mechanisms underlying 
DD relationships remain poorly explained and their better characterization might offer 
unprecedented clinical opportunities. 

To this goal, we extend our previously designed MF-based framework for the molecular 
characterization of DD relationships. Considering AD-LC inverse comorbidity as a case study, we 
highlight multiple molecular mechanisms, among which the previously identified immune system 
and mitochondrial metabolism. We then discriminate mechanisms specific to LC from those 
shared with other cancers through a pancancer analysis. Additionally, new candidate molecular 
players, such as Estrogen Receptor (ER), CDH1 and HDAC, are pinpointed as factors that might 
underlie the inverse relationship, opening the way to new investigations. Finally, some lung 
cancer subtype-specific factors are also detected, suggesting the existence of heterogeneity across 
patients also in the context of inverse comorbidity. 

Keywords: networks; Alzheimer’s disease; lung cancer; inverse comorbidity; transcriptome; 
matrix factorization 

 

1. Introduction 

Large-scale genomics projects, including for instance The Cancer Genome Atlas 
(TCGA, https://www.cancer.gov/tcga), are currently providing an overwhelming amount of omics 
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data. The available data offer the opportunity to better understand biological systems and cancer in 
particular, but their high dimensionality poses considerable challenges typical of “Big Data” [1].  
 
A powerful approach to this problem is represented by Matrix Factorization (MF), a class of 
unsupervised methods that reduces high-dimensional data into low dimensional subspaces, while 
preserving as much information as possible [2–4]. Given a data matrix X, MF learns two sets of 
low-dimensional representations: “metagenes”, encoding molecular relationships, and 
“metasamples”, encoding sample-level relationships. Up to now, MF has been successfully used in 
a broad spectrum of applications: unsupervised clustering, especially in the context of cancer 
subtyping [5,6], molecular pattern discovery [7,8], mutational signatures definition [9,10] and 
tumour sample immune infiltration quantification [11]. Such results have been obtained by mining 
with MF single large-scale datasets, such as transcriptome or methylome. Recently, we designed a 
metric to infer univocal correspondences between the metagenes obtained by an MF algorithm on 
multiple independent datasets profiled from the same biological condition (e.g. same cancer tissue), 
and used this metric to design a methodological framework that revealed relevant pathways 
characteristic of colorectal cancer [12]. 
  
We are here interested in investigating the molecular bases of previously documented 
Disease-Disease (DD) relationships. Indeed, several computational studies have inferred DD 
relationships, starting from the “Human Disease Network” where diseases were connected when 
sharing disease genes [13], to the “multiplex network of human diseases” composed by genotype- 
and phenotype-based layers that propose new disease-associations [14]. More importantly, DD 
relationships have also been systematically identified by epidemiological studies, working at the 
level of populations and looking for the co-occurrence of different diseases in the same patients by 
using medical claims [15], medical records [16] and insurance claims [17]. The higher than expected 
risk of developing pancreatic cancer in patients suffering for type II diabetes [18] and of developing 
lung cancer in asthma patients [19] are among the most renown examples of cancer-related 
comorbidities. Interestingly, it has also been described that patients suffering from certain diseases 
have a lower than expected risk of developing cancer, known as inverse comorbidity [20–22]. An 
example of these protective effects of one disease on the other is represented by the documented 
inverse comorbidity between Alzheimer's Disease (AD) and Lung Cancer (LC) [22–24]. Molecular 
and non-molecular factors (e.g. the environment, lifestyle or drug treatments) can be responsible for 
such DD relationships. The molecular mechanisms underlying these DD relationships are poorly 
understood and investigating them offers unprecedented opportunities to better understand the 
etiology and pathogenesis of diseases, with the hope of identifying opportunities for repositioning 
of pre-existing treatments.  
 
Recently, transcriptomic meta-analyses revealed sets of significantly up and down regulated genes 
that are shared across diseases displaying different patterns of direct and inverse comorbidities 
[25,26]. However, differential expression analysis only focuses on the predominant signals present 
in the data, failing to capture alternative signals and local behaviors [3]. These limitations are 
overcome by MF that learns metagenes, i.e. ranking of genes, without focusing on single sets of 
predominant genes. Moreover, contrarily to differential expression analysis, MF jointly provides 
metagenes and metasamples, i.e. also grouping samples together with their biological 
characterization. We hereby propose to use an MF approach to study the molecular bases of DD 
relationships. This, however, requires innovative adaptations. We thus propose to extend our 
previously defined MF framework for the particular study of DD relationships [12]. Moreover, 
given the existence of positive and negative DD connections, we also adapt the framework to 
distinguish molecular relationships concordantly and discordantly altered in datasets coming from 
different diseases. 
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Considering the inverse comorbidity between Alzheimer’s disease (AD) and lung cancer (LC) as a 
case study [22–24], we applied our MF framework to 17 transcriptomic datasets, including both LC 
and AD samples (total of 1367 samples), and we highlighted multiple molecular mechanisms 
possibly underlying the inverse comorbidity pattern. Through a pancancer analysis we categorized 
the processes here suggested to be involved in the AD-LC inverse comorbidity based on their 
presence in other cancers. The previously identified role of the immune system and mitochondrial 
metabolism in AD-LC inverse comorbidity is confirmed by our analysis. Additionally, new 
candidate molecular players, such as Estrogen Receptor (ER), CDH1 and Histone Deacetylase 
(HDAC), are identified as potentially involved in the inverse comorbidity considered. Finally, some 
lung cancer subtype-specific alterations are also detected suggesting the existence of heterogeneity 
across patients also in the context of inverse comorbidity. 

 

2. Results 

2.1. A new MF framework to study disease-disease relationships 

We previously defined the Reciprocal Best Hit (RBH) metric to infer univocal correspondences 
between the MF metagenes obtained on independent datasets measured from the same biological 
condition (e.g. same cancer tissue) [12]. Based on this metric we designed an RBH-based 
framework, structured in three sequential steps: (1) each transcriptomic dataset is independently 
decomposed in metagenes and metasamples with MF; (2) using the RBH metric, relationships 
between metagenes are inferred and a RBH network is constructed; (3) communities are detected in 
the RBH network. These communities of genes are then analyzed for functional relatedness and 
provide a biological interpretation of the principal factors that shape the transcriptomes. Here, we 
adapted the framework to the study of the molecular mechanisms underlying DD relationships, in 
order to infer univocal positive/negative correspondences between MF metagenes independently 
obtained on datasets measured from different diseases. Briefly, the main methodological novelties 
are: (i) the investigation of a methodology for the orientation of the metagenes (i.e. assign a sign to 
the metagenes, in order to express either direct or inverse similarity between them); (ii) a novel 
definition of Reciprocal Best Hit (RBH) network taking into account the orientation of the 
metagenes and (iii) the restriction of the community detection phase to the subnetwork of interest 
(e.g. subnetwork of negative links connecting metagenes of LC and AD in our case). The structure 
of the framework together with its novelties is summarized in Figure 1. 

2.1.1. Setp1: data decomposition and orientation of the components 

Each transcriptomic datasets is separately decomposed using MF. The framework here proposed 
can be combined with the MF algorithm of interest. In this work, we chose stabilized Independent 
Component Analysis (sICA) [12,27,28], a stabilized version of ICA [28–30]. SICA was indeed 
previously shown to outperform alternative MFs in the extraction of relevant biological knowledge 
from collections of transcriptomic datasets derived from the same biological condition (e.g. the 
same cancer type) [12]. Moreover, the ability of sICA to separate the various overlapping biological 
factors present in transcriptomic data, such as those linked to the tumor cells, the tumor 
microenvironment and non biological factors, linked to sample processing or data generation, 
makes this approach particularly promising for extracting relevant molecular factors from the 
numerous confounding factors involved in DD relationships.  
 
By applying sICA to a transcriptomic matrix X (n x m), with n genes in the rows and m samples in 
the columns, we reduce it to the product of an unknown mixing matrix A (n x k), whose columns 
are here denoted as “metagenes” and an unknown matrix of source signals S (k x m), whose rows 
are here denoted as “metasamples”. The metagene/metasample associated to the component i will 
thus provide the contribution of each gene/sample present in the matrix X to component i. 
Metasamples and metagenes are learned based upon the assumption that the number k of 
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components occurring in the input matrix X is smaller than either its rows or columns. We here 
selected the number k of components equal to 100 for those datasets having more than 100 samples 
and equal to half of the samples for smaller datasets. These chosen values are higher than the 
estimation of the optimal transcriptomic dimension, due to the fact that overdecomposition in sICA 
was proven not detrimental for the interpretability of the resulting components [28].  
 
To determine the orientation of the sICA metagenes two alternative approaches are considered: 
“Long tail-pointing” and “disease-pointing”. The long tail-pointing approach, previously used for 
other sICA applications [28], orients the metagenes such that the longest tail of their distribution 
corresponds to their positive side. Indeed the sICA factors are identified by maximizing 
non-gaussianity of the data point projection distributions. As a consequence, the longest-tails of 
such distributions are those containing most of the biological information. We here introduce the 
“disease-pointing” approach, which exploits the availability of cases and control samples to orient 
the components. More specifically, the differential association of each metasample to case vs. 
control is tested based on a Wilcoxon test and the couple metagene-metasample is oriented so that 
the cases in the metasample are on the positive side.  

2.1.2. Step 2: Construction of the signed Reciprocal Best Hits (sRBHs) 

At Step 2, the Reciprocal Best Hit (RBH) network is constructed. A positive/negative RBH is defined 
as follows: given two sets of metagenes !!. . . .!!  and !!. . . .!!  obtained from the 
transcriptomic datasets !! and !!, respectively, we define !!  and !!  a positive Reciprocal Best 

Hit (+RBH) iff 

!"# !"# !! , !! !!!
!  = !"# !"# !! !!!

! ,!! > 0                             (1) 

 and !!and !! a negative Reciprocal Best Hit (-RBH) iff 

!"# !"# !! , !! !!!
!  = !"# !"# !! !!!

! ,!! < 0                             (2) 

Each metagene will thus find a maximum of two associated metagenes in another independent 
transcriptomic dataset, corresponding to +RBH (1) and -RBH (2). Repeating the same procedure for 
the metagenes of all the available transcriptomes we obtain a network whose nodes are the 
metagenes computed in all the transcriptomic datasets and whose links correspond to their +RBH 
and -RBH computed as in (1,2). 
 

2.1.3. Step3: subnetwork isolation and community detection 
In step 3, given our interest for the processes that are differentially altered between two diseases, 
such as AD and LC, we delineate the relevant subnetwork of RBHs. For example, if we want to 
study the inverse comorbidity between AD and LC, we restrict the analysis to the negative RBHs 
(-RBHs) connecting metagenes of AD with metagenes of LC. Once selected the subnetwork of 
interest, we detect communities with the MCL algorithm [31,32]. Such communities correspond to 
highly reproduced biological components involved in DD relationship. Moreover, having 
previously isolated the subnetwork of interest (such as negative RBHs between AD and LC) we are 
sure to only identify communities that are altered in the same direction of the comorbidity under 
analysis (oppositely regulated in case of inverse comorbidity and concordantly regulated in case of 
positive comorbidities). The obtained communities are then biologically annotated and interpreted 
as described in Methods.  

2.2. Investigation of the orientation methodology for the sICA components 

Among the various modifications apported to the framework, of particular importance is the 
choice of the procedure for the orientation of the metagenes. As described previously, two 
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alternative approaches were considered: “Long tail-pointing” and “disease-pointing”. We tested 
how such choice impacts the following steps of the framework and, in particular, the structure of 
the obtained RBH network. To do this, we selected a specific DD relationship, i.e., the inverse 
comorbidity between Alzheimer’s disease (AD) and lung cancer (LC) as a case study [22–24].  

17 transcriptomic datasets, spanning AD and LC patients and containing case and control 
samples, were employed (see Methods for further details). Following our framework (Figure 1), 
each dataset was decomposed separately through sICA (see Supp Table 1 for the number of 
components) and the orientation of the components was established both with the 
long-tail-pointing and the disease-pointing approaches. The resulting metagenes were then 
compared according to multiple criteria (see Figure 2). 

  
First, the correlation between the obtained metagenes and the case vs. control fold-change of 

expression was considered. In fact, to associate a metagene to a specific biological function or 
pathway, we need to perform enrichment tests using databases of functional annotations (e.g. 
Reactome, GO). Generally this interpretation step is just aimed at associating a function to each 
metagene, without taking into account the sign of activity of the identified pathways/processes. 
However, when dealing with comorbidities it is important to not only associate a function to each 
metagene, but also to infer the sign of activity of such pathways/functions. This task can be easily 
achieved once the metagenes are positively correlated with the gene fold-change. As shown in 
Figure 2A, the disease-pointing orientation produces metagenes that are significantly more 
correlated with the genes fold-change than the long tail-pointing one (significance tested with 
Wilcoxon test, resulting P-values available in Supp Table 1).  

 
We have then applied the Step 2 of the framework and independently constructed an RBH 

network for “long-tail-pointing” and “disease-pointing” oriented metagenes. In both cases, the 
nodes of the network correspond to the metagenes independently identified in the 17 datasets (369 
total nodes) and their links are +/-RBHs, defined as in equations (1,2). Changes in the orientation of 
the metagenes alter the sign of the correlations giving rise to different RBH networks. We have thus 
compared the “long-tail-pointing” vs. “disease-pointing” RBH networks based on their number of 
links (Figure 2B).  The “disease-pointing” method returns 1616 RBHs vs. the 1574 returned by the 
“long-tail-pointing” method. Such result is due to the higher number of -RBHs identified with the 
“disease-pointing” orientation (802 vs. 705).     

 
In Step 3 we focused on the subnetwork composed of -RBHs and linking AD components with 

LC ones and vice-versa, which in the following we call “-RBH AD/LC subnetwork”. These are in 
fact the metagenes and RBHs of interest for the study of AD-LC inverse comorbidity. We studied 
the topology of this subnetwork starting from its number of nodes and links (Figure 2C). The -RBH 
AD/LC subnetwork based on the  “disease-pointing” orientation includes a higher number of 
metagenes (167 vs. 127 of “long-tail-pointing”) and a higher number of links (268 vs. 194 of 
“long-tail-pointing”). Moreover, among the RBHs present in the subnetwork, those of the 
“disease-pointing” tend to be more frequently connecting factors that are significantly differential 
between case and control (112 vs. 70 of “long-tail-pointing”). Communities were then detected in 
the “long-tail-pointing” and  “disease-pointing” -RBH AD/LC subnetworks. As shown in Figure 
2D, the “disease-pointing”  -RBH AD/LC subnetwork has a higher modularity (0.49 vs. 0.43) and 
higher clustering coefficient (0.49 vs. 0.39). Moreover 20 communities of size higher or equal to 4 are 
detected in the “disease-pointing” -RBH AD/LC subnetwork vs. the 12 of the alternative approach 
and the average size of the “disease-pointing” communities is 4.3 vs. the 4.2 of the alternative 
approach (Figure 2E).   

  
 
Overall our analysis indicates that the “disease-pointing” orientation tends to identify a higher 

number of candidate molecular processes/pathways involved in AD-LC inverse comorbidity. For 
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all these reasons, “disease-pointing” is the orientation approach that we selected for the following 
analysis.   

2.3. New biological insights on the inverse comorbidity between AD and LC 

We hypothesize that the communities of the -RBH AD/LC subnetwork, obtained with the 
“disease-pointing” orientation, could be related to the AD-LC inverse comorbidity. We thus 
annotated the communities of the -RBH AD/LC subnetwork by using MsigDB signatures [33], 
Microenvironment Cell Populations-counter (MCP-counter) signatures [34], predefined lung cancer 
subtypes [35] and the metagenes computed in [27], here referred to as CIT, as  described in 
Methods. The obtained -RBH AD/LC subnetwork with the main biological information is illustrated 
in Figure 3 and Supp Table 2.   
 
The majority of the communities present in the network are associated to the immune system and 
mitochondrial functioning, confirming the results of previous transcriptomics meta-analyses on the 
inverse comorbidity between AD and LC [25,26]. Interestingly, these processes are here deeply 
partitioned into multiple communities, suggesting that we can detect more detailed aspects of their 
involvement. Fibroblasts, Neutrophils, Monocytes, B and T cells are the immune cells showing an 
inverse activity in LC and AD according to our analysis. Moreover, communities involved in the 
regulation of two immune-system related drugs  (fenretinide and corticosteroids) are identified. 
Interestingly, corticosteroids are associated with less Alzheimer neuropathology [36], while their 
use in LC patients is associated with lower overall survival [37]. At the same time, fenretinide has 
been shown to inhibit growth in lung cancer cell lines [38] and it has been proposed as a potential 
adjuvant for late onset Alzheimer’s disease [39]. Moreover, the fenretinide community is tightly 
linked with the monocytes one, in agreement with its mechanisms of action involving the 
regulation of the secretion of pro-inflammatory cytokines in human monocytes [40].  
 
The communities associated to mitochondria span different processes related to their activity: 
oxidation-reduction process (communities 16, 23, 40), hypoxia (community 10) and phosphate 
metabolic process (community 38). Enrichment in hypoxia could correspond to a confounding 
factor linked to the state of the profiled tissues (post-mortem for AD and fresh tissue biopsy for LC). 
However, patients suffering from systemic or prenatal hypoxia have a higher risk of developing 
Alzheimer’s disease [41,42] and targeting hypoxia seems to Improve lung cancer outcome [43], 
indicating that such hypoxia-related community could also contain non-trivial information.  
 
Additionally to mitochondria and immune system, community 36 has been associated to gender, in 
line with the higher risk of females to develop Alzheimer’s disease, in opposition to lung cancer, 
which is more frequent in men [44,45]. Histone Deacetylase (HDAC), associated to community 22, 
confirms the known involvement of HDAC1 in both cancer and Alzheimer’s disease [46,47]. 
Community 30 is enriched in focal adhesion. The inhibition of focal adhesion kinase, which is 
overexpressed in several cancers, decreases cell viability [48], while, in the case of Alzheimer’s 
disease, amyloid-ß induces the inactivation of focal adhesion kinase [49]. Cell cycle and CDH1 
targets are associated to community 24.  Interestingly, growing evidence suggests that 
dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases, potentially as a 
consequence of amyloid-ß driven proteasome-dependent degradation of CDH1 [50]. On the other 
hand, significantly higher methylation level of CDH1, inducing its inactivation, plays an important 
role in lung cancer [51]. Community 20 is associated to protein processing and chaperone-mediated 
protein folding. Protein misfolding is a known marker of AD [52,53]. At the same time, cell division, 
migration, and invasion rely on microtubules and actin filament components and thus 
chaperone-mediated protein folding activity is tightly linked to cancer [54]. Similar arguments 
support the involvement of microtubules (community 6) to AD-LC inverse comorbidity. Moreover, 
response to Estrogene Receptor (ER) (“ESR1 targets”) has been found enriched in 20 communities, 
even if without clear association to a specific one. Interestingly, an inverse association has been 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/643890doi: bioRxiv preprint 

https://doi.org/10.1101/643890
http://creativecommons.org/licenses/by/4.0/


Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 15 

 

shown between the use of estrogen and early onset of Alzheimer’s disease, suggesting that it might 
be beneficial for the disease [55], potentially due to its inhibitory activity on neuroinflammation 
[56]. On the other hand, the use of hormonal replacement therapy significantly increases LC 
mortality, supporting a role of estrogen in lung cancer [57]. These inverse effects of regulation of 
focal adhesion, CDH1 and estrogen receptor in cancer and AD are consistent with a possible 
association of these pathways to the inverse comorbidity patterns observed.  
 
We then explored if also lung cancer subtype-specific molecular mechanisms could be involved into 
the AD-LC inverse comorbidity [35]. The main biologically-annotated network communities 
resulted to be general of LC with no association to a specific subtype. At the same time, three 
communities in our network (27, 14 and 3) mapped to the three predefined LC subtypes (proximal 
proliferative, proximal inflammatory and terminal respiratory unit, respectively). Therefore, some 
lung cancer subtype-specific regulatory programs seem to also be involved, suggesting the 
existence of an across-patients heterogeneity, even if such phenomenon is not a predominant one. 
 
Finally, AD has been shown to have comorbidity relationships at the epidemiological level not only 
with LC, but also with other cancer types, with most of them being inverse comorbidities [13]. We 
thus tested if some of the candidate biological processes that we here identified to be possibly 
involved into AD-LC inverse comorbidity could be generalized to the comorbidity relationship 
between AD and other cancers. With this aim, we considered metagenes previously computed on 
TCGA transcriptomes for 32 different cancer types (pancancer metagenes) [28] and inferred their 
RBHs with the metagenes of the -RBH AD/LC subnetwork. The presence of pancancer metagenes in 
the communities of the -RBH AD/LC subnetwork has then been tested. If a community in the -RBH 
AD/LC subnetwork is found to be correlated with some pancancer metagenes we can infer that 
such process could also have a role into the relationship between AD and other cancers. We thus 
quantified for each community of the -RBH AD/LC subnetwork the number of their connected 
pancancer metagenes (see Supposed Table 2 for results). Of note, the orientation of the TCGA 
pancancer metagenes has not been defined in [28], we thus cannot infer here if the activity of the 
pancancer metagenes is concordant with that of the LC metagenes or of the AD ones. 
 
As reported in Supp Table 2, the majority of the identified communities, corresponding to the 
immune system-related signals, gender, chr X and mitochondrial activity, matches metagenes 
obtained from other cancers, indicating a possible role of such processes in the co-morbidity of AD 
with other cancers. On the opposite five communities (19%), corresponding to LC subtypes, 
INF-Gamma and phosphate metabolism, are found to be specific to AD-LC inverse comorbidity. 

3. Discussion 

Matrix Factorization (MF) is a prominent solution for high-dimensional omics data analysis with a 
vast range of applications in computational biology. 
 
We were here interested in investigating disease-disease relationships, representing an 
unprecedented opportunity to exploit mechanistic knowledge and repurpose treatments from one 
disease to the other. We thus proposed a computational framework for the application of MF to the 
study of disease-disease relationships. Considering the inverse comorbidity between Lung Cancer 
(LC) and Alzheimer’s Disease (AD) as a case study, different methodologies for the orientation of 
the metagenes were tested and the “Disease-pointing” one, orientating metagenes based on the case 
vs. control behavior of metasamples, proved to give better performance. 
 
The framework here proposed and applied to the study of the inverse comorbidity between LC and 
AD, can be used to investigate direct/inverse comorbidity relations among other combinations of 
diseases. More complex patterns of direct and/or inverse comorbidities, involving more than two 
diseases, could also be studied. Moreover, we here chose sICA as MF algorithm and we employed 
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transcriptomic data. However, the framework here proposed can also be implemented with other 
MF approaches (e.g. NMF, PCA) or different omics data types (e.g. methylome, proteome). More 
generally, also multi-omics factors, obtained with approaches such as Multi-Omics Factor Analysis 
(MOFA) or tensorial ICA (tICA), could also be considered as input of our analysis [58,59].    
 
Finally, we performed a functional analysis of the genes involved in the subnetwork containing 
negative links between AD and LC factors. Our results confirmed previously identified molecular 
mechanisms underlying this inverse comorbidity, such as the involvement of the immune system 
and mitochondrial processes, plus new candidate factors have been identified. Overall, our results 
suggest that the MF RBH-based extended approach can be of biological and medical relevance once 
investigating the molecular bases of DD relationships. 

4. Materials and Methods  

4.1 Data collection 

3 microarray datasets from NCBI Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/) were collected for Alzheimer’s disease: GSE4757; GSE48350 
obtained from 4 brain regions: hippocampus, entorhinal cortex, superior frontal cortex, post-central 
gyrus and GSE5281 obtained from six brain regions:  entorhinal cortex, hippocampus, medial 
temporal gyrus, posterior cingulate, superior frontal gyrus and primary visual cortex. The last two 
datasets were split based on the region of the brain in which the samples were collected, obtaining a 
total of 11 AD datasets composed of both case and control samples.  Concerning lung cancer, 3 
microarray datasets from NCBI GEO were collected: GSE19188, GSE19804 and GSE33532. The last 
one, involving 4 biopsies from the same sample, was split in 4 datasets. We thus obtained a total of 
6 LC datasets composed of case and control samples. Additionally, the RNA-seq Lung dataset 
downloaded from The Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/) was added 
to the analysis. 

4.2 Biological characterization of the communities 

We characterized the communities obtained in the -RBH AD/LC subnetwork using the following 
annotations: MSigDB signatures [33], Microenvironment Cell Populations-counter (MCP-counter) 
signatures [34], predefined TCGA lung cancer subtypes [35] and the metagenes computed in [27], 
here referred to as CIT. Concerning subtypes association we employed the metasamples obtained 
from the TCGA lung cancer data. 
We tested the significance of the association with the predefined LC subtypes by performing a 
two-sided Wilcoxon test (cancer subtype vs. all other samples) and corrected for multiple testing 
using Bonferroni. For all the other biological annotations involving genes we employed the 
metagenes contained in each community. We associated to each community of the -RBH AD/LC 
subnetwork a “consensus metagene” corresponding to the average of all the metagenes contained 
in the community, paying attention to first concordantly orientate all the metagenes of the 
community based on the signs of their correlations (all the metagenes in the community were 
oriented based on the direction of LC). We then defined as top-contributing genes of a community 
those genes having a weight in the consensus metagene higher than 3 standard deviations in 
absolute value. The top-contributing genes were then divided into up and down based on their sign 
in the consensus metagene and tested for their intersection with the various collections of 
signatures. For cell types specific signatures we used a Fisher’s exact test with Bonferroni 
correction, for MsigDB we employed its default enrichment test [33]. 
 
After testing the association of each community with all the considered annotations (MSigDB 
signatures, MCP counter cell types signatures, the lung cancer subtypes available for TCGA data 
and the CIT metagenes), we associate to each community the annotation that is more consistently 
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found across the different tests. In Supp Table 2 the annotations associated to each community 
together with their associated P-values are more extensively described.   
 
Finally, to test the reproducibility of the identified consensus metagenes in other cancers, we used 
the metagenes computed with sICA on TCGA transcriptomics data from 32 different cancer types 
[28]. Then, for each community in the -RBH AD/LC subnetwork, we computed the number of 
cancers having at least one correlated metagene. The resulting values are reported in Supp Table 2. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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Figures 

 

Figure 1. Schematic view of the framework and the novelties introduced with respect to [12]. 
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Figure 2. “Long-tail-pointing” (red) vs. “disease-pointing” (blue) orientation of the sICA 
factors. (A) The two methods of factors orientation are compared based on the correlation of the 
obtained metagenes with the case vs. control genes’ fold change. (B) The two methods are 
compared based on the number of links present in their RBH network. Total RBHs (RBH), positive 
RBHs (+RBH), negative RBHs (-RBH). (C,D,E) The  two methods are compared based on the 
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structure of their -RBH AD/LC subnetwork, relevant for the study of inverse comorbidity. In (C) the 
number of nodes and links in the subnetwork are compared. Number of nodes (# Nodes ), negative 
RBHs connecting an AD component with a LC component (-RBH) and negative RBHs connecting 
an AD component with a LC component that are associated to nodes with significant differential 
behaviour (Wilcoxon p-value < 0.05) between case and control (significant -RBH). In (D) The 
clustering coefficient and modularity of the subnetwork are considered. In (E) The number of 
communities and their average size in the subnetwork is taken into account. 

 

Figure 3. -RBH AD/LC subnetwork with biological annotations. Each node in the network 
corresponds to a metagene, the list of metagenes associated to each community ID is reported in 
Supp Table 3. Colours are linked to the diseases: red for AD and blue for LC. In AD datasets 
obtained from the same region of the brain are denoted with different shades of red (normal and 
light red). The nodes are organized into communities. Each community is denoted with a number 
corresponding to its ID and the main biological annotation associated to them (see Supp Table 2 for 
an extensive report).  
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dataset Wilcoxon		P-value

GSE4757 0.003
EC_GSE48350 0.001
EC_GSE5281 4.11E-05
HC_GSE48350 0.007
HC_GSE5281 5.05E-04
MTG_GSE5281 0.007
PC_GSE5281 0.029

PCG_GSE48350 5.83E-04
SFG_GSE48350 0.007
SFG_GSE5281 1.55E-04
VCX_GSE5281 0.024
GSE19188 3.11E-04
GSE19804 1.48E-06

GSE33532_A 0.161
GSE33532_B 0.003
GSE33532_C 0.0207
GSE33532_D 0.002

Supp.	Table	1.	Comparison	of	
correlation	values	between	fold	

change	of	expression	and	metagenes	
oriented	with	long-tail	vs	disease-

pointing	approach.
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Community 
ID

Associated 
annotation CIT MsigDB signatures (FDR q-value) Number of 

other cancers

LC subtype/clinical 
annotation (Wilcoxon P-

value)

MCP counter cell type with 
P-value

3 Proximal 
Inflammatory

"GO_INNATE_IMMUNE_RESPONSE" (3.18E-35) 0 Proximal Inflammatory 0.034

4 INF-Gamma CIT-8 "GO_INFLAMMATORY_RESPONSE" (6.32E-49), 
"HALLMARK_INTERFERON_GAMMA_RESPONSE" (1.05E-45) 0

5 Fenretinide 
response

"FERRARI_RESPONSE_TO_FENRETINIDE_DN" (2.05E-03), "" 3

6 Microtubules
"GO_CILIUM" (4.75E-38), 

"GO_MICROTUBULE_BUNDLE_FORMATION" (6.48E-23), 
"GO_MICROTUBULE_BASED_PROCESS" (3.55E-17)

3

7 Monocytes CIT-8
"GO_IMMUNE_RESPONSE" (2.68E-23), 

"GSE29618_BCELL_VS_MONOCYTE_DAY7_FLU_VACCINE_UP
" (6.37E-08)

3 Monocytes 0.002

10 Hypoxia "ELVIDGE_HYPOXIA_UP" (3.17E-05), "HALLMARK_HYPOXIA" 
(4.10E-04) 2

13 Fibroblasts CIT-8
"GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION" (5.38E-

99), 
"GO_POSITIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCE

SS" (1.36E-03)

6 Fibroblasts 2.71e-08

15 Microvilli
"GO_MICROVILLUS" (3.79E-09), 

"GO_REGULATION_OF_MICROVILLUS_ORGANIZATION" 
(5.63E-08)

2

19 Neuro endocrine 
tumors CIT-18 1

21 Monocytes CIT-8
"GSE34156_TLR1_TLR2_LIGAND_VS_NOD2_AND_TLR1_TLR2

_LIGAND_24H_TREATED_MONOCYTE_UP" (7.43E-58), 
"GO_IMMUNE_SYSTEM_PROCESS" (6.86E-132)

10 Monocytes 2.04 e-6

25 B and T cells CIT-8

"GSE22886_NAIVE_CD8_TCELL_VS_MONOCYTE_DN" (7.96E-
30), "GSE22886_NAIVE_CD4_TCELL_VS_MONOCYTE_DN" 

(2.96E-28), "GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_DN" 
(1.72E-23), "GSE22886_NAIVE_BCELL_VS_MONOCYTE_DN" 

(2.15E-20)

6 B cells 0.03

28 Neutrophils CIT-8 "GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_DN" (6.29E-52), 
"HALLMARK_INFLAMMATORY_RESPONSE" (3.25E-67) 7 Neutrophilis 0.006

30 Focal adhesion
"KEGG_FOCAL_ADHESION" (1.64E-03), 

"GO_CELL_JUNCTION_ORGANIZATION" (1.34E-03), 
"GO_ANCHORING_JUNCTION" (8.14E-04)

2

31 Phagocytosis "GO_PHAGOCYTOSIS_RECOGNITION" (3.80E-09), 
"GO_PHAGOCYTOSIS" (3.80E-09) 5

32 chr X "DISTECHE_ESCAPED_FROM_X_INACTIVATION" (1.56E-06), 
"RUNNE_GENDER_EFFECT_UP" (2.50E-20) 8

33 Corticosteroids 
response

"GO_RESPONSE_TO_CORTICOSTEROID" (1.69E-04), 
"GO_IMMUNE_SYSTEM_PROCESS" (6.22E-44) 7

36 Gender 6 Gender 10^-37

38 Phosphate 
metabolism

"GO_REGULATION_OF_PHOSPHORUS_METABOLIC_PROCES
S" (7.81E-03), 0

14 and 41 Terminal Respiratory 
unit 0 Terminal Respiratory unit 

2.92e-6; 0.021
20 protein processing “GO_CHAPERONE_MEDIATED_PROTEIN_FOLDIN” (8.225E-5), 

“GO_PROTEIN_TRANSPORT” (1.625E-3) 1

22 and 9 HDAC "HELLER_HDAC_TARGETS_UP" (4.21E-12), "" 6

23, 16 and 40 Redox/Mithocondria CIT-4

"GO_OXIDATION_REDUCTION_PROCESS" (2.00E-06), 
"GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NAD_P_H_Q
UINONE_OR_SIMILAR_COMPOUND_AS_ACCEPTOR" (2.65E-
06), "GO_SMALL_MOLECULE_METABOLIC_PROCESS" (2.77E-

14)

2

24 and 1 Cell Cycle CIT-7
"FISCHER_G2_M_CELL_CYCLE" (5.04E-08), 

"GO_MITOTIC_CELL_CYCLE" (9.59E-08), 
"ONDER_CDH1_TARGETS_2_UP" (1.34E-07)

10

26 and 12 Smooth muscle CIT-3
"GO_EXTRACELLULAR_MATRIX" (1.37E-85), 

"GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION" (5.48E-
70)

5

27 and 17 Proximal 
Proliferative 0 Proximal Proliferative 0.016; 

0.035

Supp.	Table	2.	Annotations	of	the	communities	in	the	-RBH	AD-LC	subnetwork.	For	each	community	the	table	reports	the	ID,	the	associated	annotation	reported	in	the	Figure,	the	
correlated	CIT	metagene,	the	MsigDB	enriched	signatures	with	the	associated	FDR	q-values,	the	number	of	TCGA	cancer	having	a	metagene	correlated	with	them,	the	lung	cancer	

subtype/clinical	annotation	with	the	Bonferroni	corrected	Wilcoxon	P-value	and	the	MCP	counter	based	cell	type	with	the	Bonferroni	corrected	Fisher's	exact	test	P-value.	
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Community	ID metagene	number Dataset
1 12 AD_4757
1 11 LC_33532_D
3 6 AD_EC_5281
3 25 LC_LUAD
4 12 AD_EC_48350
4 2 AD_EC_5281
4 5 AD_HC_48350
4 17 AD_PCG_48350
4 13 AD_SFG_48350
5 4 AD_EC_48350
5 8 AD_HC_48350
5 8 AD_PCG_48350
5 11 LC_33532_A
6 3 AD_EC_48350
6 12 AD_HC_48350
6 1 LC_19188
6 5 LC_33532_A
6 3 LC_33532_B
6 11 LC_33532_C
6 2 LC_33532_D
6 9 LC_LUAD
6 10 LC_19804
7 2 AD_HC_48350
7 9 LC_33532_A
7 16 LC_33532_B
9 1 AD_PC_5281
9 4 LC_19804
10 3 AD_PC_5281
10 17 LC_33532_D
12 7 AD_PCG_48350
12 18 LC_33532_B
13 2 AD_SFG_48350
13 9 LC_19804
13 2 LC_33532_A
13 8 LC_33532_B
13 7 LC_LUAD
14 2 AD_MTG_5281
14 8 AD_SFG_48350

Supp.	Table	3.	Annotation	of	the	nodes	present	in	the	network	of	
Figure	3.	For	each	community	ID	reported	in	the	figure,	the	
components	and	associated	datasets	of	its	nodes	are	here	

reported	corresponding	to	the	
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14 94 LC_LUAD
15 14 AD_EC_48350
15 12 AD_SFG_48350
15 14 AD_SFG_5281
15 7 AD_VCX_5281
15 13 LC_19804
15 41 LC_LUAD
16 12 AD_SFG_5281
16 12 LC_33532_B
17 5 AD_SFG_5281
17 16 LC_19804
19 6 AD_EC_48350
19 14 AD_HC_48350
19 1 AD_MTG_5281
19 6 AD_SFG_48350
19 10 AD_SFG_5281
19 1 AD_VCX_5281
19 4 LC_19188
20 11 AD_4757
20 8 AD_EC_48350
20 10 AD_EC_5281
20 13 AD_HC_5281
20 12 AD_MTG_5281
20 3 AD_PCG_48350
20 5 AD_SFG_48350
20 14 AD_VCX_5281
20 9 LC_19188
20 3 LC_19804
20 16 LC_33532_A
20 9 LC_33532_B
20 13 LC_33532_D
21 16 AD_4757
21 7 AD_SFG_48350
21 12 LC_19188
21 8 LC_19804
22 17 AD_4757
22 9 AD_HC_48350
22 13 AD_PCG_48350
22 9 AD_VCX_5281
22 13 LC_19188
23 3 AD_4757
23 11 AD_MTG_5281
23 15 AD_PCG_48350
23 6 LC_19804
23 10 LC_33532_C
23 15 LC_33532_A
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24 5 AD_EC_48350
24 12 AD_EC_5281
24 15 AD_EC_5281
24 10 AD_HC_48350
24 8 AD_HC_5281
24 4 AD_MTG_5281
24 2 AD_PC_5281
24 6 AD_PCG_48350
24 9 AD_SFG_48350
24 11 AD_SFG_5281
24 2 LC_19804
24 2 LC_33532_C
24 10 LC_19188
25 8 AD_4757
25 10 AD_VCX_5281
25 17 LC_33532_B
25 12 LC_33532_D
26 1 AD_4757
26 14 AD_EC_5281
26 2 AD_SFG_5281
26 5 LC_33532_C
26 9 LC_33532_D
27 15 AD_EC_48350
27 16 AD_PCG_48350
27 53 LC_LUAD
28 11 AD_EC_48350
28 6 AD_MTG_5281
28 2 LC_19188
28 5 LC_19804
30 18 AD_EC_48350
30 5 AD_EC_5281
30 6 AD_SFG_5281
30 16 AD_VCX_5281
30 7 LC_19804
31 8 AD_EC_5281
31 1 AD_HC_48350
31 9 AD_HC_5281
31 11 LC_19188
31 4 LC_33532_B
31 3 LC_33532_C
31 17 LC_33532_A
32 1 AD_PCG_48350
32 1 AD_SFG_48350
32 4 LC_33532_C
33 16 AD_SFG_5281
33 1 LC_33532_A
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33 1 LC_33532_B
33 1 LC_33532_C
33 1 LC_33532_D
36 1 AD_EC_5281
36 3 AD_HC_48350
36 4 AD_HC_5281
36 3 AD_MTG_5281
36 1 AD_SFG_5281
36 2 AD_VCX_5281
36 4 LC_33532_A
36 5 LC_33532_B
36 1 LC_LUAD
38 9 AD_EC_5281
38 11 AD_HC_5281
38 12 AD_VCX_5281
38 15 LC_33532_C
38 2 LC_LUAD
40 14 AD_PCG_48350
40 17 LC_19188
41 18 AD_PCG_48350
41 12 LC_19804
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