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Abstract 1 

The phase of neural oscillatory activity aligns to the predicted onset of upcoming 2 
stimulation. Whether such phase alignments represent phase resets of underlying neural 3 
oscillations or just rhythmically evoked activity, and whether they can be observed in a 4 
rhythm-free visual context, however, remains unclear. Here, we recorded the 5 
magnetoencephalogram while participants were engaged in a temporal prediction task judging 6 
the visual or tactile reappearance of a uniformly moving stimulus. The prediction conditions 7 
were contrasted with a control condition to dissociate phase adjustments of neural oscillations 8 
from stimulus-driven activity. We observed stronger delta band inter-trial phase consistency 9 
(ITPC) in a network of sensory, parietal and frontal brain areas, but no power increase 10 
reflecting stimulus-driven or prediction-related processes. Delta ITPC further correlated with 11 
prediction performance in the cerebellum and visual cortex. Our results provide evidence that 12 
phase alignments of low-frequency neural oscillations underlie temporal predictions in a non-13 
rhythmic visual and crossmodal context. 14 
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Introduction 18 

Neural oscillations reflect alternating states of higher or lower neural excitability, 19 
modulating the efficiency by which coupled neurons engage in mutual interactions (Buzsáki, 20 
2006). As a result, neural communication and information processing has been shown to 21 
occur in a phase-dependent manner (Engel et al., 2001; Fries, 2005) reflected, for example, by 22 
fluctuations in perception thresholds correlating with the phase of ongoing oscillations 23 
(VanRullen, 2016). Based on these assumptions, oscillations were also linked to temporal 24 
predictions of upcoming relevant information (Arnal and Giraud, 2012; Engel et al., 2001; 25 
Rimmele et al., 2018). Studies have shown that animals can utilize predictive aspects of 26 
environmental stimuli in a way that reaction times are reduced (Gould et al., 2011; Lakatos et 27 
al., 2008; Rohenkohl and Nobre, 2011; Stefanics et al., 2010) or stimulus processing is 28 
enhanced (Cravo et al., 2013; Wilsch et al., 2015). By means of top-down induced phase 29 
resets of neural oscillations, phases of high excitability might be adjusted towards the 30 
expected onset of relevant upcoming stimulation in order to optimize relevant behavior 31 
(Schroeder and Lakatos, 2009).  32 

Due to the rhythmic and therefore temporally highly predictable nature of many auditory 33 
stimuli such as speech or music, particularly in the auditory domain, many studies gathered 34 
evidence that oscillations reset and thereby adjust their phase towards rhythmic stimuli of 35 
various frequencies (Doelling and Poeppel, 2015; Giraud and Poeppel, 2012). Also in the 36 
visual domain, studies showed that neural oscillations align to temporal structure rhythmic 37 
visual input (Breska and Deouell, 2017b; Cravo et al., 2013; Gomez-Ramirez et al., 2011; 38 
Lakatos et al., 2008; Saleh et al., 2010). Other studies, however, reported a specific effect for 39 
visual temporal predictions only in the alpha band (8 – 12 Hz), although sensory input was 40 
provided at lower frequencies (Rohenkohl and Nobre, 2011; Samaha et al., 2015).  41 

Moreover, whether temporal predictions indeed involve phase resets of endogenous 42 
neural oscillations remains a matter of debate (Breska and Deouell, 2017a; Doelling et al., 43 
2019; Novembre and Iannetti, 2018). Despite their ecological relevance, using rhythms for the 44 
investigation of an involvement of oscillations in temporal predictions entails methodological 45 
and conceptual challenges. Rhythmic input leads to a continuous stream of regularly bottom-46 
up evoked potentials, which are – at least – difficult to distinguish from top-down phase 47 
adjusted neural oscillations within the same frequency. Rather than by phase resets of 48 
endogenous neural oscillations, phase alignments across trials could therefore also be caused 49 
by stimulus-evoked potentials that just appear to be rhythmic during rhythmic stimulation 50 
(Doelling et al., 2019; Novembre and Iannetti, 2018; Zoefel et al., 2018).  51 

Temporal prediction processes have further been shown to be reflected by slow buildups 52 
of neural activity, which ramps up until the predicted time point is reached; also called 53 
contingent negative variation (CNV; Breska and Deouell, 2017a; Macar et al., 1999). In a 54 
rhythmic temporal prediction context, such slowly ramping activity between subsequent 55 
stimulus pairs would also lead to significant phase-locking of low-frequency activity across 56 
trials, which again would be very difficult to be distinguished from phase-locking of phase-57 
aligned endogenous neural oscillations. Conclusive evidence that temporal predictions 58 
involve phase resets of endogenous oscillations rather than stimulus-driven or prediction-59 
evoked potentials is still lacking.  60 

 In addition, using only auditory rhythmic stimulation precludes the opportunity to link 61 
phase adjustments to a more general neural mechanism that predicts the temporal structure of 62 
any external input. If phase adjustments form the basis of tracking the temporal regularities of 63 
any relevant information, neural oscillations should align also to predictable temporal 64 
regularities that are inferred from input that does not itself comprise auditory rhythmic or 65 
discrete components, such as, for instance, uniform visual motion.  66 
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For this reason, we set out to investigate whether phase adjustments of neural activity can 67 
be observed for predictable visual motion stimuli. We measured magnetoencephalography 68 
(MEG) while healthy participants watched a visual stimulus continuously moving across the 69 
screen until it disappeared behind an occluder (Fig. 1A). We manipulated the time for the 70 
stimulus to reappear on the other side of the occluder. The task was to judge whether the 71 
stimulus reappeared too early or too late based on the speed of the stimulus earlier to 72 
disappearance. Hence, participants were required to temporally predict the correct time point 73 
of reappearance to be able to accomplish the task. Participants further performed a control 74 
task, in which the task was to judge the luminance of the reappearing stimulus instead of its 75 
timing. Importantly, physical appearance of both conditions was exactly the same in all 76 
aspects of the stimulation. Any purely stimulus-driven, bottom-up activity should therefore 77 
level out between the two conditions.  78 

Moreover, since it has been shown that sensory stimulation can lead to crossmodal phase 79 
adjustments also in relevant but unstimulated other modalities (Lakatos et al., 2007; Mercier 80 
et al., 2013), we further introduced a third condition in which a tactile instead of a visual 81 
stimulus was presented at reappearance. By contrasting it to the luminance matching control 82 
condition, we sought to determine whether phase alignments can be observed in regions 83 
associated with tactile stimulus processing, when sensory information was in fact only 84 
provided to the visual system.  85 

We hypothesized that in the two temporal prediction tasks, as compared to the luminance 86 
matching control task, we would observe stronger inter-trial phase consistency (ITPC) within 87 
time windows between disappearance and expected reappearance. These phase alignments 88 
should particularly be observed at low frequencies, e.g., in the delta band, matching the 89 
temporal scale of the disappearance window (on average 1.5 s). Importantly, if such enhanced 90 
ITPC reflected phase resets of ongoing neural oscillations, we should not observe any 91 
changes in delta power during temporal predictions, as the amplitude of phase-resetting 92 
endogenous oscillations should not be altered. On the other hand, when stimulus-driven or 93 
prediction-evoked neural activity lead to the observed phase alignments, observed ITPC 94 
differences should be accompanied with differences in total delta power during temporal 95 
predictions, representing the evoked neural activity in each trial. Further, if the phase of 96 
neural oscillations indeed codes for the time point of the expected reappearance in each 97 
participant, participants showing a more consistent judgment of reappearance timing – as 98 
represented by a steep slope of the psychometric function – should have stronger ITPC during 99 
temporal predictions than participants who performed less accurately. If evoked neural 100 
activity underlies temporal predictions, these correlations should as well be accompanied by 101 
correlations between delta power and the steepness of the psychometric curve within the same 102 
brain region.   103 
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Results 104 

Behavioral results 105 

Participants did not receive feedback about the correctness of their response. This 106 
ensured that participants relied on their individual and subjective “right on time” (ROT) 107 
impression in the temporal prediction conditions and “point of subjective equivalence” (PSE) 108 
in the luminance matching condition. Across participants, there was no statistically significant 109 
bias towards “too early/darker” or “too late/brighter” responses in the visual temporal 110 
prediction (Dt (ROTV) = 13.15 ± 155.20 ms; t(22) = .41; p = .69; Cohen’s d = .09) or in the 111 
luminance matching task (DRGB (PSE) = -1.29 ± 4.54 RGB; t(22) = -1.36; p = .19; Cohen’s d 112 
= -.28), respectively (Fig. 1B). In the tactile temporal prediction task, participants showed a 113 
significant bias towards “too early” responses (Dt (ROTT) = 99.80 ± 150.00 ms; t(22) = 3.19; 114 
p = .004; Cohen’s d = .67). 115 

To assess whether reaction times were dependent on the timing of the reappearing 116 
stimulus (Fig. 1C), we fitted a mixed-effect model to reaction times from all trials using the 117 
categorial variable condition (with the luminance matching task as reference level) and timing 118 
difference as well as their interaction as predictors. Since in the temporal prediction 119 
conditions we expected reaction times to be slowest for timing differences around zero and 120 
faster for high timing differences, we used a second-order polynomial term for timing 121 
differences (see Methods). Across all timing differences, reaction times were significantly 122 
faster in the tactile temporal prediction task as compared the luminance matching task (b = -123 
0.26; t = 14.21; p < 0.001), but not significantly different between the visual temporal 124 
prediction and the luminance matching task (b = -0.03; t = -1.34; p = 0.18). Across all 125 
conditions, reaction times linearly decreased with increase timing difference (b = -0.04; t = -126 
2.48; p = 0.02) as well as showed a quadratic relationship with timing difference (b = 0.02; t = 127 
2.42; p = 0.02). Importantly, as indicated by the interaction results, timing difference had a 128 
stronger negative linear (b = -0.13; t = -10.53; p < 0.001) and stronger negative quadratic 129 
influence on reaction times from the visual (b = -0.11; t = -8.18; p < 0.001) as well as a 130 
stronger negative quadratic influence on reactions times from the tactile temporal prediction 131 
task (b = -0.10; t = -7.52; p < 0.001) as compared to those from the luminance matching task 132 
(see Figure 1C and supplementary table S1 for the complete model output).  133 
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Figure 1. Experimental design and behavioral results. (A) A stimulus moved towards the center of the screen 134 
until it disappeared behind an occluder. The task was to judge whether the stimulus reappeared too early or too 135 
late. In the luminance matching condition, task was to judge whether the luminance became brighter or darker. 136 
Importantly, physical stimulation was exactly the same as in the visual prediction task. In the tactile temporal 137 
prediction task, at reappearance a tactile stimulus was presented contralateral to the disappearance of the visual 138 
stimulus. (B) Psychometric functions and individual ROT/PSE estimates. A timing difference of 0 refers to the 139 
objectively correct reappearance of the stimulus after 1,500 ms. Analogously, a luminance difference of 0 refers 140 
to equal luminance after reappearance provided in RGB values (see Methods). Colored areas depict standard errors 141 
of the mean (SEM). (C) Log-transformed and standardized reaction times for all timing differences (mean ± SEM). 142 
P = proportion; LM = luminance matching; t = time; l = luminance; RGB = red-green-blue. 143 
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Temporal prediction was associated with reduced beta power in sensory regions 144 

Analyzing the neural data, we were first interested in investigating which frequency 145 
bands showed modulated spectral power during windows of temporal predictions in order to 146 
narrow down frequency bands of interest for further analyses. For that, we tested an average 147 
of spectral power across all sensors and conditions against a pre-stimulus baseline window. 148 
As a first step, we obtained a general overview of power modulations at each event in the 149 
experimental paradigm. Due to the jittered stimulation built into the design (see Materials and 150 
Methods), we computed cluster-based permutations statistics in three separate time windows 151 
(Fig. 2A) centered on: (a) the onset of the moving stimulus (“Movement”), (b) disappearance 152 
of the stimulus behind the occluder (“Disappearance”), and (c) reappearance of the stimulus 153 
(“Reappearance”). 154 

In time bins around movement onset as well as reappearance of the stimulus, but not 155 
around disappearance, clusters of frequencies in the delta and theta range showed a 156 
statistically significant increase of spectral power as compared to the baseline window. All 157 
time windows further depicted a significant decrease of spectral power in frequencies within 158 
the beta and gamma range (all cluster p-values < .008). Importantly, even with using a liberal 159 
cluster alpha level of .05 (one-sided), we did not find a statistically significant modulation of 160 
delta power during the disappearance window. This was also not the case when reducing the 161 
test to sensors from occipital regions only (see Fig. S1).  162 

Since we were most interested in examining modulations associated with temporal 163 
predictions, i.e., during the disappearance window, we further compared spectral power 164 
estimates between the temporal prediction tasks and the luminance matching task in all 165 
sensors within the disappearance window while ignoring the other windows. We restricted 166 
our analysis to the classical beta band ranging from 13 to 30 Hz, showing the strongest 167 
modulation as compared to baseline during the disappearance window. Cluster-based 168 
permutation statistics revealed reduced beta power during visual temporal prediction in 169 
occipital sensors during all time-bins of the disappearance window (cluster-p = .01). Source 170 
level statistics revealed a statistically significant decrease of beta power in a cluster of 171 
bilateral occipital voxels (cluster-p = .01). Beta power was further reduced during tactile 172 
prediction in a cluster of occipital as well as left lateralized frontocentral sensors (cluster-p = 173 
.002). At source level, a significant power reduction in the beta band was most strongly 174 
apparent in parts of bilateral visual as well as left-lateralized somatosensory cortex (cluster-p 175 
= .01).  176 
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Figure 2. Power modulations during temporal prediction. (A) Spectral power averaged across sensors, 177 
conditions, and participants. Each window was centered on the different events within the paradigm and 178 
normalized with pre-stimulus baseline. Time 0 refers to the onset of each event. Cluster-based permutation 179 
statistics revealed significant power modulations as compared to baseline (unmasked colors). See also Fig. S1. 180 
(B,C) Difference between the two temporal prediction and the luminance matching task, respectively, within the 181 
beta band (13 – 30 Hz) in time bins around stimulus disappearance. Black dots indicate sensors of the clusters 182 
showing significant differences between the conditions. At source level, cluster-based permutation statistics 183 
revealed cluster of voxels showing significant differences between the conditions (colored voxels). LM = 184 
luminance matching. 185 
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Delta inter-trial phase consistency was enhanced during temporal prediction 186 

For the analysis of ITPC, we followed a similar approach. First, we tested ITPC 187 
differences to baseline in the three time windows for an average across all sensors and 188 
conditions using cluster-based permutation statistics. ITPC was significantly increased across 189 
a range of different frequencies in time bins around movement onset, disappearance and 190 
reappearance of the stimulus (all cluster-p < .001; Fig. 3A). For time windows centered on 191 
movement onset as well as reappearance significant ITPC increases were strongest in the 192 
delta to alpha range. At disappearance of the stimulus, significant ITPC increases were 193 
observed up to the low beta range with strongest increases in the delta band.  194 

Hence, the delta band showed no increase in power but the strongest increase in ITPC as 195 
compared to baseline during the disappearance window for an average across all conditions 196 
(see Fig. 2A, 3A, and S1). For further statistical comparisons between conditions, we 197 
therefore restricted our analyses to an average of frequencies between 0.5 to 3 Hz (for 198 
condition-specific delta band ITPC differences to baseline during disappearance, see Fig. S2). 199 
For a better estimation of when differences in ITPC between the conditions became apparent, 200 
we enlarged the analysis of ITPC to time bins ranging from -1,900 ms to 1,900 ms centered 201 
on the disappearance of the stimulus. Note that in this enlarged analysis window the timing of 202 
the movement onset as well as the reappearance of the stimulus strongly jittered across trials. 203 
The effect of these events on ITPC estimates were thus strongly reduced (see Fig. S3). 204 

We found two clusters that showed significantly stronger ITPC during visual temporal 205 
predictions as compared to luminance matching (Fig. 3B). One cluster included sensors from 206 
right temporal, frontal and occipital regions in time bins from -400 to 1,900 ms (cluster p < 207 
.001). The second cluster included left frontotemporal sensors in time bins ranging from 0 to 208 
1,900 ms (cluster p = .01) Source level analysis revealed that for an average of the time 209 
window from -400 to 1,900 ms ITPC differences between the two conditions were strongest 210 
in right-lateralized central and inferior frontal voxels (cluster p < .001).  211 

ITPC was also significantly enhanced in bilateral temporal sensors during tactile 212 
temporal predictions, evolving around -400 ms in right temporal sensors and shifting towards 213 
left hemisphere with ongoing disappearance time (cluster p < .001; Fig. 3C). In this contrast, 214 
however, differences in ITPC were more strongly apparent also in frontal and central sensors. 215 
Besides strongest differences in ITPC again in right superior parietal and inferior frontal 216 
voxels, source level analysis also revealed strong differences in bilateral somatosensory 217 
voxels for the contrast of tactile prediction to luminance matching (cluster p < .001).  218 

Figure 3D depicts absolute delta ITPC estimates for all three conditions in the enlarged 219 
disappearance time window. Values were averaged across participants and all the sensors that 220 
exhibited the top 20% of t values in the ITPC contrast between visual temporal prediction and 221 
luminance matching between 0 and 1,500 ms (see Fig. 3B; similar results were obtained for 222 
sensors showing the top 10% or 5% of t values, see Fig. S3D). ITPC initially increased for all 223 
three conditions, but dropped down to stimulus movement level shortly afterwards in the 224 
luminance matching condition. ITPC in the visual as well as tactile temporal prediction tasks 225 
stayed elevated throughout the entire disappearance window.  226 
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Figure 3. ITPC during temporal prediction as compared to luminance matching. (A) ITPC estimates 227 
averaged across sensors, conditions, and participants. Masked colors refer to non-significant ITPC modulations as 228 
compared to baseline (cluster-based permutation statistics). (B,C) Difference in ITPC between the visual or tactile 229 
prediction and the luminance matching task, respectively, within the delta band (0.5 – 3 Hz). For clarity, only 230 
every second time bin was plotted. Black dots indicate sensors of the clusters showing significant differences. On 231 
source level, clusters of voxels showing significant differences between the conditions are colored. See also Fig. 232 
S2 and S3 (D) Time course of absolute delta ITPC estimates within each condition for time bins centered around 233 
disappearance of the stimulus (time 0; mean ± SEM). ITPC estimates were averaged across channels that showed 234 
the top 20% of t-values for the comparison of the visual prediction with the luminance matching task (see 235 
topography). LM = luminance matching. 236 

Control analyses on delta power differences between conditions 237 

In contrast to ITPC, delta power did not significantly increase with disappearance of the 238 
stimulus in an average across conditions and channels as compared to baseline (see Fig. 2A 239 
and S1). Nevertheless, to examine whether channels showing the strongest differences in 240 
ITPC between conditions also show differences in delta power, we averaged delta power 241 
within the channels showing the strongest ITPC differences (same as in Fig. 3D) and 242 
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compared power values from each of the two temporal prediction conditions with the 243 
luminance matching condition, respectively, within the same enlarged window of -1.900 to 244 
1.900 ms around stimulus disappearance (Fig. 4). 245 

Figure 4A shows the time courses of total delta power in each condition. The overall 246 
pattern of the delta power time courses was largely different to the pattern of the ITPC time 247 
course in each of the conditions (compare to Fig 3D). In the visual temporal condition task as 248 
well as in the luminance matching task, delta power did not increase around disappearance of 249 
the stimulus and did not differ in any of the time bins between the two conditions during the 250 
disappearance window (even for uncorrected t-tests). Also in the tactile condition, delta power 251 
did not increase at around disappearance of the stimulus as observed for ITPC in this 252 
condition. However, it strongly increased in late time windows, showing significant 253 
differences in the tactile conditions as compared to the luminance matching task in time bins 254 
between 700 and 1900 ms after disappearance (cluster p < .001, dashed black line in Fig. 4A).  255 

The combined pattern of an early delta ITPC increase and a late delta power increase in 256 
this condition could speak in favor of a CNV underlying the processes of temporal prediction. 257 
A CNV describes activity that is building up until the expected time point of an upcoming 258 
event is reached. After this time point, the build-up process sharply terminates (see, e.g. 259 
Breska and Deouell, 2017a; Macar et al., 1999). In such a scenario, ITPC would be increased 260 
as soon as the slow build-up process initiates (here at disappearance), but power increases 261 
might become observable only later in the prediction process. A phase-reset of ongoing 262 
oscillations, on the other hand, should not lead to an increase in delta power during the 263 
disappearance window.  264 

To further investigate whether a CNV could explain the observed pattern of ITPC and 265 
power time courses, we computed additional control analyses. If a CNV would explain the 266 
increase in total power in the tactile condition, it should be locked to the disappearance of the 267 
stimulus and be present in each temporal prediction trial. Consequently, it should also be 268 
removed when subtracting the ERF from each trial in the time domain, before computing 269 
delta power in each single trial (i.e., when computing induced power). However, as the upper 270 
panel in Figure 4B shows, even after removing the ERF from each trial, delta power in the 271 
tactile condition was still strongly increased as compared to the luminance matching task in 272 
late disappearance time windows (cluster p < .001). Delta ITPC, on the other hand, was 273 
completely removed after subtracting the ERF (Fig. 4B lower panel).  274 

Figure 4C depicts the delta power time course of the ERF itself in each condition. Delta 275 
power of the ERF increased for both, the tactile as well as the visual temporal prediction task, 276 
as compared to the control task. Similar to the ITPC effect, this increase already started in 277 
time bins shortly before disappearance (both cluster p < .001). Moreover, the strength of the 278 
increase in power in the visual temporal prediction task resembles the increase in the tactile 279 
task, and was not much stronger in the tactile task as observed for total power (Fig. 4A).   280 

As a next step, we computed two mixed-effect regression models to examine the effect of 281 
delta power on ITCP. In one model, we used the variables condition and time as well as their 282 
interaction as predictors for ITPC only (Fig. 4D upper panel). In the other, we also added 283 
delta power as a covariate to the model in order to adjust for the variance explained by delta 284 
power (lower panel). After adding delta power as covariate, predicted ITPC values were 285 
reduced in the tactile prediction condition during late time windows of disappearance. 286 
However, they were still significantly different between both the visual and the tactile 287 
temporal prediction as compared to the luminance matching task, respectively, in all time bins 288 
during disappearance (see supplementary Table S2 for a complete model output).   289 
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Figure 4. Delta power control analyses. (A)  Time course of total delta power (0.5 – 3 Hz) in all conditions for 290 
the channels showing the strongest delta ITPC effect (same as in Fig. 3D). Time point 0 again refers to the complete 291 
disappearance of the stimulus. Colored lines depict uncorrected p-values below 0.05 from comparisons of the 292 
respective temporal prediction condition with the luminance matching task in each time bin. Dashed black lines 293 
depict p-values that survived the cluster-based permutation test. (B) The upper panel depicts the time course of 294 
induced delta power in each condition after a condition-wise subtraction of the ERF from each trial in the time 295 
domain. The lower panel depicts ITPC in each condition after ERF subtraction. (C) Delta power time course of 296 
the ERF, i.e., after averaging all trials in each condition in the time domain first. (D) Predicted delta ITPC values 297 
from mixed-effects regression models with an interaction term of condition and time as predictors for ITPC. Upper 298 
panel: without adjusting for delta power; lower panel: with adjusting for delta power by adding power as a 299 
covariate to the model. For a better comparability, standardized ITPC values were back-transformed to the original 300 
scale prior to plotting. 301 

Delta ITPC, but not delta power, correlated to behavioral performance 302 

We further hypothesized that if phase alignments of neural oscillations were indeed 303 
associated with temporal predictions, a participant who judged the reappearance of the 304 
stimulus within her individual subjectively correct ROT framework in a consistent manner 305 
should also exhibit stronger ITPC during temporal predictions, as a consistent timing 306 
judgement across trials should involve a similar phase across trials. The consistency of 307 
judgements can be inferred from the steepness of the psychometric function – the steeper the 308 
psychometric function, the more consistent the answers of the participant. We computed 309 
Pearson correlations of source level delta ITPC with the steepness of the psychometric 310 
function across participants and found statistically significant positive correlations in the 311 
visual (cluster p = .003) as well as in the tactile temporal prediction task (cluster p = .002; Fig. 312 
5). Strongest correlations were found in the cerebellum and right lateralized early visual areas 313 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2020. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 

 13 

in both tasks. No clusters showing significant positive or negative correlations were observed 314 
in the luminance matching task (all cluster p > .1). If such correlations between phase 315 
alignments and behavior are related to evoked neural activity during temporal predictions, 316 
however, we should also observe similar correlation also between delta power and behavior. 317 
Hence, we averaged delta power within the voxels that showed the correlations between ITPC 318 
and behavior and computed Pearson correlations between this average and the steepness of 319 
the slope in each condition. We found no significant correlation between delta power and 320 
behavior in the visual (r = 0.31, p = 0.15) nor in the tactile temporal prediction task (r = 0.16, 321 
p = 0.47). 322 

 

 
 
Figure 5. Correlation of ITPC to behavior. (A,B) Correlation of individual ITPC estimates with the individual 323 
steepness of the psychometric function within all voxels, shown in (A) for the visual prediction, and in (B) for the 324 
tactile prediction condition. ITPC estimates were averaged within the delta band and time windows of 0 to 1,000 325 
ms centered on the disappearance of the stimulus. Only the clusters of voxels showing significant correlations are 326 
colored. In the scatter plots,  each dot represents one participant and ITPC estimates were averaged across all 327 
voxels within the clusters of significant correlations. There was no significant correlation observed for the 328 
luminance matching condition or between delta power and behavior.  329 

ITPC did not correlate with eye movements 330 

 A potential confound for the observed effects in ITPC could be that participants tracked 331 
the moving stimulus with their eyes to be able to judge the correct time point of reappearance. 332 
Thus, consistent horizontal eye movements with the speed of the stimulus might lead to 333 
enhanced ITPC in the delta band. To make sure that differences in eye movements do not 334 
explain the observed differences in ITPC between the conditions, we analyzed horizontal eye 335 
movements recorded by an eye tracker (ET) during the MEG measurement. Figure 6A depicts 336 
condition-wise horizontal eye positions averaged across all participants and centered on the 337 
disappearance of the stimulus, showing no systematic differences between the conditions. 338 
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Moreover, if horizontal eye movements would explain the effects in ITPC, we should observe 339 
the same effects between the conditions when we compute ITPC for the ET data. Differences 340 
in ITPC between the two temporal prediction conditions and the luminance matching 341 
condition are depicted Figure 6B and C. Using cluster-based permutation statistics, we did not 342 
observe any time-frequency cluster that revealed significant differences between the 343 
conditions (all cluster p > .1). 344 

Further, we tested whether there are any significant correlations between individual ITPC 345 
values obtained from the MEG data and from the ET data. We averaged ITPC values from a 346 
time window of 0 to 1.000 ms and again used the top 20% of channels showing the strongest 347 
effect for ITPC for the MEG data (for channels see Fig. 3D), and did not observe significant 348 
correlations between the ITPC values obtained from MEG and ET data in the temporal 349 
prediction tasks (Fig. 6D). The strongest correlation was found in the luminance matching 350 
condition, which suggests that the ITPC differences found in the MEG data cannot be 351 
explained by horizontal eye movements during temporal predictions.  352 

 

 
 
Figure 6. Analysis of horizontal eye movements. (A) Condition-wise eye positions centered on stimulus 353 
disappearance (time 0 s) and averaged across all participants. A visual angle of 0° refers to the fixation dot (1° 354 
visual angle roughly corresponds to 1 cm on the screen). Colored areas depict SEM. (B,C) Differences in ITPC 355 
between (B) the visual prediction and (C) the tactile prediction condition to the luminance matching condition in 356 
low frequencies and time bins around disappearance of the stimulus (time 0 s). Utilizing cluster-permutation 357 
statistics, no clusters of significant differences were observed between the conditions. (D) Condition-wise 358 
correlations between ITPC estimates obtained from the eye tracker data and the MEG sensors across all 359 
participants. ET = eye tracker. 360 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2020. ; https://doi.org/10.1101/643957doi: bioRxiv preprint 

https://doi.org/10.1101/643957
http://creativecommons.org/licenses/by/4.0/


 

 15 

Discussion 361 

Our task design enabled us to disentangle phase resets of ongoing neural oscillations 362 
from evoked event-related potentials. We found that phase alignments, but not power, were 363 
stronger in the context of temporal predictions than in a task where temporal structure was 364 
less relevant. This supports the hypothesis that phase adjustments of ongoing neural 365 
oscillations, and not stimulus-driven or prediction-evoked activity, form the neuronal basis of 366 
temporal prediction processes and suggest that this framework can be extended to predictions 367 
that have to be inferred from stimulation that does not itself comprise rhythmic and discrete 368 
components. The strength of the observed phase adjustments further correlated with the 369 
ability to consistently judge the temporal reappearance of the stimulus across participants, 370 
suggesting also a functional relevance of the observed phase adjustments for temporal 371 
predictions.   372 

Cross-modal temporal predictions are reflected by a beta power reduction in both 373 
sensory systems 374 

It has been suggested that temporal predictions of upcoming events might be mediated by 375 
neuronal oscillations in the delta and beta frequency range (Arnal and Giraud, 2012). The 376 
enhanced phase consistency of delta oscillations as well as the power modulations in the beta 377 
band observed in the current study are in line with this hypothesis. However, earlier reports 378 
on beta power modulations during temporal predictions are inconsistent. On the one hand, 379 
studies found that beta power was even increased shortly before the onset of the expected 380 
stimulus in auditory (Arnal et al., 2015) and visual rhythmic stimulation (Saleh et al., 2010). 381 
On the other hand, van Ede et al. (van Ede et al., 2011) found that predicting the onset of a 382 
tactile stimulus was specifically associated with a reduction of beta power in contralateral 383 
tactile areas and accompanied by faster reaction times. The authors suggest that a reduction in 384 
beta power might signal preparatory processes in the sensory system that expects the 385 
upcoming event. 386 

The observed decrease in beta power in task-relevant sensory regions in the current study 387 
largely match the results reported by van Ede et al. (van Ede et al., 2011). During visual 388 
temporal predictions, beta band power was reduced in visual sensory regions as compared to 389 
the visual control condition during the entire disappearance time. During crossmodal 390 
predictions, in which temporal information was provided to the visual system, but 391 
reappearance was expected in the tactile domain, beta band power was decreased in both, 392 
visual as well as tactile regions.  393 

Since also in the luminance matching condition participants expected to perceive a visual 394 
stimulus, preparatory processes alone cannot explain this reduction in beta power. This is 395 
especially the case in the crossmodal condition, in which no visual stimulus was expected, but 396 
stronger decreases in beta were also observed in visual areas. Moreover, since we observed 397 
beta decreases also in tactile regions at the time of visual stimulus disappearance, the decrease 398 
could not solely be an effect of external stimulation.  399 

Beta decreases observed during temporal predictions might therefore relate to more than 400 
only preparatory processes to an upcoming stimulus. Cross-modal decreases in beta band 401 
activity in both the temporal information providing visual as well as the stimulation expecting 402 
tactile system might reflect that both sensory modalities are continuously involved in 403 
temporal prediction processes, not only in processes preparing for the upcoming stimulation. 404 
We found no significant increases in beta power during temporal predictions. Whether 405 
decreases in beta power are associated with non-rhythmic temporal predictions while 406 
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increases might reflect temporal predictions during rhythmic stimulation, remains subject to 407 
future research. 408 

Enhanced ITPC cannot be explained by event-related increases in neural activity 409 

In earlier investigations of phase adjustments to external predictive stimulation, 410 
participants were mostly presented with streams of auditory rhythmic input. Rhythmic and 411 
discrete input, however, also causes strongly evoked brain activity within the same frequency 412 
range, which makes it difficult to disentangle streams of evoked activity from entrained 413 
endogenous neural oscillations (Novembre and Iannetti, 2018; Zoefel et al., 2018). Our results 414 
provide evidence that phase alignments of low-frequency fluctuations observed during 415 
temporal predictions cannot solely be explained by stimulus-driven, bottom-up evoked brain 416 
activity (see also, Doelling et al., 2019; Kösem et al., 2018). In the current study, we aimed at 417 
reducing stimulus-evoked brain responses to a minimum by presenting participants with a 418 
continuously moving stimulus instead of several discrete stimuli. We were particularly 419 
interested in the time point at which the stimulus transiently disappeared behind an occluder 420 
(as opposed to sharp onsets and offsets in discrete rhythmic stimulation). At disappearance, 421 
we did not observe an increase in low-frequency power as compared to pre-stimulus baseline 422 
in any of the conditions, which could explain an increase of phase alignments after 423 
disappearance of the stimulus. Moreover, by using an experimental design in which physical 424 
stimulation at disappearance was exactly the same during temporal predictions as well as the 425 
control condition, we controlled for brain responses that could have been driven by bottom-426 
up, stimulus-processing activity and would therefore not be specific to temporal predictions. 427 
Importantly, delta ITPC, but not power, was stronger during temporal predictions at and after 428 
disappearance of the stimulus, suggesting that delta phase alignments during temporal 429 
predictions cannot be solely related to brain responses evoked by the offset of the visual 430 
movement.  431 

It has been further suggested that a CNV, i.e., activity that is ramping up until the 432 
expected time point is reached, might underlie enhanced phase alignments during temporal 433 
predictions (Breska and Deouell, 2017a). CNVs have often been observed in timing tasks 434 
(e.g., Macar et al., 1999; Pfeuty et al., 2003; Praamstra et al., 2006), and such ramping 435 
activity initialized by temporal predictions would, besides an increase in power, also lead to 436 
increased phase alignments as reflected by enhanced ITPC during temporal predictions. These 437 
increases in activity are therefore not caused by the physical stimulation itself but specifically 438 
related to temporal predictions. As described above, the observed pattern of an early delta 439 
ITPC increase and a late delta power increase in our tactile prediction condition could speak 440 
in favor of a CNV underlying the processes of temporal prediction (see Fig. 3D and 4A). 441 
However, there are several aspects that argue against an involvement of a CNV in our data.  442 

First of all, if in our data a CNV underlay temporal predictions, we should have observed 443 
a late power increase also in the visual temporal prediction task, in which participants also 444 
focused temporal predictions but saw the exact same physical stimulation as in the control 445 
task. Even using uncorrected t-tests, however, we did not observe total delta power 446 
differences between the two conditions in any of the time bins after stimulus disappearance. 447 
Since we see strong ITPC increases in both temporal prediction condition, but a delta power 448 
increase only in the tactile condition, it is unlikely that CNV-like activity would explain the 449 
phase alignments observed in both temporal predictions tasks.  450 

Moreover, by subtracting the ERF from each single trial, all activity that is phase-locked 451 
to the disappearance of the stimulus should be removed from the data, that is, all activity 452 
related to a phase-reset of oscillations as well as all activity reflecting event-related potentials. 453 
However, also after subtracting the ERF, the strong delta increase in the tactile condition was 454 
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still observable. This suggests that the increase in power in the tactile condition was not 455 
associated to the temporal prediction processes locked to the disappearance of the stimulus. 456 
Since the reappearance of the stimulus strongly jittered in relation to the time point of 457 
disappearance and the tactile condition was the only condition in which a sharp-onsetting 458 
tactile stimulus was presented, it is likely that this delta power increase in late windows was 459 
caused by the presentation of the tactile stimulus. In contrast to power, however, delta ITPC 460 
was completely removed after subtracting the ERF, which confirms that subtracting the ERF 461 
reliably removed all disappearance-locked activity.   462 

Further, as stated above, averaging across all trials, i.e., computing the ERF, would 463 
capture all activity from each trial which is locked to disappearance of the stimulus, i.e., 464 
phase-reset oscillatory activity and/or event-related potentials. In contrast, unlocked activity 465 
should be removed by the averaging. If a CNV caused the late power increase in the tactile 466 
condition, this pattern of a late increase in power should also be observable for the power time 467 
course of the ERF. A phase-reset of oscillatory activity, on the other hand, would rather cause 468 
an ERF power time course that shows differences already at early time windows of the 469 
disappearance, as is the case in our data. The time course of delta power of the ERFs, 470 
therefore, speak against a CNV representing the power increase but, rather, for oscillatory 471 
activity that resets its phase at disappearance.  472 

Therefore, instead of a CNV causing phase alignments of slow fluctuations across trials 473 
(as described above) the opposite might hold, i.e., phase resets of oscillatory activity might 474 
actually, after averaging, lead to results erroneously suggesting a CNV. If so, studies that 475 
observed a CNV after averaging, could have in fact also extracted all oscillatory activity that 476 
has reset its phase after the onset of a temporal cue. Only if a CNV was present in single trial 477 
data, and not only after averaging, such event-related slow fluctuations would indeed relate to 478 
single trial temporal predictions. In our data, however, we did not observe a temporal 479 
prediction related increase in total delta power, which is computed on single trial time courses 480 
before averaging. An increase in power was only visible after averaging all trials in the time 481 
domain first. Thus, the lack of a power increase in total power together with a CNV-like 482 
power increase after averaging across trials suggests that neural oscillations reset their phase 483 
according to the temporal structure of the stimulation, but did not alter in amplitude on a 484 
single trials basis.  485 

Taken together, we observed strong ITPC differences between the conditions but no 486 
(total) power differences that could be explained by event-related potentials such as a CNV. 487 
Instead of evoked or CNV-like activity, our results therefore suggest that the phase 488 
alignments observed during temporal predictions are associated to neural oscillations that 489 
adjusted their phase to the temporal structure of the stimulation in order to predict the 490 
reappearance of the upcoming stimulation.  491 

Neural oscillations at low frequencies adapt to the temporal structure of non-rhythmic 492 
visual motion stimulation 493 

Earlier studies have observed that neural oscillations entrain towards rhythmic sensory 494 
input to track the low-frequency temporal regularities of the stimulation, especially in the 495 
auditory domain (Giraud and Poeppel, 2012). Such phase entrainment does not only occur in 496 
the delta band but can flexibly adapt to the frequency of the external input also at higher 497 
frequencies such as the theta or the alpha band during auditory stimulation (Doelling and 498 
Poeppel, 2015). However, in the visual system, evidence for the tracking of temporally 499 
predictive input by neural oscillations is not as clear. On the one hand, studies showed that the 500 
phase of neural oscillations is involved in temporal predictions of low-frequency visual input 501 
(Breska and Deouell, 2017a; Cravo et al., 2013; Saleh et al., 2010; Wilsch et al., 2015). On 502 
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the other hand, studies suggested that temporal predictions in the visual system were specific 503 
to the alpha band, although sensory input was provided at lower frequencies (Rohenkohl and 504 
Nobre, 2011; Samaha et al., 2015). Rohenkohl and Nobre (Rohenkohl and Nobre, 2011), for 505 
instance, used rhythmically presented visual stimuli at 2.5 and 1.25 Hz moving across the 506 
screen until it disappeared behind an occluder. Nevertheless, neural oscillations exclusively 507 
from the alpha band showed modulated activity associated with temporal predictions during 508 
the disappearance time. They found no phase locking of oscillations in lower frequencies.  509 

In the current study, we provide further evidence that neural oscillations from the delta 510 
band show enhanced phase alignment during visual temporal predictions across trials. In 511 
order to adapt to the temporal regularity of the presented visual stimulus, delta frequencies in 512 
a wide network of parietal and frontal brain areas exerted more consistent phase resets at 513 
around the time point of disappearance of a monotonically moving stimulus as compared to a 514 
luminance matching control condition. The strength of this phase adjustment in each 515 
participant correlated with the consistency in judging a reappearance of the visual stimulus as 516 
too early or too late. This was the case only in the temporal prediction tasks, which underlines 517 
the behavioral relevance of the observed phase adjustments for temporal predictions.  518 

Importantly, our study suggests that the mechanism of phase adjustments for temporal 519 
predictions can be extended to external stimulation that does not as such involve rhythmic or 520 
discontinuous stimulation. We found that low-frequency oscillations can adjust their phase 521 
also to the temporal structure of external stimulation that had to be inferred from uniform 522 
visual motion. This is also in line with recent studies reporting enhanced performance as well 523 
as an involvement of delta phase for non-rhythmic, yet predictable stimulation in the auditory 524 
(Herbst and Obleser, 2019) as well as the visual domain (Breska and Deouell, 2017a; but see 525 
Obleser et al., 2017 and Breska and Deouell, 2017b for a discussion about the rhytmicity of 526 
their non-rhythmic visual stimulation). While both studies involve onsets of discrete stimuli, 527 
they show that delta phase was involved in temporal prediction processes during stimulation 528 
that was not itself purely rhythmic. By showing that the phase of neural oscillations also align 529 
to a rhythm-free, non-discrete, unimodal visual as well as crossmodal visuotactile stimulation, 530 
our results further indicate that the framework of phase adjustments during temporal 531 
predictions might be generalized also to other, if not all, forms of temporally predictive 532 
external stimulation.  533 

Phase resets occurred in a network of frontoparietal and sensory brain areas 534 

We observed enhanced ITPC values in a network of mostly frontal and parietal brain 535 
areas during visual as well as crossmodal temporal predictions. Similarly, Besle et al. (2011) 536 
observed significant phase entrainment to audiovisual stimulation in a wide network of 537 
distributed areas including parietal and inferior frontal areas. These observations support the 538 
notion that brain areas involved in temporal predictions may constitute a frontoparietal timing 539 
network (Coull and Nobre, 2008; Rimmele et al., 2018). 540 

Further, we found enhanced ITPC values also in early somatosensory areas contralateral 541 
to the disappearance of the purely visual stimulus during crossmodal temporal predictions, 542 
despite the fact that prediction-relevant information was provided only by a moving visual 543 
stimulus. This supports evidence reported earlier showing that stimulation within one 544 
modality can crossmodally reset the phase of ongoing low-frequency in other modalities, 545 
which might be an important mechanism for multisensory integration processes (Lakatos et 546 
al., 2007; Mercier et al., 2013).  547 

Similarly, we expected to find enhanced ITPC during temporal predictions in early visual 548 
areas. In fact, increased delta ITPC as compared to baseline were also observed in occipital 549 
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sensors (see Fig. S2), but they were not significantly different between the conditions. 550 
However, we found that voxels in early visual areas showed strong correlations between 551 
individual ITPC estimates and the steepness of the psychometric function in both temporal 552 
prediction tasks, but not in the luminance matching task. This suggests that consistent phase 553 
resets of delta oscillations within visual areas might have supported consistent timing 554 
judgments with the participants’ subjective timing frameworks. This indicates an involvement 555 
also of the visual system in processes related to temporal prediction.  556 

Moreover, strong correlations between ITPC and behavior were also observed in the 557 
cerebellum, supporting earlier reports on a involvement of the cerebellum in temporal 558 
prediction processes (Breska and Ivry, 2016). Roth and coworkers (Roth et al., 2013), for 559 
instance, found that cerebellar patients were significantly impaired in recalibrating sensory 560 
temporal predictions of a reappearing visual stimulus. This finding is of particular interest as 561 
we adapted the authors’ experimental paradigm for the use in the current study. Theirs and 562 
our results therefore indicate that the cerebellum might be crucially involved in accurate and 563 
consistent judgments of temporal regularities deployed in perceiving object motion. 564 

Conclusions 565 

We provide evidence that the phase of neural oscillations can adjust to the temporal 566 
regularities of external stimulation and do not arise as a byproduct of stimulus-driven or 567 
prediction-related evoked potentials. Such phase alignments could provide a key mechanism 568 
that predicts the onset of upcoming events in order to optimize processing of relevant 569 
information and thereby adapt behavior. We show that temporal information provided to one 570 
modality leads to phase adjustments in another modality when crossmodal temporal 571 
predictions are necessary, providing further evidence that such crossmodal phase resets could 572 
be the neuronal basis of multisensory integration processes. Moreover, phase alignments were 573 
observed for unimodal visual as well as crossmodal visuotactile non-rhythmic and non-574 
discrete stimulation, suggesting a generalizability of phase resets as a mechanism for temporal 575 
predictions to all forms of external stimulation. Taken together, our results provide important 576 
further insights into the neural mechanisms that might be utilized by the brain to predict the 577 
temporal onsets of upcoming events.   578 
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Materials and Methods 579 

Participants 580 

Twenty-three healthy volunteers (mean age ± standard deviation (SD): 27.13 ± 4.30 581 
years; 20 females; all right-handed) took part in the study. They gave informed written 582 
consent and were monetarily compensated with 13 €/hour for participation. All volunteers had 583 
normal or corrected-to-normal vision, normal touch, as well as no background of psychiatric 584 
or neurological disorder. The ethics committee of the Medical Association Hamburg approved 585 
the study protocol (PV5073), and the experiment was carried out in accordance with the 586 
approved guidelines and regulations. 587 

 588 

Experimental procedure 589 

The experimental paradigm used in the current study was adopted from an earlier report 590 
investigating visual temporal predictions in cerebellar patients (Roth et al., 2013). Our 591 
experiment consisted of three conditions: a visual temporal prediction task, a crossmodal 592 
(tactile) temporal prediction task, and a luminance matching (control) task. The trials of all 593 
conditions started with the presentation of a randomly generated, white noise occluder (size: 594 
7.5° x 11.3° (h x w)) that was smoothed with a Gaussian filter (imgaussfilt.m in MATLAB) 595 
and presented in the middle of the screen against a grey background screen (luminance: 44 596 
cd/m2; corresponds to 115 red-green-blue (RGB) values in our setting; see Figure 1A). At the 597 
center of the occluder, a red fixation dot was presented. We instructed participants to fixate 598 
this dot throughout the entire trial. After 1500 ms, an oval stimulus (size: 3.5° x 1.0°) set on in 599 
the periphery of the screen, moving towards the occluder with a speed of 6.9 °/s. The 600 
luminance of the stimulus differed in all trials between 120 to 161 cd/m2 (6 steps, 601 
counterbalanced, corresponds to 170 to 220 RGB). For half of the participants, the stimulus 602 
started on the left side of the occluder and moved from left side towards the right side. For the 603 
other half, the stimulus started on the right side and moved from right to left. The direction of 604 
movement was kept constant for each participant throughout the entire experiment. In each 605 
trial, the starting point of the stimulus differed such that the stimulus took 1,000 to 1,500 ms 606 
to disappear completely behind the occluder from starting point, randomly jittered with 100 607 
ms (counterbalanced). The size of the occluder and the speed of the stimulus were chosen so 608 
that the stimulus would need exactly 1,500 ms to reappear on the other side of the occluder. 609 
However, we manipulated the timing and the luminance of the reappearing stimulus. In each 610 
trial, the reappearance of the stimulus differed between ±17 to ±467 ms (randomly jittered, 611 
but counterbalanced in steps of 50 ms; corresponds to ±1 to ±28 frames with a jitter of 3 612 
frames at 60 Hz) from the correct reappearance time of 1,500 ms. Hence, the stimulus was 613 
covered by the occluder for 1,033 to 1,967 ms and was reappearing at 20 different time 614 
points. In the visual prediction task as well as in the luminance matching task, we also 615 
manipulated the luminance of the reappearing stimulus relative the luminance the stimulus 616 
had before disappearance in each trial (jittered, but counterbalanced between ±1 to ±40 cd/m2, 617 
also using 20 different values; corresponds to ±1 to ± 28 RGB in steps of 3 RGB to make it 618 
similar to the timing manipulation). After reappearance, the stimulus moved to the other side 619 
of the screen for 500 ms with the same speed until it set off the screen. The occluder was 620 
presented throughout the entire trial. 621 

By manipulating the timing as well as the luminance in both conditions, we made sure 622 
that both, the visual temporal prediction as well as the luminance matching task had the exact 623 
equal physical appearance throughout all trials. They only differed in their cognitive set. In 624 
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the visual temporal prediction task, we asked participants to judge whether the stimulus was 625 
reappearing too early or too late based on the speed the stimulus had earlier to the occluder 626 
(which was kept constant throughout the entire experiment). In the luminance matching task, 627 
participants were asked to judge whether the luminance of the reappearing visual stimulus 628 
became brighter or darker as compared to the stimulus earlier to disappearance. Participants 629 
answered by pressing one of two buttons with their index or middle finger of the hand 630 
contralateral to the reappearing stimulus.  631 

The tactile temporal prediction task was equal to the visual temporal prediction task, with 632 
the only difference that a tactile stimulus instead of a visual was presented at the time of 633 
reappearance to the right or left index finger (depending on which side the stimulus was 634 
expected to reappear behind the occluder). The tactile stimulus was presented by means of a 635 
Braille piezostimulator (QuaeroSys, Stuttgart, Germany; 2 x 4 pins, each 1 mm in diameter 636 
with a spacing of 2.5 mm), pushing up all eight pins for 200 ms. At that time, nothing 637 
happened on the screen. Participants gave their answer with the same hand as in the other two 638 
conditions (i.e., with the hand that was not stimulated by the Braille stimulator). Response 639 
mapping of the two buttons was counterbalanced across all participants. As soon as 640 
participants gave their answer, the fixation dot turned dark grey for 100 ms to indicate that the 641 
response was registered. However, participants did not receive trial-wise feedback about the 642 
correctness of their response. After a short delay of 200 ms, the white-noise occluder was 643 
randomly re-shuffled to signal the start of a new trial. 644 

All three conditions were presented block-wise. At the beginning of each block, 645 
participants were informed about the current task. The order of presentation of the conditions 646 
was kept constant for each participant, but was randomized across participants 647 
(counterbalanced). At the end of each block, they were informed about the overall accuracy of 648 
their answers within the last block and were allowed to rest as long as they wanted. Each 649 
participant performed two sessions at two different recording days. The experimental 650 
procedure was kept constant across both sessions, i.e., movement direction, response 651 
mapping, as well as condition order did not change in the second session for individual 652 
participants. Each session comprised twelve blocks, i.e., four blocks per condition. Each 653 
block consisted of 60 trials, resulting in a total number of 480 trials per condition or 1,440 654 
trials in total. Due to technical difficulties, for one participant we only acquired data from one 655 
session with a total number of 720 trials.   656 

At the beginning of each recording day, participants performed a short training of all 657 
conditions to get familiar with the overall experimental procedure and the stimulus material. 658 
This training took part in the same environment as the subsequent recording session. At the 659 
end of the second recording day, participants filled a questionnaire asking for any specific 660 
strategy they might have used for the temporal prediction task.   661 

We used MATLAB R2014b (MathWorks, Natick, USA; RRID: SCR_001622) and 662 
Psychtoolbox (Brainard, 1997) (RRID: SCR_002881) on a Dell Precision T5500 with Ubuntu 663 
64-bit operating system (Version: 16.04.5 LTS) for stimulus presentation. The visual stimuli 664 
were projected onto a matte backprojection screen at 60 Hz with a resolution of 1,920 × 1,080 665 
pixels positioned 65 cm in front of participants. To mask the sound of the Braille stimulator 666 
during tactile stimulation, we presented participants with auditory pink noise at sampling rate 667 
of 48 kHz and volume of 85 dB using MEG-compatible in-ear headphones (SRM-252S, 668 
STAX Limited, Fujimi, Japan) during all experimental blocks.  669 

 670 
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Data acquisition and pre-processing 671 

MEG was recorded at a sampling rate of 1,200 Hz using a 275-channel whole-head 672 
system (CTF MEG International Services LP, Coquitlam, Canada) situated in a dimly lit, 673 
sound attenuated and magnetically shielded chamber. We additionally recorded electrical eye, 674 
muscle and cardiac activity with Ag/AgCl-electrodes in order to have a better estimate for 675 
endogenous artefacts. Online head localizations (Stolk et al., 2013) were used to navigate 676 
participants back to their original head position prior to the onset of a new experimental block 677 
if their movements exceeded five mm from their initial position. The initial head position 678 
from the first recording day was saved so that participants could be navigated back to their 679 
initial head position also during the second recording day. This assured comparable head 680 
positions of each participant across sessions. Five malfunctioning channels were either not 681 
recorded or excluded from further analysis for all participants. To further control for eye 682 
movement artifacts, eye movements were tracked with an MEG-compatible EyeLink 1000 683 
Long Range Mount system (SR Research, Osgoode, Canada). 684 

We analyzed reaction time data using R (R Core Team, 2014) (RRID: SCR_001905) and 685 
RStudio (RStudio Inc., Boston, USA; RRID: SCR_000432). Trials with reaction times longer 686 
than three standard deviations were excluded from analysis. Due to the right-skewed nature of 687 
reaction times, reaction time data were first log-transformed and then standardized across all 688 
trials.  689 

All other data were analyzed using MATLAB R2016b with FieldTrip (Oostenveld et al., 690 
2011) (RRID: SCR_004849), the MEG and EEG Toolbox Hamburg (METH, Guido Nolte; 691 
RRID: SCR_016104), or custom made scripts. The physiological continuous recording of 692 
each session was first cut into epochs of variable length. Each trial was cut 1,250 ms earlier to 693 
stimulus movement onset and 1,250 ms after offset of the reappeared stimulus. Trial length 694 
therefore varied between 4,717 and 6,183 ms. To prevent that the timing in a given trial was 695 
not exactly as intended, e.g., by short movement interruptions of the stimulus, we removed 696 
trials which contained MEG marker timings that differed from the intended timing of the 697 
moving stimulus in the trial by at least one frame (17 ms). Thus, we excluded on average 1.2 698 
trials in each participant and each session (range: 0 – 24 trials).  699 

Moreover, trials containing strong muscle artifacts or jumps were detected by semi-700 
automatic procedures implemented in FieldTrip and excluded from analysis. The remaining 701 
trials were filtered with a high-pass filter at 0.5 Hz, a low-pass filter at 170 Hz, and three 702 
band-stop filters at 49.5–50.5 Hz, 99.5–100.5 Hz and 149.5–150.5 Hz and subsequently 703 
down-sampled to 400 Hz.  704 

We performed an independent component analysis (infomax algorithm) to remove 705 
components containing eye-movements, muscle, and cardiac artefacts. Components were 706 
identified by visual inspection of their time course, variance across samples, power spectrum, 707 
and topography. On average, 25.7 ± 8.6 components were rejected in each participant and 708 
each session. All trials were again visually inspected and trials containing artefacts that were 709 
not detected by the previous steps were removed.  710 

As a final step, using procedures described by Stolk et al. (Stolk et al., 2013) and online 711 
(http://www.fieldtriptoolbox.org/example/how_to_incorporate_head_movements_in_MEG_a712 
nalysis/) we identified trials in which the head position of the participant differed by 5 mm 713 
from the mean circumcenter of the head position from the whole session (on average: 2.6 714 
trials per participant and session, range: 0 – 86 trials) and excluded them from further 715 
analysis. 670.2 ± 26.7 trials of the total of 720 trials remained from pre-processing on average 716 
per participant in each session. 717 
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Quantification and statistical analysis 718 

In the current experiment, we introduced a control condition that was physically identical 719 
to our temporal prediction tasks (until reappearance in the tactile condition) in order to 720 
account for processes that are not directly related temporal predictions. Hence, for most of our 721 
statistical analyses, we were interested in comparing the two temporal prediction tasks with 722 
the luminance matching control task, respectively, and not in comparing the two temporal 723 
prediction tasks with each other. Therefore, instead of computing an analysis of variance 724 
across all three conditions, we directly computed two separate t-tests for the comparison of 725 
the visual or the tactile temporal prediction with the luminance matching task, respectively, 726 
and accounted for multiple comparisons by adjusting the alpha level.  727 

Psychometric curve  728 
We did not provide participants with feedback about the correctness of their response. 729 

Hence, participants responded within their individual framework of a “subjectively correct” 730 
reappearance timing or a “subjectively equal” luminance of the stimulus, respectively. To 731 
obtain these subjective points of “right-on-time” (ROT) in the temporal prediction tasks or the 732 
“points of subjective equality” (PSE) in the luminance matching task, we fitted a 733 
psychometric curve to the behavioral data of each participant from all trials in each condition. 734 
First, for each timing difference or luminance difference, respectively, we computed the 735 
proportion of “too late” or “brighter” answers for each participant. Then, we fitted a binomial 736 
logistic regression (psychometric curve) using the glmfit.m and gmlval.m functions provided 737 
in MATLAB. The fitted timing or luminance difference value at 50% proportion “too late” or 738 
“brighter” answers was determined as ROT or PSE for each participant, respectively. To test 739 
for a significant bias towards one of the answers, we tested the ROT or PSE from all 740 
participants against zero using one-sample t-tests (α = .05 / 3 = .017). The steepness of the 741 
psychometric function was computed as the reciprocal of the difference between fitted timing 742 
or luminance difference values at 75% and 25% proportion “too late” or “brighter” answers, 743 
respectively.  744 

Mixed regression model for reaction times 745 
To test whether reaction times were dependent on the timing difference of the 746 

reappearing stimulus, we fitted a random intercept and slope mixed model to reaction times 747 
from all trials using the categorial variable condition (with the luminance matching task as 748 
reference level) and timing difference as well as their interaction as fixed effects. Since in the 749 
temporal prediction conditions we expected reaction times to be slowest for timing 750 
differences around zero and faster for high timing differences, we used a second-order 751 
polynomial term for timing differences. Subject ID was used as grouping variable to model an 752 
individual intercept for each participant, and timing difference was modeled with random 753 
slope. We used R including the lme4 package for computing the mixed-effect model, and the 754 
package parameters to compute p-values using the “Kenward” option, which estimates p-755 
values for fixed effects using the Kenward-Roger approach (Kenward and Roger, 1997). 756 

Spectral power 757 
We decomposed the MEG recordings into time-frequency representations by convolving 758 

the data with complex Morlet’s wavelets (Cohen, 2014). The recording of each trial and 759 
channel was convolved with 40 complex wavelets, logarithmically spaced between 0.5 to 100 760 
Hz. With increasing frequency, the number of cycles for each wavelet logarithmically 761 
increased from two to ten cycles. For all analyses of the MEG data, we considered 762 
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subjectively correct trials only, i.e., trials in which participants answered correctly based on 763 
their individual ROT. To correct for trial count differences between the tasks, we stratified the 764 
number of trials for each participant for the three different conditions by randomly selecting 765 
as many trials for each condition as the number available from the condition with lowest trial 766 
count. 767 

Since the temporal dependencies between the movement onset, disappearance behind the 768 
occluder and reappearance of the stimulus varied strongly between trials, averaging across 769 
trials would heavily smear the power estimates of the different stages within each trial. To 770 
obtain an estimate of spectral power modulations related to the different events in our 771 
experimental paradigm, we cut each trial further into four separate, partly overlapping 772 
windows (see Figure 2A): a “Baseline” window from -550 to -50 ms earlier to movement 773 
onset; a “Movement” window from -50 to 950 ms relative to the movement onset; a 774 
“Disappearance” window from -350 to 950 ms relative to complete disappearance of the 775 
stimulus behind the occluder; and a “Reappearance” window from -350 to 450 ms relative to 776 
the (first frame) reappearance of the stimulus. Spectral power estimates were then averaged 777 
across all trials belonging to the same condition in each window and binned into time 778 
windows of 100 ms (centered on each full deci-second). All power estimates were normalized 779 
using the pre-stimulus baseline window from -500 to -200 ms earlier to movement onset.  780 

For all statistical analyses on sensor level, we first flipped all sensors of participants, who 781 
saw the stimulus moving from right to left, at the sagittal midline, i.e., the anterior-posterior 782 
axis. This made sure that lateralized activity due to the lateralized stimulation was comparable 783 
across groups. From this on, we considered all participants as if for everyone the stimulus was 784 
moving from the left to the right side. Channels that did not have a counterpart on the 785 
opposite site were excluded from further analyses. In order to obtain an overview of the 786 
spectral power modulations related to the different events within the trials, we then averaged 787 
the power estimates across all channels and conditions (grand average) and tested each time-788 
frequency pair of the Movement, Disappearance and Reappearance windows against the pre-789 
stimulus baseline using paired-sample t-tests. We controlled for multiple comparisons by 790 
employing cluster-based permutation statistics as implemented in FieldTrip(Maris and 791 
Oostenveld, 2007). In this procedure, neighboring time-frequency bins with an uncorrected p-792 
value below 0.05 are combined into clusters, for which the sum of t-values is computed. A 793 
null-distribution is created through permutations of data across participants (n = 1,000 794 
permutations), which defines the maximum cluster-level test statistics and corrected p-values 795 
for each cluster. For each window, a separate cluster-permutation test was performed (α = .05; 796 
liberally chosen to observe all ongoing power modulations; see Results section). 797 

Since we were most interested in differences between the conditions during the 798 
disappearance time, we subsequently compared the spectral power estimates averaged within 799 
the beta range (13–30 Hz; see Results section) at each time point within the disappearance 800 
window and all channels from the visual or tactile temporal prediction task with the 801 
luminance matching task. We again employed cluster-permutation statistics, this time by 802 
clustering neighboring channels and time points. We used a one-sided α = .025 / 2 = .0125, 803 
since negative and positive clusters were tested separately, and to adjust for the two separate 804 
comparisons between the conditions (used throughout the study unless stated differently).  805 

To estimate spectral power in source space, we computed separate leadfields for each 806 
recording session and participant based on each participant’s mean head position in each 807 
session and individual magnetic resonance images. We used the single-shell volume 808 
conductor model (Nolte, 2003) with a 5,003 voxel grid that was aligned to the MNI152 809 
template brain (Montreal Neurological Institute, MNI; http://www.mni.mcgill.ca) as 810 
implemented in the METH toolbox. Cross-spectral density (CSD) matrices were computed 811 
from the complex wavelet convolved data in steps of 100 ms in the same time windows as 812 
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outlined above. To avoid biases in source projection, common adaptive linear spatial filters 813 
(DICS beamformer (Gross et al., 2001)) pointing into the direction of maximal variance were 814 
computed from CSD matrices averaged across all time bins and conditions for each 815 
frequency.  816 

All time-frequency resolved CSD matrices were then multiplied with the spatial filters to 817 
estimate spectral power in each of the 5,003 voxels and normalized with the pre-stimulus 818 
baseline window. Analogous to sensor space, we first flipped all voxels at the y-axis 819 
(anterior-posterior axis) for the half of participants that saw the stimulus moving from right to 820 
left earlier to further statistical analysis. We then averaged across all time bins within the 821 
disappearance window and utilized cluster-based permutation statistics to identify clusters of 822 
voxels that show statistical difference in beta power between each of the temporal prediction 823 
tasks and the luminance matching task. 824 

Inter-trial phase consistency 825 
We computed ITPC estimates from the complex time-frequency representations obtained 826 

from the wavelet convolution as described in the Spectral power section above. In each time 827 
sample and trial, the phase of the complex data was extracted (using the function angle.m in 828 
MATLAB). ITPC was then computed across all subjectively correct and stratified trials 829 
within each of the four time windows in all frequencies as 830 

𝐼𝑇𝑃𝐶%& = 	 )𝑛+,-𝑒/0123
4

56,

) 831 

where n is the number of trials and k the phase angle in trial r at time-frequency point tf 832 
(Cohen, 2014). In other words, ITPC is the length of the mean vector from all phase vectors 833 
with length 1 across all trials at a given time-frequency point. Values for ITPC can vary 834 
between 0 and 1, where 0 means that at a given time-frequency point there is no phase 835 
consistency across trials at all and 1 means all trials show the exact same phase. Similar to 836 
spectral power, we averaged ITPC estimates again in bins of 100 ms and plotted all time 837 
windows averaged across all channels and conditions to obtain a general overview of ITPC 838 
estimates at all events during the trial. 839 

Since we were most interested in ITPC related to stimulus disappearance behind the 840 
occluder, we subsequently computed ITPC in a longer time window from -1,900 ms to 1,900 841 
ms centered around time of complete stimulus disappearance behind the occluder. Thus, we 842 
took advantage of the fact that the onset of other events within each trial, such as the 843 
movement onset and the reappearance of the stimulus, strongly jittered across all trials and 844 
strong contributions of these events to ITPC could thereby be reduced (see Fig. S3). For 845 
statistical analysis, we first averaged ITPC estimates within a frequency band of 0.5 to 3 Hz 846 
(see Results) and then computed cluster-based permutation statistics across all 100 ms time 847 
bins within the 3,800 ms long window and all sensors between each of the temporal 848 
prediction tasks and the luminance matching task. 849 

ITPC on source level was computed using the same leadfields and common beamformer 850 
filters as for spectral power (see above). The complex time-frequency representations 851 
obtained from the wavelet convolution within the 3,800 ms long window on sensor level were 852 
multiplied with the filters to obtain the time-frequency representations in each of the 5,003 853 
voxels. ITPC was computed for each time sample and frequency and then averaged within the 854 
time window showing statistically significant difference between the temporal prediction 855 
tasks and the luminance matching task on sensor level and within the pre-defined frequency 856 
band of 0.5 to 3 Hz. Cluster-based permutation statistics were employed to identify clusters of 857 
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voxels showing statistically significant differences in ITPC between the conditions on source 858 
level. 859 

Correlations between condition-wise source level ITPC estimates and the steepness of 860 
each individual’s psychometric function were computed using Pearson correlations in each of 861 
the 5,003 voxels within the grid. For this analysis, we averaged ITPC estimates from time 862 
bins of 0 to 1,000 ms with respect to the disappearance of the stimulus within the pre-defined 863 
delta band of 0.5 to 3 Hz. Multiple comparisons were accounted for by using cluster-based 864 
permutation statistics as implemented in FieldTrip (α = .025 / 3 = .008)  865 

Delta power control analyses and mixed models 866 
For control analyses of delta power differences between the conditions, we computed 867 

delta power using the same wavelet convolution approach as described for ITPC for the 868 
enlarged time windows between -1,900 ms to 1,900 locked to stimulus disappearance. To 869 
obtain total delta power, we computed power in each single trial first and then averaged 870 
power within the delta band (0.5 – 3 Hz) and the respective channels showing the strongest 871 
ITPC effect (see Fig. 3D) for each time bin and condition. Induced power was obtained by 872 
first averaging all trials in each condition and channel in the time domain, i.e., by computing 873 
an ERF in each channel and condition, and then subtracting this average from all single trials 874 
in each channel and condition separately. After subtracting the ERF, power was estimated as 875 
described for total power above. Delta power of the ERF itself was estimated by applying a 876 
wavelet convolution to the ERF, i.e., the average across trials, in each condition and channel 877 
and subsequently averaging power estimates within the delta band and the respective 878 
channels. All time courses were baseline corrected with a pre-disappearance window of -879 
1,500 to -500 ms relative to disappearance in each condition.   880 

To further examine the effect of delta power on ITPC, we computed random intercept 881 
and random slope mixed-effects models using condition and time as well as their interaction 882 
as fixed effects for predicting ITPC. One model also included delta power as an additional 883 
covariate, the other one did not. We first averaged delta ITPC as well as delta power (0.5 – 3 884 
Hz) from each condition and each time bin (-1.900 ms – 1.900 ms) within the channels 885 
showing the strongest effect for ITPC (see Fig. 3D). ITPC as well as the baseline-corrected 886 
power values were standardized across all data for an easier interpretation of the model 887 
estimates. Subject ID was used as grouping variable to model an individual intercept for each 888 
participant, and time was modeled as random slope. To ensure a flexible relationship between 889 
time and ITPC, we modeled time using natural cubic splines with 10 degrees of freedom. For 890 
plotting, we computed ITPC values as predicted by the interaction between condition and 891 
time and back-transformed the values to the original scale for an easier evaluation. As for the 892 
reaction time model, we used R including the lme4 package for computing the mixed-effect 893 
model, the package parameters to compute p-values using the “Kenward” option, as well as 894 
the package splines for generating the natural cubic splines.  895 
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