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Abstract 

Reinforcement learning causes an action that yields a positive outcome more likely to be taken in 

the future. Here, we investigate how the time elapsed from an action affects subsequent decisions. 

Groups of C57BL6/J mice were housed in IntelliCages with access to water and chow ad libitum; they 

also had access to bottles with a reward: saccharin solution, alcohol or a mixture of the two. The 

probability of receiving a reward in two of the cage corners changed between 0.9 and 0.3 every 48 h 

over a period of ~33 days. As expected, in most animals, the odds of repeating a corner choice were 

increased if that choice was previously rewarded. Interestingly, the time elapsed from the previous 

choice also influenced the probability of repeating the choice, and this effect was independent of 

previous outcome. Behavioral data were fitted to a series of reinforcement learning models. Best fits 

were achieved when the reward prediction update was coupled with separate learning rates from 

positive and negative outcomes and additionally a “fictitious” update of the expected value of the 

nonselected choice. Additional inclusion of a time-dependent decay of the expected values 

improved the fit marginally in some cases. 
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Introduction 

Positive reinforcement increases the probability of repeating actions that were previously rewarded. 

When a choice between two alternatives is offered, the one with greater expected value is more 

likely to be taken. If the potential outcomes change due to shifts in the environment, sampling the 

available choices and balancing the exploitation and exploration of these choices become necessary. 

These behaviors are controlled by the brain’s reward system, which signals prediction error and 

performs updates of expectation from any action or cue contingencies (Schultz, 2015). The strategy 

employed by humans, e.g., (Holroyd & Coles, 2002; O’Doherty et al., 2003), and animals, e.g., 

(Fiorillo et al., 2003; Bayer & Glimcher, 2005), when faced with a choice between probabilistic 

rewards is consistent with reinforcement models that rely on temporal difference learning and may 

be predicted with algorithms developed in the machine learning field (Sutton et al., 2018). 

Reinforcement learning plays an essential role in adaptive behavior, and impaired decision making 

has been a major focus in research on the etiology of neuropsychiatric disorders (Maia & Frank, 

2011). 

 

Thus far, experimental models used in studies of reinforcement learning have been based on choices 

made in environments with minimized distractions, short time scales and large numbers of choices 

performed in quick succession (e.g., (Clark et al., 2004; Izquierdo et al., 2017)). The mechanisms 

controlling intervals between responses have received considerable attention, with a focus on the 

ability to select optimal times for maximizing rewards under paradigms where a specific delay in 

response after a cue was required for optimum result or with different cues signaling various lengths 

of delay to reward (Gibbon, 1977; Killeen & Fetterman, 1988; Fiorillo et al., 2008; Gershman et al., 

2014; Iigaya et al., 2018). Dopamine signaling in the striatum was attributed to an essential role in 

the control of the response delay, integrating reinforcement learning and timing of responses (Daw 

et al., 2006; Ludvig et al., 2008). It should be noted, however, that response timing is likely 

influenced by multiple pathways associated with the reward system, and recent reports show that 

serotonergic neurons may play a particularly significant role (Hinton & Meck, 1997; Matias et al., 

2017; Iigaya et al., 2018). While the mechanisms controlling interval timing affect behaviors on the 

scale from seconds to hours, due to methodological limitations, behavioral models are mostly 

focused on intervals shorter than a minute. As a consequence, memory decay or other processes 

occurring on longer scales are rarely considered (e.g., (Greggers & Menzel, 1993; Collins & Frank, 

2012; Collins et al., 2017)). The focus on short intervals and exclusion of any confounding influences 

limits variability, conforms with some of the underlying assumptions in reinforcement learning 

models (e.g., resembles a Markov process), and has the major advantage of allowing for correlation 
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of behavior with neuronal spiking activity. However, whether uninterrupted sequences of quick 

decisions are an adequate approximation of reinforcement learning under normal environmental 

conditions is arguable. 

 

Here, we assess reinforcement in a probabilistic choice reversal learning paradigm in which mice 

were not compelled to perform the task in any way, and choices were performed freely over a 

period of weeks. We tested two different types of primary rewards: saccharin and alcohol solutions, 

which differ mechanistically in the way they affect the reward system. We found that in a large 

number of cases, choices were significantly influenced by previous outcomes; however, the interval 

between choices played a comparable, if not greater, role. 

 

Methods 

Animals 

Experiments were performed on female C57BL/6J mice bred at the Maj Institute of Pharmacology of 

the Polish Academy of Sciences in Krakow. Mice were housed in a conventional facility in Plexiglas 

cages (Type II L, 2–5 animals per cage) with aspen laboratory bedding (MIDI LTE E-002, Abedd) and 

nest building material. Breeding rooms had a 12 h light/dark cycle, with an ambient temperature of 

22 ± 2°C and humidity of 40-60%. Animals were provided with a piece of aspen wood for chewing 

after weaning. Mice had ad libitum access to water and chow (RM1 A (P), Special Diets Services). All 

experiments were conducted in accordance with the European Union guidelines for the care and use 

of laboratory animals (2010/63/EU). Experimental protocols were reviewed and approved by the II 

Local Bioethics Committee in Krakow (permits 1000/2012 and 1159/2015). Behavior was tested on 

female mice to reduce the risk of aggressive behaviors. The experimental groups are summarized in 

Table 1. 

 

Probabilistic choice task 

The IntelliCage apparatus (New Behavior, Switzerland) has a base made of transparent plastic (55 x 

37.5 x 20.5 cm) with a metal cover and custom corner compartments. Each of the cage corners is a 

small chamber that houses two 250 ml bottles, with nozzles accessible through guillotine doors 

(Figure 1A). The size of the corner allows only one animal to enter the corner and access the bottles. 

Before being introduced to the IntelliCage, mice are implanted with radio frequency identification 

chips (RFID chips, UNO PICO ID, AnimaLab, Poland). An antenna inside the corner detects the chip 

and reports the animal number to the controlling software, which triggers preprogrammed events. 

The cage recorded the following parameters: temperature and luminosity in 1 minute intervals, 
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presence of an animal in a corner (combined reading from a thermal sensor and an RFID antenna), 

crossing of photocell beams placed in the doors leading to the bottles, and lickometer contacts (the 

animal closing a circuit between the floor grating and the metal dipper of the bottle). Experiments 

were performed on groups of 14 female mice per cage. The number of animals was based on our 

previous experiments (Smutek et al., 2014; Ruud et al., 2019). At the start of the test, mice were 

introduced to the IntelliCage, which had standard bedding and contained 4 plastic “houses” that the 

animals used as nests to sleep during the day. The environmental conditions during the experiment 

were the same as those in the breeding rooms, with food and water available ad libitum. Exact 

schedules for each experiment are shown in Figure 1B. At the start of the experiments, all corners 

had bottles filled with water. When a mouse entered a corner and the RFID chip was detected, both 

guillotine doors blocking access to the bottles would open with a 0.5-s delay. The doors were closed 

when the mouse left the corner or 10 s after a lick of a bottle was detected. The initial period lasted 

between 4 and 7 days, and the mice were monitored daily to check whether all of them had learned 

to drink from the bottles. Then, the adaptation stage started, and a reward (saccharin 0.1% (w/v), 

alcohol 4% (w/v), a mixture of the two or plain water) became available in two of the corners. We 

chose a low concentration of alcohol to ensure high preference and to limit the effects of inebriation 

on learning. Saccharin was selected over sacharose to exclude nongustatory effects and to avoid 

clogging of the dippers. The adaptation stage lasted ~3 weeks, and bottle positions were changed 

regularly to reduce the formation of corner preferences (see Figure 1B). Finally, during the main 

stage of the experiment, the probability of reward access varied between 90% and 30%, with a 2-s 

delay from an entrance to a corner to the opening of the guillotine doors. Additionally, yellow LED 

lights in the reward corners were switched on when the animal was detected and switched off if the 

animal left the corner or after 2 s (irrespective of whether reward access was granted). The LED 

lights were intended as an additional cue of a choice being in progress to reduce the effect of 

variability caused by the animal detection mechanism. The positions of the corners with reward 

bottles were constant, while the probabilities changed between all possible states—90%:30%, 

30%:90%, 90%:90% and 30%:30%—as shown in Figure 1. 

 

Models 

Logistic regression was used to assess the effects of the outcome and time elapsed from the 

previous choice on the odds of behavior in terms of repeating (“stay”) the previous decision. The 

following formula was used: 

 

 ��� ��������

����	
��
� �  �� 	 ��
������� ������� 	 �
�������� 	 ��
����� ����� (1) 
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where �� is the intercept (preference independent of predictors), �� represents the outcome of the 

previous choice (binary, equals 1 after win), � is the effect of the time interval elapsed from the 

previous choice (per minute of interval), and �� is the corner (binary). The Wald test was used to 

assess the significance of the predictors. Data corresponding to two animals were excluded due to 

extreme corner preference, with only 2/135 and 1/650 alternative choices, respectively. 

 

The following reinforcement-learning models were tested. First was the random choice model, 

which assumed that the chance of either choice was equal at each step. The second model was the 

“noisy win-stay-lose-shift” model described by Wilson and Collins (Wilson & Collins, 2019). Briefly, 

the model predicts “stay” after a rewarded attempt and “shift” when no reward is received, adding a 

probability of random choice defined by the parameter �, 

��,� �  � 1 � �


      
���� � 1 � ���� � ��   
���� � 1 � ���� ! ��
�


               
���� � 1 � ���� ! ��   
���� � 1 � ���� � ��"                 (2) 

 

where ��,� is the probability of selecting corner � at choice �, ���� is the previous choice, and ���� 

is the value of the reward after previous choice (1 or 0). Further models fitted were based on Q-

learning (Watkins & Dayan, 1992; Sutton et al., 2018), starting with the most “basic”: 

 

 #�,��� �  #�,� 	 $%�� � #�,�& (3) 

 

where #�,� represents the expected value of selecting corner � at step �, �� is the reward received 

at step � (1 or 0), and $ is the learning rate. The model was coupled with a softmax policy, 

 

 ��,� � ����,�

����,���
���,�

 (4) 

 

where ��,��� is the probability of choosing corner � at step �, and � is an “inverse temperature” 

parameter that determines the extent to which the difference between expected rewards affects 

choice. Probabilities were limited to a minimum of 0.001 and maximum of 0.999 to limit the effect of 

extreme values on the log likelihood sum. The first modification to the model was “dual” learning 

rates, which depended on the reward value: 

 

 #�,��� �  '#�,� 	 $�%�� � #�,�&  �(  �� � 1#�,� 	 $�%�� � #�,�&  �(  �� � 0" (5) 
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where $� and $�are separate learning rates for rewarded and nonrewarded choices. The next 

modification included an update for expected values for both the choice taken (#�,�) and the 

nonselected alternative ( #�,� ), partly based on the “fictitious” update described previously 

(Hampton et al., 2007): 

 

 

#�,��� � #�,� 	 $%�� � #�,�&
#�,��� � '#�,� 	 $%0 � #�,�&  �(  �� � 1#�,� 	 $%1 � #�,�&  �(  �� � 0" (6) 

 

  An extension of this approach is the “hybrid” model, which combines (5) and (6) (Cieślak et al., 

2018): 

 

 

#�,��� � '#�,� 	 $�%�� � #�,�&  �(  �� � 1#�,� 	 $�%�� � #�,�&  �(  �� � 0"
#�,��� � '#�,� 	 $�%0 � #�,�&  �(  �� � 1#�,� 	 $�%1 � #�,�&  �(  �� � 0"  (1) 

 

Nest we tested a group of models that include a parameter representing the effects of memory 

performance, starting with the “forgetful” model (Collins & Frank, 2012), where equation (3) was 

followed by: 

 

 
#�,��� � #�,� 	 � ��


� #�,��

#�,��� � #�,� 	 � ��


� #�,�� (2) 

 

where � (in the range from 0 to 2) represents the limited ability to recall the expected values. To 

introduce the effect of the interval between choices, we tested models incorporating time-

dependent exponential decay of the expected value (“Qd”) or the inverse temperature parameter in 

the policy (“�d”). The exponential decay component was based on observations on memory decay 

in humans (Murre & Dros, 2015) and previous theoretical considerations (Woźniak et al., 1995). The 

interval was defined as the time elapsed since the last choice (end of the corner visit to start of the 

current visit). The starting model introduced equal decay of expected values for both choices: 

 

 
#�,��� � ������ �#�,� 	 $%�� � #�,�&�#�,��� � ������#�,�

  (9) 
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where ���� is the time interval between choices � and � 	 1, and * is a parameter representing 

memory performance (“storage”). An*value of 0 would indicate no memory decay. Due to 

computational limits, the maximum interval length was set to 660 minutes. Two extensions of the 

model were considered. The first is a fictitious update (“Qd+fictitious”): 

 

 

#�,��� � ������ �#�,� 	 $%�� � #�,�&�
#�,��� � +������ �#�,� 	 $%0 � #�,�&�  �( �� � 1

������ �#�,� 	 $%1 � #�,�&�  �( �� � 0" (3) 

 

Second, separate learning rates depending on the previous outcome (“Qd+hybrid”): 

  

   

#�,��� � +������ �#�,� 	 $�%�� � #�,�&�  �( �� � 1
������ �#�,� 	 $�%�� � #�,�&�  �( �� � 0"

#�,��� � +������ �#�,� 	 $�%0 � #�,�&�  �( �� � 1
������ �#�,� 	 $�%1 � #�,�&�  �( �� � 0"    (4) 

 

As an alternative way to account for the effects of the time intervals, we considered a decay of the 

inverse temperature parameter in the policy (“�d”): 

 

���� � ������ · �  (12) 

   

where ���� is the interval from the previous choice and ���� replaces � in equation (4). The final 

model (“�d-ficitious”) combined equations (6) and (12).The optimal parameters for each model 

were selected based on the lowest sum of the negative logarithms of likelihood: 

 ��� �  ∑ �log 
��,���
	��  (13) 

 

where ��,� is the probability of the actual choice predicted by the model. Models with more than 

one parameter (all except noisy win-stay-lose-shift) were fitted using the Nelder and Mead simplex 

method (Nelder & Mead, 1965) implemented in the R optim function using all possible combinations 

of the following starting points: {0.05, 0.15, 0.35, 0.55, 0.75, 0.95} in the cases of $ and *, {0.05, 

0.35, 0.75, 1, 1.25, 1.35, 2} in the case of �, and {0.25, 1.25, 2.25, 3.25, 4.25} in the case of �. 

Parameter values were limited to the ranges of (0, 1) for $ and *, (0, 2) for � and (0, 50) in the case 
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of �. In the noisy win-stay-lose-shift model, the optimal parameter value was assessed by calculating 

nll for � in the range of 0.001 to 1.999 in 0.001 steps. Model fits were compared using Akaike’s 

information criterion (Akaike, 1974): 

 

 123 � 2 · ��� 	 2 · 5 (5) 

 

where 5 is the number of free parameters in the model. ∆123 values were calculated by subtracting 

the AIC value corresponding to the “basic” model from the results obtained for each of the other 

models.  

 

Data analysis and statistics 

All analyses were performed using R (R Core Team, 2017), and the scripts used to analyze the data 

are available at https://github.com/jmjablons/model-inteli-research2019. Statistical significance was 

assessed using the Kruskal-Wallis test followed a posteriori by the Dunn test adjusted for multiple 

comparisons using the Benjamini-Hochberg correction. One-sample and paired-sample comparisons 

were performed with the Wilcoxon test. The significance (α) level was set at 5%. The complete set of 

behavioral data is available at https://figshare.com/s/4d39377b1ce5cc3c24c2. 

 

Results 

An unconstrained probabilistic choice task 

We tested the behavior of group-housed female mice that could freely select between two 

probabilistic reward alternatives over an extended period of time (Figure 1). Three types of rewards 

were offered in separate experiments: a saccharin solution (0.1% w/v), alcohol (4% w/v), and a 

mixture of the two (alcohol+saccharin). As a control, in a separate experiment, the reward was 

replaced with plain tap water. All experiments were split into two stages. The first was adaptation, 

during which the positions of the rewards were switched to reduce potential biases towards cage 

corners and to allow for the development of an alcohol preference. During the second, main stage, 

the positions of the reward bottles were fixed, but the probabilities of opening access to the bottles 

changed. Additionally, irrespective of stage, the animals also had access to water bottles in the two 

remaining corners of the cage (empty squares in Figure 1B). As shown in Figure 2, the activity of 

animals, i.e., the total number of visits to the corners during each 48-h period, was similar for all 

types of rewards and remained stable throughout the main stage of testing. The total time the two 

reward corners were occupied (i.e., the cage detected the presence of a mouse) was generally 

shorter than 4 h per 48-h period (Supplement Figure 1). The only exception was in one of the 
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“alcohol” cohorts, where mice were detected for extended periods of time in the reward corners 

over three 48-h periods. Based on these results, we assume that competition for corner access had 

no appreciable effect on choices, which is consistent with the results we have reported previously 

(Smutek et al., 2014). 

 

The majority of animals showed preference for the reward, calculated as the number of licks on the 

dippers of the bottles containing rewards, divided by the total number of licks on all bottles during 

the final 96 h of the adaptation stage (Figure 3A). The median preferences were 79.4% for saccharin, 

80.3% for the saccharin-alcohol mixture, and 65.0% for alcohol (all three significantly higher than 

50%, Figure 3A). Not all the animals showed preference; there were 3 and 7 mice in the saccharin 

and alcohol groups, respectively, that were recorded to have less than 50% of all licks on reward 

bottles. No significant preference was observed in the water control group, where the median was 

42.2%. Saccharin-containing solutions were significantly more preferred than both water or alcohol, 

and alcohol was significantly more preferred than water (Figure 3A; Kruskal-Wallis test H = 31.94 p = 

5.39 × 10-7). Despite the preferences of rewards over water, the median fractions of all visits in the 

reward corners during the stage with probability reversals remained approximately 0.5 (Supplement 

Figure 2). These data show that animals explored and sampled bottles in all corners over the course 

of the entire experiment. 

 

Further analyses were performed only on visits in the reward corners that lasted sufficiently long for 

the outcome to occur (>2 s) - designated “choices”. There was considerable individual variation in 

the numbers of choices performed; the minimum was 137 (an animal in the alcohol group), and the 

maximum was 2932 (a mouse in the alcohol+saccharin group). The median number of choices was 

significantly higher in the alcohol+saccharin group than in the alcohol group (Figure 3B, Kruskal-

Wallis test, H = 11.413, p = 9.692 × 10-3). During the probability reversal stage of the experiment, the 

median preference for the alternative with a higher reward probability was 56.6% for saccharin and 

58.3% for the alcohol+saccharin mixture, compared to 50.5% and 51.7% for alcohol and water, 

respectively (Figure 3C). In all these cases, except the alcohol-treated group, the median preference 

was significantly higher than random. Moreover, the preference of larger reward probability was 

higher in the case of saccharin-containing solutions compared to both alcohol or water (Kruskal-

Wallis, H = 35.121, p = 1.149 × 10-7). The small but significantly greater than random preference for 

water may suggest that the opening of the guillotine doors became a conditioned reinforcer. 

 

Factors affecting choice 
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First, we assessed the frequency with which the animals repeated a previously rewarded choice 

(“win-stay”) or shifted to the alternative when no reward was obtained (“lose-shift”). As shown in 

Figure 4, the frequency of “win-stay” depended on the interval between attempts and was 

significantly larger at intervals between choices longer than 10 minutes compared to shorter than 2 

minutes. This was the case for alcohol (Figure 4A), alcohol+saccharin (Figure 4B) and saccharin 

(Figure 4C) but not when water was offered instead (Figure 4D). The same was observed in the cases 

of choices after a “lose”, at longer intervals, the probability of “shift” was decreased in the cases of 

all rewards (Figure 4A-C), but not in the water control, where in fact an opposite effect was present 

(higher probability of “shift” at longer intervals, Figure 4D). 

 

To further assess the effect of interval and previous reward on choice, we used logistic regression 

with three predictors: corner bias, outcome of the previous attempt (“win” or “lose”), and time 

interval from the previous attempt. Examples of the regression curves are presented in Figure 5. The 

first example (Figure 5A) corresponds to a mouse from the saccharin group. The “stay” behavior was 

more frequent at longer intervals, whereas “shifts” were more frequent for shorter intervals. This 

effect is apparent in the distribution of the time intervals. Conversely, in the example drawn from 

the water control group, no effects of interval or previous outcome are apparent (Figure 5B). 

Accordingly, the logistic regression shows that the probability of a “stay” decision increased with the 

length of the interval, and the effect of previous outcome is noticeable as a shift of the curve (“win” 

vs. “lose). A complete summary of logistic regression analyses for all mice is shown in Figure 6A-D. In 

the majority of cases (63/81), the models indicate a significant inherent propensity towards “stay” or 

“shift” responses independent of the predictors considered (the regression intercept, Figure 6A). 

Animals often had significant corner bias (68/81), with varied individual corner preferences (Figure 

6D). As anticipated, in most cases, the model also indicated a significant effect of the previous 

outcome: 45/81, or 44/67 excluding the water control group and the interval length: 45/81 and 

36/67, respectively (Figure 6B, C). When only significant predictors were considered, the median 

values of the odds ratios were similar, and no significant effects of reward type were observed. In 

summary, more than half of the mice that were offered alcohol or saccharin solutions were 

significantly more likely to “stay” after a “win” and were also more likely to choose “stay” when 

more time had elapsed from the previous choice. It should be noted, however, that the significant 

effect of the intercept may indicate that the model has limited accuracy. 

 

Learning models 
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The preference for the choice associated with a higher reward probability and significant effect of 

previous outcome on choice imply reinforcement learning. Thus, we fitted various learning models 

to determine which model assumptions yielded the closest match to the observed behavior. First, 

we considered a model that selects “stay” after “win” and “shift” after “lose”, with an additional 

chance that the choice is random instead (“noisy win-stay”, (Wilson & Collins, 2019)). Second, we 

tested a group of models based on the assumption that the expected value of a choice is updated 

based on the observed prediction error (Rescorla & Wagner, 1972; Watkins & Dayan, 1992; Sutton et 

al., 2018). The simplest, “basic”, model assumes a single learning rate and updates the expected 

value. The “dual” model had separate learning rates for negative and positive values of the 

prediction error. The “fictitious” model updates the value of both options simultaneously (Hampton 

et al., 2007), and “hybrid” added two learning rates to the fictive update (Cieślak et al., 2018). Then, 

we considered models introducing the effects of memory performance and the length of the interval 

between choices. The “forgetful” model introduces a component related to reverting to a base state 

of expected values (controlled by the � parameter). The decay models adjust the expected reward 

(“Qd”) or the inverse temperature parameter (“�d”) depending on the length of the interval. In both 

cases, we have also considered the effect of a fictitious update (“+fictitious” or “+hybrid”). In 

addition to the types of models listed, a “random” choice rule with every choice probability equal to 

0.5 was added as a negative control. 

 

Models were fitted by finding the lowest sum of the negative log likelihoods (nll). We used Akaike’s 

information criterion (AIC) to assess the goodness of fit. A summary of AIC score differences (∆123) 

is shown in Figure 7, the results for best models are summarized in Table 2, and all individual values 

are provided in Supplementary Table 1. Overall, the models approximated the observed behavior 

better than a purely random choice approach for all rewards except the water control. Moreover, 

there were larger differences in the goodness of fit for rewards that produced stronger preference 

(i.e., saccharin and alcohol+saccharin). The best scoring models, “hybrid” and “Qd+hybrid”, shared 

two features: separate learning rates for positive and negative outcomes and a fictitious update of 

the expected value of the nonselected alternative. Modeled positive and negative learning rates 

differed (for all rewards except water), with median $� values close to 0, while median $�values 

were in the range of 0.017 to 0.05 (Table 2). Optimal values of � in the hybrid models ranged from 

0.81 to 2.73. Median AIC differences between the two top scoring models were approximately 2 or 

lower, which suggests similar goodness of fit. This is not unexpected since the “Qd+hybrid” model is 

equivalent to “hybrid” when * = 0. Accordingly, the median optimal values of * were very low and 

corresponded to an ~1% loss of the expected value per hour in the alcohol or saccharin groups 
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(Table 2). We note that in the cases where the “Qd+hybrid” hybrid model had the best goodness of 

fit, the values tended to be above the median. 

 

 

Discussion 

We show reinforcement learning in mice under conditions where there is no enforced schedule and 

the actions being reinforced are not being compelled by food or drink deprivation. The animals 

remained in a group and could behave freely in the cage environment throughout the entire 

procedure. The only cost of a choice was a short wait period (2 s) before the outcome was 

presented, and the costs of missed opportunities were theoretically negligible. There was no trial 

and session structure and no maximum number of potential rewards. In approximately half of the 

animals tested, when a choice was rewarded, the probability of repeating it was significantly 

increased as assessed using a logistic regression model. The observed effect of previous outcomes is 

weaker than that reported in studies employing classical models (e.g., (Frank et al., 2004; Kwak et 

al., 2014; Cieślak et al., 2018)). No mouse exceeded 75% in their preference for the corner with 

higher reward probability, and median preference values were lower than 60%. Intuitively, the 

simplest explanation for the low preference for the higher reward probability would be lack of 

missed opportunity cost and hence limited advantage of performing optimal choices. The correlation 

between the number of choices and the preference for the higher probability of reward was -0.3, -

0.72, 0.045 and -0.35 for alcohol, alcohol+saccharin, saccharin and water, respectively (Pearson’s r). 

While the value in the case of alcohol+saccharin is significant, this appears to be an exception, and 

we do not think that this gives evidence that animals compensated for a smaller fraction of 

rewarded choices by increasing the number of attempts. Furthermore, while both median 

preferences of the higher reward probability and the analysis of individual behavior confirm 

reinforcement learning in a large fraction of the mice tested, nevertheless, it should be noted that 

animals did not strictly try to maximize the number of rewards obtained. Mice generally made fewer 

than 100 choices per 48 h, compared to 120 or more trials completed within 30 minutes in some 

Skinner box experiments (e.g., (Cieślak et al., 2018)). The limited number of choices is not 

unexpected considering that in this case, consuming rewards does not satisfy essential needs; 

however, it poses a problem with regard to defining what constitutes an optimal behavioral strategy 

in the test. 

 

A major novel observation is the relation between the type of choice made correlated with the 

interval between decisions. As could be intuitively expected, when a choice was not rewarded, the 
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delay to try again was usually shorter. At the same time, the length of the interval correlated with an 

increased probability of repeating the same choice, irrespective of the previous outcome. These 

effects were only observed when a reward was offered, particularly in the case of saccharin-

containing solutions and were generally absent in the water control group. It should be stressed that 

the interval between choices discussed here is not comparable to the interval timing learned when 

rewards are delivered after a specific delay or different cues predict the length of delay to reward 

delivery (e.g., (Gershman et al., 2014)). Here, the length of the interval had no effect on the size or 

probability of a reward. Therefore, we assume that the length of the intervals is determined 

primarily by motivational processes, which would differ for choices performed at short (1-2 minutes) 

vs. longer (15-20 minutes) intervals. At shorter intervals, the pattern is somewhat similar to 

spontaneous alternation, which is often observed during exploration of multiarmed mazes (e.g., 

(Lalonde, 2002)). Conversely, the process that drives choices after longer intervals is intriguing. It 

does not appear to be optimal, as it promotes choosing “stay” after a nonrewarded choice. 

Potentially, repeating the choice could serve the purpose of reconsolidating a learned value, though 

again, the advantage this may offer is unclear. Notably, our finding is limited to female C57BL/6J 

mice, and whether the effect may be generalized to other species remains unknown. An effect of sex 

on operant learning in rodents was reported, although it was mostly observed in the context of 

responses conditioned with aversive stimuli (Dalla & Shors, 2009). In humans, there is ample 

evidence that women are more risk averse than men (Byrnes et al., 1999); however, gender had no 

significant effects on the win-stay or lose-shift ratios in a probabilistic reversal learning task 

(den Ouden et al., 2013). Assuming that generalization is possible, the findings presented here could, 

to an extent, explain some of the “irrational” behaviors, i.e., frequent choices of an inferior, lower 

value alternative. 

 

A preference of higher reward probability implies reinforcement learning; thus, we tested fitting 

learning models to observed choices. We note, however, that there are important issues to consider 

with regard to the applicability of reinforcement learning models in this case. First, while the choices 

in the task have the Markov property, nevertheless, as noted above, the animals did not try to 

accumulate the maximum number of rewards possible. Moreover, we did not exclude animals from 

the analysis based on their preference of the higher reward probability or significant effects of 

previous outcome on choice; thus, in some cases, models were applied to behavior where we have 

no evidence of reinforcement (e.g., most of the water control group). Despite these limitations, the 

models approximated behavior better than random choice. The best goodness of fit was achieved 

when separate learning rates for positive and negative outcomes were applied, and additionally, a 
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fictitious update of the nonselected alternative was also included. The latter is consistent with our 

previous results in a Skinner box-based model (Cieślak et al., 2018); however, we consider it 

surprising. In the classic report that provided insight into mechanisms responsible for the regret or 

disappointment over a lost opportunity, information of the outcome for the nonselected choice was 

provided in a fraction of trials (Coricelli et al., 2005). Thus, the subject could at least partly assess the 

difference in outcome values between the actions. The fictitious model developed by (Hampton et 

al., 2007) assumes that the reward value used applied in the update of the nonselected choice is the 

opposite of the one obtained, which is similar, but not fully equivalent, to the effect of regret. Here, 

the cost of lost opportunity is minimal; therefore, an effect of regret does not appear rational. 

Furthermore, a fictive update implies a more model-based approach to the decision process, which 

is similar to the conclusion drawn in a study where the optimal strategy involved updating the value 

of the nonselected option (Huh et al., 2009). We also wanted to point out two observations with 

regard to optimal parameters of the best models. First are the very low learning rates ($� and $�). 

The median values could be interpreted as no learning from negative outcomes and a very small 

update after rewarded choices. A larger positive learning rate is consistent with previously reported 

results (e.g., (Rutledge et al., 2009; Cieślak et al., 2018)), and the very low values could be 

speculatively attributed to the negligible cost of choosing the corner with a lower probability of 

reward. Second, the marginal gain in goodness of models incorporated a time-dependent decay of 

expected value or the inverse temperature despite the clear correlation between the time interval 

and the probability of repeating the same choice. Intuitively, this is not surprising, considering that 

these models fail to predict previous outcome-independent preference for shift choices at short 

intervals or greater than 0.5 probability of stay choices at very long intervals. The modeled decay 

constant (*) would imply only a minor effect of memory performance, though it should be noted 

that in the cases where Qd+hybrid had the best goodness, corresponding * values were often above 

median. Nevertheless, based on the results, we would argue that introducing the decay effect does 

not offer a plausible explanation for the correlation between interval lengths and the probability of 

“stay” choices. 

 

A second objective of our study was to assess differences in the actions of saccharin and alcohol as 

reinforcers. The mechanisms by which alcohol and saccharin affect the reward system are inherently 

different. The effects should be instantaneous and transient in the case of saccharin (signaling from 

the gustatory system to the midbrain dopamine neurons (Simon et al., 2006)) but are delayed by 

minutes and could be persistent in the case of alcohol (through activation of dopamine release and 

other mechanisms (Weiss et al., 1993; Vengeliene et al., 2008)). Nonetheless, drug and natural 
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rewards reportedly produce their long-term effects by acting on the same neuronal circuits (Kelley & 

Berridge, 2002; Pfarr et al., 2018). We should stress that the experiment we report was not intended 

to model compulsive alcohol drinking, which persists despite increasing cost, reduced value or a risk 

of negative consequences (Vengeliene et al., 2009; Hopf & Lesscher, 2014). Additionally, the 

concentration of alcohol used was low (4% w/v), and thus blood ethanol levels would be unlikely to 

match the values achieved in previously described models (Rhodes et al., 2005; Rodriguez Parkitna 

et al., 2013). Analysis of the data shows no evidence of impaired learning due to the effects of 

alcohol on memory performance; the behavior of mice in the saccharin and alcohol+saccharin 

groups was similar. In both cases, the rewards were highly preferred over water, and there was 

evidence of reinforcement learning in the majority of animals in those groups. Conversely, while 

alcohol was preferred over water after the 3-week adaptation stage, only some mice showed 

significant evidence of reinforcement learning. A possibility that should be considered is that the 

reward value of the alcohol solution was lower, which could be in line with the reported general 

preference of sweet taste over drugs in rodents (Ahmed, 2018). A lower reward value compared to 

saccharin could limit learning based on prediction error, while possibly remaining sufficient to 

produce a preference over water. Therefore, the only apparent difference in the effects of alcohol 

and saccharin is that at the concentrations tested, the former was a weaker reinforcer. We cannot 

exclude the possibility that in a larger tested cohort or when higher alcohol concentrations are 

offered, a subset of animals would show altered reinforcement learning (as could be hypothesized 

based on, for instance, (Augier et al., 2018)). 

 

In conclusion, the most striking observation emerging from our results is that the effect of time 

elapsed from an action may affect the probability of repeating it, independent of outcome. Modeling 

suggests that this effect is not easily explained by memory decay, and it is unclear if it offers an 

adaptive advantage. We speculate that our observations suggest separate motivation processes 

driving decisions at short vs. longer intervals; however, further investigation is necessary to verify 

this hypothesis. 
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Figure Legends 

 

Figure 1. Schematic representation of the IntelliCage and experimental schedules. (A) The diagrams 

show the basic features of the cage and the guillotine doors through which bottles are accessed. The 

diagram on the bottom shows an example of the key used to label reward probabilities. (B) For each 

of the groups indicated on the left, the phases are represented with white, grey or black boxes. Black 

boxes with white lines indicate corners with full reward access (100%), dark grey boxes indicate the 

high probability of reward access (90%), light grey boxes indicate the low probability (30%) and 

white indicates access to water. The duration of each phase in hours is presented below the 

corresponding boxes. 

 

Figure 2. Animal activity in the IntelliCages. The graphs show the median total number of visits in all 

corners of the cage per 48 h. Circles correspond to activity during the adaptation, and black points 

correspond to probability reversals. The ribbon shows 1st and 3rd quartiles. Each graph summarizes 

the results from one group of animals (Table 1). The type of reward used in the experiment is 

indicated above. 

 

Figure 3. Basic summary of choices. (A) Reward preference during the last 96 h before the start of 

the reversals stage. (B) Number of attempts (visits longer than 2 s in corners with the reward) at the 

reversals stage. (C) Fraction of attempts corresponding to higher reward probability. The type of 

reward is indicated below the graphs. Each dot represents a single animal. Boxplots show medians, 

1st and 3rd quartiles. Significant differences between the medians are indicated with stars (* 

indicates p < 0.05, Dunn’s post hoc test with Benjamini-Hochberg correction). 

 

Figure 4. Fractions of “win-stay” and “lose-shift” reactions divided by length of interval between 

attempts (shorter than 2 minutes and longer than 10 minutes). Each dot represents a single animal. 

Significant differences between the medians are indicated with stars (* indicates p< 0.05, Wilcoxon 

test for paired samples). 
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Figure 5. Examples of behavior of a single animal from the saccharin (A) and water (B) groups, 

respectively. The line is the fitted logistic regression of the probability of “stay” depending on the 

previous outcome and interval. The dots above and below the curve show raw results used for the 

regression (probability equal to 1 denotes “stay”, 0 is “shift”). 

 

Figure 6. Effects of previous outcome and time interval on choice. Graphs show the change in the log 

odds of “stay” for each of the predictors: (A) the intercept independent of predictors, (B) after a 

rewarded choice (“win”), (C) as a function of the interval, and (D) due to inherent corner bias, 

respectively. Each dot represents a single animal, and only significant results are shown (Wald test P 

< 0.05). Boxplots show medians, 1st and 3rd quartiles. The type of reward and the number of cases 

where the predictor was significant are indicated below the graphs. 

 

Figure 7. Comparison of reinforcement learning model fits based on ∆123 values. Panels correspond 

to (A) alcohol, (B) saccharin, (C) alcohol+saccharin and (D) water. Each point represents an individual 

mouse, the boxplots show medians, 1st and 3rd quartiles. The numbers in parentheses shown below 

plots indicate how many times the lowest AIC score was achieved for that model, for the best three 

models. 

 

Supplementary Figure 1. Total number of hours when the cage corners were taken by animals per 

48h period. White dots represent the corner with lower internal number (“A”), and grey dots the 

other (“B”). Each graph summarizes the results from one group of animals tested in one cage. The 

type of reward offered is indicated above the graphs. Roman numerals in parentheses indicate the 

animal cohort. 

 

Supplementary Figure 2. Fraction of the total number of visits corresponding to corners with 

probabilistic access to the reward per 48h period. White and grey circles correspond to activity 

during the adaptation and probability reversal stages, respectively. The gray ribbon shows 1st and 

3rd quartiles. The type of reward offered is indicated above the graphs. Roman numerals in 

parentheses indicate the animal cohort. 
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Table 1. Experimental groups. 

Cohort n Reward 
Starting 

age 

Mean initial weight ± SEM 

[g] 

I 14 Alcohol 4% (w/v) 8 weeks 18.79 ± 1.64 

I 14 Saccharin 0.1% (w/v) 8 weeks 18.62 ± 1.79 

II 14 Alcohol 4% (w/v) 8 weeks 19.04 ± 2.36 

II 14* Alcohol+Saccharin 8 weeks 19.59 ± 1.95 

III 14 Saccharin 0.1% (w/v) 8 weeks 19.49 ± 2.25 

IV 14 Water (control) 8 weeks 17.96 ± 0.19 

 

*One animal lost its transponder and was excluded. 
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Table 2. Summary of optimized models’ parameters. 

 

 alcohol saccharin alcohol+saccharin water 

basic     

� 
0.00601* 

(0.00426-0.0112) 

0.00912  

(0.00634-0.0139) 

0.11 

(0.0331-0.173) 

0.00179 

(0.00016-0.0731) 

� 
6.2 

(3.32-7.52) 

3.85 

(3.22-4.97) 

0.956 

(0.682-3.33) 

5.05 

(0.312-50) 

hybrid     

�
�

 
0.024 

(0.0113-0.0676) 

0.035 

(0.024-0.0513) 

0.0877 

(0.0298-0.104) 

0.00193 

(0.0001-0.0396) 

�� 
4.14×10

-9

 

(4.1×10
-10

-3.4×10
-4

) 

4.71×10
-9

  

(1.46×10
-9

-1.21×10
-8

) 

2.65×10
-8

 

 (3.27×10
-10

-0.0026) 

4.61×10
-5

  

(1.14×10
-8

-0.623) 

� 
2.54 

(1.62-3.1) 

1.64 

(1.31-1.8) 

0.899 

(0.795-1.25) 

1.22 

(0.215-36.6) 

Qd hybrid     

�� 
0.017 

(1.03×10
-6

-0.031) 

0.0303 

(0.0179-0.0427) 

0.0499 

(0.0156-0.0971) 

0.00392 

(1.10×10
-7

-0.017) 

�� 
3.61×10

-5
 

(2.43×10
-8

-0.94) 

3.02×10
-8

 

(9.07×10
-9

-0.00348) 

3.39×10
-8

 

(1.14×10
-8

-8.86×10
-6

) 

8.40×10
-5

 

(1.69×10
-8

-1) 

� 
2.73 

(1.07-3.52) 

1.89 

(1.54-2.35) 

1.62 

(1.01-1.92) 

0.813 

(0.447-13.9) 

� 
9.16×10

-5

 

(1.97×10
-5

-0.116) 

7.82×10
-5

 

(1.56×10
-7

-0.000512) 

0.000783 

(0.00052-0.0511) 

0.0332 

(0.00715-0.534) 

 

*Median value; numbers in parentheses below the median represent 5%-95% confidence intervals 

calculated using bootstrapping. 
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