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Abstract 

Multi-person neuroscience studies have demonstrated that synchrony across participants’ brains 

(‘brain-to-brain synchrony’) can predict a range of cognitive and social phenomena. However, it 

is unclear whether brain-to-brain synchrony can predict individual outcomes, specifically long-

term memory retention, better than intra-brain measures. Here we recorded EEG in a laboratory 

classroom from groups of four students and a teacher during a science lesson. We show that 

alpha-band (8-12Hz) brain-to-brain synchrony, but not alpha power or intra-brain alpha 

synchrony, significantly predict students’ performance in both an immediate and a delayed post-

test. Remarkably, moment-to-moment variation in alpha-band brain-to-brain synchrony during 

the lesson were found to indicate what specific information was retained by the students a week 

later. Whereas student-to-student brain synchrony was instantaneous, student-to-teacher brain 

synchrony best predicted learning when adjusting for a ~200 millisecond lag in the students’ 

brain activity relative to the teacher’s brain activity, suggesting a sequential, lagged transfer of 

information from teachers to students. These findings provide key new evidence for the 

importance of brain data collected simultaneously from groups of individuals using ecologically-

valid materials and substantially extend the brain-as-predictor approach by demonstrating that 

the predictive value of two brains can exceed that of individual brains.  

 

Significance Statement 

The brain mechanisms that underlie how people learn while interacting with one another are not 

well understood. Here, we concurrently measured EEG activity from groups of four students and 

a teacher during a science lesson. Our findings revealed that both student-to-student and student-

to-teacher brain synchrony can predict how much information students retained after one week. 
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Furthermore, brain-to-brain synchrony predicted retention above and beyond measures derived 

from individual brains. These results provide critical evidence for the importance of brain data 

collected simultaneously from groups of individuals using ecologically-valid materials. 

 

Introduction 

We know little about the human brain mechanisms that underpin learning while we 

interact with others in ecologically-valid environments (1). The reason is that typical cognitive 

neuroscience methods limit the research on the human brain to studies in which one participant 

at a time conducts a task in a highly constrained environment (e.g., inside a brain scanner). In the 

past few years, researchers have begun comparing brain responses across individuals (2-4). In 

pioneering research, Hasson and colleagues (5) used functional Magnetic Resonance Imaging 

(fMRI) to demonstrate that the brains of viewers who watch the same movie show similar 

activation patterns over time. Since then, a growing number of studies have demonstrated - using 

different methodologies (fMRI, electroencephalography (EEG), and functional near-infrared 

spectroscopy (fNIRS)) - that synchrony in brain activity across individuals (i.e. brain-to-brain 

synchrony) can predict a range of cognitive and social outcomes, including the degree of 

engagement in a task (6-9), memory retention (7, 10, 11), communication quality (12, 13), pain 

reduction (14), social closeness (6, 8, 15), and audience preferences (16).  

The growing body of research on second-person and group neuroscience (1) raises many 

new questions. For example, it is unclear whether brain-to-brain synchrony can predict real-

world outcomes better than measures derived from individual brains. Previous research suggests 

that brain-to-brain synchrony might provide unique information compared to individual brain 

measures. For example, using fMRI, Simony et al. (17) reported that inter-subject functional 
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correlations (where inter-region correlations are computed across brains) have much higher 

sensitivity to the structure of a real-life story compared to traditional functional connectivity 

analysis (where inter-region correlations are calculated within individual brains), potentially 

because inter-subject functional correlations filter out intrinsic neural dynamics and non-neural 

artifacts that are consistent within a brain but not across brains (17). In another study, using 

fNIRS, inter-brain but not intra-brain synchronization was shown to predict behavioral 

performance in a cooperative task (18). However, the restricted spatial coverage and low 

temporal resolution of fNIRS limit the generalizability of these findings. Here we used EEG to 

simultaneously record brain activity from groups of four students and a teacher to investigate 

whether brain-to-brain synchrony, both between students and between the students and the 

teacher, can predict learning outcomes (Fig. 1A). Students’ content knowledge was assessed a 

week before the EEG session, immediately following each one of four mini-lectures, and one 

week later (Fig. 1B).  

Recent EEG research in classrooms found that brain-to-brain synchrony was associated 

with student engagement (6, 8, 19), but not with learning outcomes (6). This is surprising 

because brain-to-brain synchrony is hypothesized to be driven, at least partially, by shared 

attention (8), and shared attention has been shown to affect subsequent memory (20). Indeed, a 

recent laboratory study demonstrated that brain synchrony across participants who individually 

watched educational videos was associated with memory retention immediately after the videos 

were presented (7). The discrepancy between laboratory- and classroom-based studies might be 

due to the small sample size and lower quality EEG equipment used in the latter. While it is 

possible that moment-to-moment variations in brain synchrony might be a more sensitive 

measure to reveal what information will be remembered or forgotten (10, 17), previous studies 
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have only assessed the overall brain synchrony measured across the entire duration of a lecture 

or a video (6, 7). Furthermore, whereas previous studies have only assessed immediate memory 

retention (6, 7), the more relevant outcome for education systems is long-term retention of 

knowledge (21). 

The current study addressed the following questions: First, do student-to-student and 

student-to-teacher brain synchrony predict delayed memory retention? Second, does synchrony 

across brains predict delayed retention more accurately than measures within individual brains? 

Third, do moment-to-moment variations in brain synchrony indicate what information will be 

successfully retained or forgotten? We focused on the neurophysiological alpha frequency band 

(8-12 Hz) because it is well characterized as an index of attention (22-26) and has been shown to 

be the most robust frequency range for brain-to-brain synchrony (27).  

 

Results 

Behavioral results. Students’ content knowledge significantly increased from the pre-

test (0.43±0.02; mean ± standard deviation of the mean) to the immediate post-test (0.73±0.02; 

F(1,30)=210.76; p<10-13), and from the pre-test to the delayed post-test (0.64±0.02; 

F(1,30)=93.48; p<10-10; Fig. 2A). The retention of content knowledge significantly declined over 

the course of the week between the immediate and delayed post-tests (F(1,30)=46.00; p<10-6). 

Both immediate retention (the difference between the pre- and immediate post-test scores) and 

delayed retention (the difference between the pre- and delayed post-test scores) were considered 

as outcome variables in subsequent analyses.  

Student-to-student brain synchrony, individual brain measures, and memory 

retention. For each student dyad in a given group, Circular Correlation values (CCorr; (28)) 
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were computed for all combinations of EEG electrodes (32*32 electrodes) and then averaged 

across dyads (8) (Fig. 2B). Similarly, CCorr values were computed between each EEG electrode 

and all the other electrodes within individual students as a measure of intra-brain synchrony. 

Statistical significance was assessed by comparing CCorr values to surrogate datasets generated 

by shuffling the lectures (29) (Fig. S1). CCorr values were then averaged across all statistically 

significant electrode pairs (see Materials and Methods).  

We first assessed whether student-to-student brain synchrony as well as intra-brain 

synchrony can predict memory retention. Since students were nested within groups, we 

constructed a multilevel model wherein both brain-to-brain synchrony and intra-brain synchrony 

were considered level 1 predictors (see Materials and Methods). This analysis revealed that 

memory retention was significantly predicted by alpha-band brain-to-brain synchrony 

(immediate retention: F(1,13.79)=5.57; p=0.034; delayed retention: F(1,13.03)=6.66; p=0.023), 

but not by alpha-band intra-brain synchrony (immediate: F(1,26.24)=.26; p=0.613; delayed: 

F(1,25.55)=.31; p=0.582) (Fig. 3A-B and Fig. S2). As expected, due to volume conductance 

(30), the number of significant electrode pairs was much higher in the intra-brain analysis (all 

992 pairs) than the brain-to-brain analysis (only 11 pairs; Table S1). To account for this 

difference, we computed the correlation between intra-brain synchrony and memory retention 

across 10,000 randomly sampled subsets of 11 electrode pairs. As can be seen in Fig. 3C and 

Fig. S2C, the correlation between brain-to-brain synchrony and memory retention was well 

outside the distribution of correlation values between intra-brain synchrony and retention. As the 

results for immediate and delayed retention were comparable, we focused on delayed retention in 

all subsequent analyses.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644047doi: bioRxiv preprint 

https://doi.org/10.1101/644047


 7

Since the power of alpha oscillations has been associated across many studies with task-

related processing (22-26), we next examined the relationship between overall alpha power and 

delayed retention. In contrast to alpha-band student-to-student brain synchrony, overall alpha 

power did not significantly predict delayed retention (F(1,27.72)=.17; p=0.681; Fig. 3D). To 

equate the number of electrodes and the way they were selected, we repeated this analysis while 

assessing brain synchrony only between matched electrodes (e.g. O1 with O1; (8)). In this 

analysis, for both brain-to-brain synchrony and alpha power all 32 electrodes were examined 

without any a priori electrode selection. The results of this analysis were almost identical to the 

previous analysis (brain-to-brain synchrony: F(1,13.88)=6.56; p=0.023; alpha power: 

F(1,27.94)=0.39; p=0.537). Out of three frequency bands that were examined (theta, alpha and 

beta), only alpha-band brain-to-brain synchrony significantly predicted delayed retention (Fig. 

S3). Further, alpha-band brain synchrony, but not alpha power, significantly predicted delayed 

retention at the individual electrode level. Three of 32 electrode pairs (C3-C3, C4-C4 and FC1-

FC1) significantly predicted delayed retention (p<0.05; false-discovery-rate (FDR) corrected; 

Fig. 3E), whereas, for alpha power, no individual electrode reached significance (Fig. 3F). 

         Moment-to-moment variations in brain synchrony predict delayed retention. 

Typically, brain-to-brain synchrony is computed over an extended period of time (e.g. the entire 

duration of a lecture or a video; (6-8)). In order to examine whether moment-to-moment 

variations in synchrony can indicate what specific information students learned, we transcribed 

all the lectures and identified when the teacher provided information to answer each one of the 

test questions (Fig. 4A). Then, for each question in the post-test, we computed the corresponding 

brain-to-brain synchrony and alpha power during the lecture. Student-to-student brain synchrony 

was significantly higher for questions that students answered incorrectly in the pre-test and 
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correctly in the delayed post-test compared to questions where students’ answers have not 

changed (learned: 0.075±0.002; not learned: 0.065±0.002; F(1,30.16)=15.13; p=0.0005; Fig. 

4B). In contrast, alpha power did not significantly discriminate between learned and not learned 

information (learned: 1.124±0.040; not learned: 1.120±0.037; F(1,30)=.28; p=0.60; Fig. 4C). 

         Student-to-teacher brain synchrony. So far, we have only considered brain-to-brain 

synchrony between students rather than between the students and the teacher. As students only 

listened to the lectures, we hypothesized that student-to-student brain synchrony would best 

predict delayed retention at lag 0 (i.e. instantaneous synchronization). In contrast, because the 

teacher served as the speaker and the students as listeners, we expected student-to-teacher brain 

synchrony would be best predict delayed retention at a non-zero lag (13). On average, the 

correlation between student-to-student synchrony and delayed retention indeed peaked for zero-

lagged synchrony (Fig. 5A). The correlation between student-to-teacher synchrony and delayed 

retention, on the other hand, showed a clear peak at ~200 msec lag between the student and the 

teacher (i.e. teacher’s brain activity preceding students’ by about 200 msec; Fig. 5B). 

Intriguingly, central and frontal electrodes showed the reverse pattern, where the correlation 

between student-to-teacher synchrony and delayed retention peaked when the student’s brain 

activity preceded the teacher (Fig. 5C). This finding is in line with previous fMRI research and 

might reflect predictive anticipation by the students (12, 13). 

 

Discussion 

 Brain measures are widely used to understand and predict human behavior. This brain-as-

predictor approach (31) has been effective in elucidating a wide range of real-world outcomes, 

such as economic decisions and clinical outcomes. The aim of this study was to test whether 
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information measured across brains can predict long-term memory retention better than 

information within individual brains. Our results show that alpha-band brain-to-brain synchrony, 

but not individual brain measures, significantly predicted students’ immediate and delayed 

memory retention (Fig. 3 and Fig. S2). Furthermore, moment-to-moment variations in brain-to-

brain synchrony significantly discriminated between information that was learned and not 

learned (Fig. 4). These results substantially extend the brain-as-predictor approach, 

demonstrating that the predictive value of two brains can be greater than that of individual 

brains.  

Traditionally, psychology and neuroscience data are collected from individual 

participants in controlled laboratory environments. In the past few years, researchers have begun 

to approach the neural basis of social interactions by comparing the brain responses of multiple 

individuals during a variety of tasks. This line of research shows that cognitive and social factors 

are reflected in the brain-to-brain synchrony between participants (2-6, 8, 10, 13-15, 18, 27, 29). 

However, most of these studies are limited to dyads, in many studies participants were not 

measured concurrently, and others are limited in their ecological validity. Importantly, the vast 

majority of these studies have not assessed what can be learned from synchrony across brains 

that cannot be revealed by measuring individual brains. Our findings extend previous research, 

which suggested that measuring synchrony across brains can yield complementary information 

to individual brain analysis (10, 17, 18, 32, 33). Hasson et al. (10) examined how brain 

synchrony across individuals during movie viewing predicted subsequent memory. The fMRI 

response in several brain regions was significantly more correlated across individuals during 

portions of the movie that were later remembered compared to those that were forgotten. These 

regions only partially overlapped with those revealed by traditional individual brain analyses, but 
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the predictive power of the two analyses (within and across brains) was not directly compared. 

More recently, Simony et al. (17) demonstrated that inter-subject functional correlations, but not 

within-brain connectivity, are modulated by narrative structure. Furthermore, inter-subject 

correlations within the default-mode network predicted immediate recall of story elements, but 

the predictive value of inter-subject correlations was not contrasted with that of intra-subject 

measures. In another study, inter-brain, but not intra-brain, synchronization was shown to predict 

behavioral performance in a laboratory cooperative task (18). However, intra-brain synchrony in 

this study might have been underestimated due to the limited spatial coverage and low temporal 

resolution of fNIRS.  

From a methodological perspective, brain-to-brain synchrony can offer better signal-to-

noise ratio than intra-brain synchrony (17). In addition to stimulus-driven effects, intra-brain 

synchrony is influenced by: (a) non-task related intrinsic neural dynamics; and (b) non-neural 

artifacts (e.g. ocular and movement artifacts). Both (a) and (b) are consistent within a brain, but 

not across brains. Intra-brain connectivity analysis is particularly problematic in EEG research 

because of the spreading of electrical signals from the neuronal sources to scalp electrodes and 

because of the dependence of phase measures on the way data has been referenced (30, 34, 35).  

The current study quantified the brain dynamics of students and teachers in a laboratory 

classroom. While brain-to-brain synchrony has been associated with several classroom-related 

variables (mainly students’ engagement and social closeness; (6, 8)), there are conflicting results 

about its relationship with learning outcomes. Bevilacqua et al. (6) collected EEG data from a 

group of 12 high school students and their teacher during regular biology lessons. Student-to-

teacher brain synchrony predicted how engaged students were and how close they felt toward the 

teacher, but it was not significantly associated to how well students retained class content (6). 
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Cohen et al. (7) measured brain-to-brain synchrony between students who watched instructional 

videos individually. Even though the students were not measured concurrently, brain-to-brain 

synchrony was found to predict their immediate memory retention (7). These contradicting 

findings might be explained by methodological differences. While Bevilacqua et al. (6) used 

commercial-grade EEG devices in a classroom environment, Cohen et al. (7) used research-grade 

EEG devices in a lab setting. In another recent study, student-instructor brain synchrony was 

measured using fNIRS during song learning. Brain-to-brain synchrony was found to predict 

learning outcomes, but only when there were turn-taking interactions between the student and the 

instructor (36). The current study substantially extends previous research by demonstrating that 

both student-to-student and student-to-teacher brain synchrony are associated with long-term 

memory retention. Whereas student-to-student brain synchrony best predicted learning outcomes 

at zero-lag, delayed retention was best predicted for student-to-teacher brain synchrony when 

students’ neural activity was compared to the neural activity of the teacher that preceded the 

students’ by roughly 200 msec (Fig. 5). This finding is consistent with previous research on 

speaker-listener brain synchrony, which demonstrated that listeners’ brain activity is coupled 

with speakers’ at a delay (13, 37). However, these previous studies used methods with low 

temporal resolution (fMRI and fNIRS), and thus could not accurately estimate the speaker-

listener delay. A delay of roughly 200 msec is consistent with the time scale of speech 

processing (38). In line with previous fMRI research (12, 13), we found that in central and 

frontal EEG electrodes, the correlation between student-to-teacher synchrony and delayed 

retention peaked when the student’s brain activity preceded the teacher (Fig. 5C), possibly 

reflecting students’ anticipation of upcoming input (39). 
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While the phenomenon of brain-to-brain synchrony is not yet fully understood, Dikker et 

al. (8) proposed that shared attention plays a crucial role. At the most basic level, brain-to-brain 

synchrony is driven by stimulus entrainment: as all students are presented with the same input 

(e.g. teacher’s voice), their brain activity becomes entrained to that stimuli. Critically, since 

stimulus entrainment is modulated by attention (40, 41), brain-to-brain synchrony increases 

when students are engaged in a task and decreases when students disengage (6-8). The 

hypothesis that brain-to-brain synchrony is partially driven by shared attention is consistent with 

the current study: when students pay attention to information provided by a teacher, their brain 

synchrony with the teacher and other students increases, as does their tendency to retain 

information. The current study focused on brain-to-brain synchrony in the alpha band (8-12 Hz) 

since there is extensive research linking the alpha rhythm to attention. While traditionally 

associated with cortical idling (42), it is currently thought that the alpha rhythm is involved in 

actively suppressing task-irrelevant processing (22-26). There is substantial evidence that the 

phase and amplitude of alpha-band oscillations prior to and during stimulus presentation 

influences subsequent stimulus processing (43, 44). Indeed, in the current study, the association 

between alpha power and immediate retention approached significance (p=0.058; Fig. S2). There 

is also evidence that alpha-band phase synchrony across brain regions is correlated with task 

performance (45-49). Surprisingly, the current study demonstrates that alpha-band phase 

synchrony across brains, rather than within individual brains, predicts learning outcomes.  

However, more research, possibly in more controlled experiments, is needed to 

understand the neural dynamics that give rise to brain-to-brain synchrony. Future research might 

examine not only what conditions enhance brain synchrony, but also under what circumstances 

brain synchrony is diminished, and what the behavioral consequences of decreased neural 
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synchrony are. It should go without saying that the methods we have to study the human brain do 

not permit more neurobiologically granular, mechanistic characterization. That being said, the 

measures that we have used here yield unanticipated new insights into how learning in a group 

context is reflected in the brain dynamics of teachers and learners.  

Materials and Methods 

Participants.  42 participants (28 females) were recruited and measured in groups of 

three or four students. All participants satisfied the following criteria: (i) native English speaker; 

(ii) right hand dominant; (iii) between the ages of 18 and 30 (mean age: 20.6; s.d.: 3.0 years); (iv) 

non-science major, if applicable; (v) no known history of neurological abnormalities. All 

participants completed high school, with the majority (76.2%) being current college 

undergraduates. All participants provided written informed consent, and the experimental 

protocol was approved by the Institutional Review Board of New York University. In two of the 

11 groups, due to technical issues, only two participants had usable EEG data; as student-to-

student brain synchrony could not be determined for all dyads, all participants within these two 

sessions were excluded from analysis (N=7). Four additional subjects were omitted from 

analysis: two due to poor quality EEG data and the other two since they scored higher in the pre- 

than the post-test for the majority of lectures (i.e. they did not demonstrate any learning gains). 

Thus, the final sample consisted of 31 participants (21 female).  

The two teachers (1 female) were professional high school science teachers. The female 

teacher led four sessions, and the male teacher led five of the nine lessons included in analysis.  

The teachers had no prior acquaintance with the students. 

Procedure. Students were seated evenly and randomly around a table, and the teacher 

was seated at the head of the table (Fig. 1). The experiment took place in a laboratory classroom 
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equipped with a projector and three video cameras. Following EEG set up, baseline EEG 

recordings (eyes-open and eyes-closed) were taken to test data quality. The lesson comprised of 

four teacher-led lectures (6:43.26±0:45.93 minutes-long; mean±s.d.) on discrete topics in 

Biology and Chemistry: Bipedalism, Insulin, Habitats and Niches, and Lipids. Slides were 

projected onto a screen behind the teacher and controlled by the teacher via a tablet computer 

(see Fig. 1). In order to minimize speaking- and movement-related artifacts, students were 

instructed to sit still, minimize head motion, and refrain from asking questions during the 

lectures. Each lecture was preceded by either no activity or one of three brief pre-lecture 

activities, where students could interact more freely with one another and with the teacher: a 

discussion-based activity, a short quiz where students answered three topic-related questions and 

then observed the distribution of answers across their group, or a short video related to the 

lecture topic. Activity–lecture combinations and order were randomly pre-assigned and 

counterbalanced across groups. Each lecture was immediately followed by a brief topic-specific 

assessment to gauge lecture engagement and content knowledge (see below). Assessments were 

administered via a tablet computer that was placed next to each student. The lesson concluded 

with one final three-minute eyes-open baseline recording. The same four content knowledge 

assessments were given to participants individually both one week prior to (pre-test) and one 

week following (delayed post-test) his or her corresponding group session (Fig. 1B).  

EEG hardware and data collection.  Participants’ EEG activity was recorded using a 

32-channel Neuroelectrics Enobio 32 5G gel sensor system (sampling rate: 500Hz). A dual 

earclip electrode served as a common unipolar reference. Electrode placement followed the 

standard 10-10 EEG system. The Neuroelectrics Instrument Controller (NIC2) software 

application was used to record data and assess signal quality. Data was aligned between students 
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and the teacher post-hoc at the millisecond level using wireless triggers that were sent every 

second by a tablet computer via Lab Streaming Layer (50).  

Quantifying memory retention. For each lecture, memory retention was measured using 

10 multiple-choice questions and one short answer question (only the multiple-choice questions 

were used in the current analysis). Questions were developed by the two participating teachers 

and reviewed by an independent education specialist (see Table S2). In order to measure changes 

in content knowledge at the individual question level, the same content questions were used in 

the pre-test, immediate, and delayed post-test. Note that in order to minimize priming effects, the 

pre-test was administered a week before the EEG session (Fig. 1B). The difference in student 

scores between the pre-test and immediate post-test as well as between the pre-test and delayed 

post-test were averaged across lectures and used as the main outcome variables throughout this 

study.  

 All the lectures were audio recorded and synced to the EEG data via LSL. The lectures 

were transcribed and for each content question, time intervals in which information necessary to 

answer the question were identified. This enabled matching question-specific EEG data with 

students’ answers to these questions (Fig. 4).  

EEG Preprocessing. All preprocessing was carried out using Matlab R2018b in 

conjunction with EEGLAB 14.1.1b (51). Only data recorded during lecture presentation was 

included in the analysis. After band-pass filtering (0.5 to 35 Hz), noisy channels were identified 

and removed using a combination of automatic channel rejection (kurtosis, z-score=3) and 

inspection of channel power spectra. Continuous EEG data were then epoched into 1-second 

intervals and visually inspected for non-neural artifacts. Independent component analysis (ICA) 

was then conducted to identify and remove components that were associated with eye blinks and 
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eye movements (52). Finally, abnormal residual epochs with signals outside of -100 to 100 µV 

range were automatically tagged and visually inspected. It should be noted that due to the nature 

of this experiment, teacher data were inherently noisier than those of students. As a result, a 

more stringent data removal approach was required to obtain high-quality teacher data (See 

Table S3). 

 EEG analysis. The data were analyzed using custom-built Matlab code and the FieldTrip 

toolbox (53). Following preprocessing, EEG data were filtered between 8- and 12-Hz using 

Butterworth filters of order four, and Hilbert transform was used to compute the instantaneous 

phase. For each 1-second epoch and for each combination of EEG electrodes (total of 1024 

electrode pairs), CCorr (28) was calculated. CCorr was chosen because it has been shown to be 

the least sensitive to spurious couplings of EEG hyperscanning data (54). CCorr values were 

calculated for each pair of students within a group and between each student and the teacher (see 

Fig. 2B). Calculated CCorr values were normalized by Fisher’s Z transformation and averaged 

across epochs, lectures, and electrode pairs. For intra-brain synchrony analysis, CCorr values 

were computed within each student dataset between each EEG electrode and all the other 

electrodes (total of 992 electrode pairs). For power analysis, the 1-second epochs were multiplied 

with a Hanning taper, and power spectra (4–30 Hz) were computed using a fast Fourier 

transform. Power spectra were then averaged across all epochs within each lecture. In order to 

normalize the data, the power of each frequency band of interest (theta: 4-7Hz; alpha: 8-12Hz; 

beta: 13-20Hz) was divided by the averaged power in the 4-20Hz band (referred to as “relative 

power” in the main text). 

 Moment-to-moment analysis (Fig. 4): In this analysis, rather than averaging CCorr and 

alpha power values across the entire duration of each lecture, data were averaged across 
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question-specific epochs identified based on the lecture transcript (Fig. 4A). A question was 

categorized as “learned” if a student answered it correctly in the delayed post-test, but not in the 

pre-test. A question was categorized as “not learned” if a student’s answer has not changed 

between the pre- and the delayed post-test (i.e. the student either already knew the answer to the 

question before the lecture, or answered it correctly before the lecture and incorrectly after the 

lecture).  

 Time-lagged cross-correlation analysis (Fig. 5): For each student-student dyad, the time 

course of one of the students was shifted either backward or forward in the range of -500 msec to 

+500 msec in steps of 50msec. Similarly, for each student-teacher dyad, the time course of the 

teacher was shifted between -500 msec to +500 msec in steps of 50 msec with respect to the time 

course of the student. For each electrode pair and temporal lag, we computed the correlation 

between student-to-student or student-to-teacher brain synchrony and delayed retention.  

 Statistical analysis. Following Perez et al. (29), the significance of CCorr values was 

assessed by constructing surrogate datasets with data taken from different lectures within the 

same student-student dyads. For example, the EEG data of Student A in the bipedalism lecture 

was paired with the EEG data of Student B in the lipids lecture (Fig. S1). By shuffling the 

lectures, 9 possible combinations were examined. Then, a non-parametric bootstrap test with 

10,000 random samplings was used to assess statistical differences between the real and 

surrogate datasets. An FDR correction (55) was applied to the p-values obtained by the bootstrap 

test (q=0.05). For intra-brain synchrony, surrogate datasets were constructed by shuffling 

lectures within each student (for example, the EEG data of Student A in the bipedalism lecture 

was paired with EEG data of same student in the lipids lecture).  
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Since students were nested within groups, data were analyzed using multilevel modeling 

treating group as the unit of analysis to control for nonindependence in student responses. The 

MIXED procedure in SPSS was used. Both alpha-band brain-to-brain synchrony and alpha-band 

intra-brain synchrony or alpha power were included as level 1 predictors. Immediate or delayed 

retention were treated as the outcome variable.  

 

 

Acknowledgements 

We thank U. Hasson for comments on an earlier version of this manuscript, and O. Dagan, E. 

Theisen, D. Bevilacqua, G. Ali, and S. Azeka for their assistance in data collection and data 

preprocessing. This study has been supported by NSF grant #1661016. 

 

References 

1. Schilbach L, et al. (2013) Toward a second-person neuroscience. Behavioral and brain 

sciences 36(4):393-414. 

2. Babiloni F & Astolfi L (2014) Social neuroscience and hyperscanning techniques: past, 

present and future. Neuroscience & Biobehavioral Reviews 44:76-93. 

3. Hasson U, A Ghazanfar A, Galantucci B, Garrod S, & Keysers C (2012) Brain-to-Brain 

Coupling: A Mechanism for Creating and Sharing a Social World  pp 114-121. 

4. Shamay-Tsoory SG, Saporta N, Marton-Alper IZ, & Gvirts HZ (2019) Herding Brains: A 

Core Neural Mechanism for Social Alignment. Trends in cognitive sciences 23(3):174-

186. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644047doi: bioRxiv preprint 

https://doi.org/10.1101/644047


 19

5. Hasson U, Nir Y, Levy I, Fuhrmann G, & Malach R (2004) Intersubject synchronization 

of cortical activity during natural vision. science 303(5664):1634-1640. 

6. Bevilacqua D, et al. (2019) Brain-to-Brain Synchrony and Learning Outcomes Vary by 

Student-Teacher Dynamics: Evidence from a Real-world Classroom 

Electroencephalography Study. Journal of cognitive neuroscience 31(3):401-411. 

7. Cohen SS, et al. (2018) Neural engagement with online educational videos predicts 

learning performance for individual students. Neurobiology of Learning and Memory 

155:60-64. 

8. Dikker S, et al. (2017) Brain-to-Brain Synchrony Tracks Real-World Dynamic Group 

Interactions in the Classroom. Current Biology 27(9):1375-1380. 

9. Cohen SS, Henin S, & Parra LC (2017) Engaging narratives evoke similar neural activity 

and lead to similar time perception. Scientific reports 7(1):4578. 

10. Hasson U, Furman O, Clark D, Dudai Y, & Davachi L (2008) Enhanced Intersubject 

Correlations during Movie Viewing Correlate with Successful Episodic Encoding. 

Neuron 57(3):452-462. 

11. Cohen SS & Parra LC (2016) Memorable audiovisual narratives synchronize sensory and 

supramodal neural responses. eNeuro 3(6). 

12. Dikker S, Silbert LJ, Hasson U, & Zevin JD (2014) On the same wavelength: predictable 

language enhances speaker-listener brain-to-brain synchrony in posterior superior 

temporal gyrus. The Journal of neuroscience : the official journal of the Society for 

Neuroscience 34(18):6267-6272. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644047doi: bioRxiv preprint 

https://doi.org/10.1101/644047


 20

13. Stephens GJ, Silbert LJ, & Hasson U (2010) Speaker–listener neural coupling underlies 

successful communication. Proceedings of the National Academy of Sciences 

107(32):14425. 

14. Goldstein P, Weissman-Fogel I, Dumas G, & Shamay-Tsoory SG (2018) Brain-to-brain 

coupling during handholding is associated with pain reduction. Proceedings of the 

National Academy of Sciences 115(11):E2528. 

15. Parkinson C, Kleinbaum AM, & Wheatley T (2018) Similar neural responses predict 

friendship. Nature communications 9(1):332. 

16. Dmochowski JP, et al. (2014) Audience preferences are predicted by temporal reliability 

of neural processing. Nature communications 5:4567. 

17. Simony E, et al. (2016) Dynamic reconfiguration of the default mode network during 

narrative comprehension. Nature communications 7:12141. 

18. Balconi M, Pezard L, Nandrino J-L, & Vanutelli ME (2017) Two is better than one: The 

effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS. PloS one 

12(11):e0187652. 

19. Bhattacharya J (2017) Cognitive neuroscience: synchronizing brains in the classroom. 

Current Biology 27(9):R346-R348. 

20. Shteynberg G (2015) Shared attention. Perspectives on Psychological Science 10(5):579-

590. 

21. Custers EJ (2010) Long-term retention of basic science knowledge: a review study. 

Advances in Health Sciences Education 15(1):109-128. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644047doi: bioRxiv preprint 

https://doi.org/10.1101/644047


 21

22. Haegens S, Händel BF, & Jensen O (2011) Top-Down Controlled Alpha Band Activity in 

Somatosensory Areas Determines Behavioral Performance in a Discrimination Task. The 

Journal of Neuroscience 31(14):5197. 

23. Palva S & Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends in 

neurosciences 30(4):150-158. 

24. Haegens S, Nácher V, Luna R, Romo R, & Jensen O (2011) α-Oscillations in the monkey 

sensorimotor network influence discrimination performance by rhythmical inhibition of 

neuronal spiking. Proceedings of the National Academy of Sciences 108(48):19377-

19382. 

25. Jensen O & Mazaheri A (2010) Shaping functional architecture by oscillatory alpha 

activity: gating by inhibition. Frontiers in human neuroscience 4:186. 

26. Klimesch W, Sauseng P, & Hanslmayr S (2007) EEG alpha oscillations: the inhibition–

timing hypothesis. Brain research reviews 53(1):63-88. 

27. Dumas G, Nadel J, Soussignan R, Martinerie J, & Garnero L (2010) Inter-Brain 

Synchronization during Social Interaction. PLOS ONE 5(8):e12166. 

28. Jammalamadaka S & Sengupta A (2001) Topics in circular statistics (World Scientific 

Publishing, Singapore). 

29. Pérez Fernández A, Carreiras M, & Duñabeitia JA (2017) Brain-to-brain entrainment: 

EEG interbrain synchronization while speaking and listening. Scientific reports 7:4190. 

30. Michel CM & Murray MM (2012) Towards the utilization of EEG as a brain imaging 

tool. Neuroimage 61(2):371-385. 

31. Berkman ET & Falk EB (2013) Beyond brain mapping: Using neural measures to predict 

real-world outcomes. Current directions in psychological science 22(1):45-50. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644047doi: bioRxiv preprint 

https://doi.org/10.1101/644047


 22

32. Ben-Yakov A, Honey CJ, Lerner Y, & Hasson U (2012) Loss of reliable temporal 

structure in event-related averaging of naturalistic stimuli. Neuroimage 63(1):501-506. 

33. Dumas G, Chavez M, Nadel J, & Martinerie J (2012) Anatomical connectivity influences 

both intra-and inter-brain synchronizations. PloS one 7(5):e36414. 

34. Guevara R, et al. (2005) Phase synchronization measurements using 

electroencephalographic recordings. Neuroinformatics 3(4):301-313. 

35. Schiff SJ (2005) Dangerous phase. Neuroinformatics 3(4):315-317. 

36. Pan Y, Novembre G, Song B, Li X, & Hu Y (2018) Interpersonal synchronization of 

inferior frontal cortices tracks social interactive learning of a song. Neuroimage 183:280-

290. 

37. Liu Y, et al. (2017) Measuring speaker–listener neural coupling with functional near 

infrared spectroscopy. Scientific reports 7:43293. 

38. Giraud A-L & Poeppel D (2012) Cortical oscillations and speech processing: emerging 

computational principles and operations. Nature neuroscience 15(4):511. 

39. Dikker S & Pylkkänen L (2013) Predicting language: MEG evidence for lexical 

preactivation. Brain and language 127(1):55-64. 

40. Golumbic EMZ, et al. (2013) Mechanisms underlying selective neuronal tracking of 

attended speech at a “cocktail party”. Neuron 77(5):980-991. 

41. Lakatos P, Karmos G, Mehta AD, Ulbert I, & Schroeder CE (2008) Entrainment of 

neuronal oscillations as a mechanism of attentional selection. science 320(5872):110-113. 

42. Pfurtscheller G, Stancak Jr A, & Neuper C (1996) Event-related synchronization (ERS) 

in the alpha band—an electrophysiological correlate of cortical idling: a review. 

International journal of psychophysiology 24(1-2):39-46. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644047doi: bioRxiv preprint 

https://doi.org/10.1101/644047


 23

43. Busch NA, Dubois J, & VanRullen R (2009) The phase of ongoing EEG oscillations 

predicts visual perception. Journal of Neuroscience 29(24):7869-7876. 

44. Mathewson KE, Gratton G, Fabiani M, Beck DM, & Ro T (2009) To see or not to see: 

prestimulus α phase predicts visual awareness. Journal of Neuroscience 29(9):2725-2732. 

45. Doesburg SM, Green JJ, McDonald JJ, & Ward LM (2009) From local inhibition to long-

range integration: a functional dissociation of alpha-band synchronization across cortical 

scales in visuospatial attention. Brain research 1303:97-110. 

46. Freunberger R, Fellinger R, Sauseng P, Gruber W, & Klimesch W (2009) Dissociation 

between phase‐locked and nonphase‐locked alpha oscillations in a working memory task. 

Human brain mapping 30(10):3417-3425. 

47. Lobier M, Palva JM, & Palva S (2018) High-alpha band synchronization across frontal, 

parietal and visual cortex mediates behavioral and neuronal effects of visuospatial 

attention. Neuroimage 165:222-237. 

48. Palva S & Palva JM (2011) Functional roles of alpha-band phase synchronization in local 

and large-scale cortical networks. Frontiers in psychology 2:204. 

49. Bhattacharya J, Petsche H, & Pereda E (2001) Long-range synchrony in the γ band: role 

in music perception. Journal of Neuroscience 21(16):6329-6337. 

50. Kothe C (2014) Lab Streaming Layer (LSL). Available at: 

https://github.com/sccn/labstreaminglayer 

51. Delorme A & Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-

trial EEG dynamics including independent component analysis. Journal of neuroscience 

methods 134(1):9-21. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644047doi: bioRxiv preprint 

https://doi.org/10.1101/644047


 24

52. Jung T-P, et al. (1998) Extended ICA removes artifacts from electroencephalographic 

recordings. Advances in neural information processing systems, pp 894-900. 

53. Oostenveld R, Fries P, Maris E, & Schoffelen J-M (2011) FieldTrip: open source 

software for advanced analysis of MEG, EEG, and invasive electrophysiological data. 

Computational intelligence and neuroscience 2011:1. 

54. Burgess AP (2013) On the interpretation of synchronization in EEG hyperscanning 

studies: a cautionary note. Frontiers in human neuroscience 7:881. 

55. Benjamini Y & Hochberg Y (1995) Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the Royal statistical society: series B 

(Methodological) 57(1):289-300. 

 

Figure Legends 

 

Figure 1. Experimental setup and timeline. (A) Four students and a teacher were concurrently 

measured with EEG during a science class; (B) The lesson comprised four mini-lectures, each 

followed by a post-test. Pre-test and delayed post-tests were administered one week prior to and 

one week following the EEG recording session. 

 

Figure 2. Behavioral results and calculation of brain-to-brain synchrony.   

(A) Proportion of correct answers (content knowledge) for the pre-test, immediate post-, and 

delayed post-tests. Each dot corresponds to one participant, horizontal black lines depict the 

mean for all students; grey regions represent one standard deviation; (B) Brain-to-brain 
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synchrony (CCorr) values were computed between each student and all other students in the 

group. 

 

Figure 3. Brain-to-brain synchrony better predicts delayed retention than individual brain 

measures. Alpha-band brain-to-brain synchrony (A), but not alpha-band intra-brain synchrony 

(B), significantly predicted delayed retention; (C) The distribution of correlation values between 

alpha-band intra-brain synchrony and delayed retention generated by randomly resampling 11 

electrode pairs; (D) The relationship between relative alpha power and delayed retention;  

(E-F) Spatial distribution of the relationship between delayed retention and alpha-band brain-to-

brain synchrony (E) or alpha power (F). The color bar displayed applies to both (E) and (F). 

Electrodes circled in pink were found to significantly predict delayed retention (p<0.05; FDR 

corrected). 

Figure 4. Moment-to-moment variations in alpha-band brain-to-brain synchrony and 

learning. (A) Question-specific time intervals where relevant content was delivered by the 

teacher were identified based on the lecture transcript. Moment-to-moment variations in alpha-

band brain-to-brain synchrony (B), but not alpha power (C), significantly discriminated between 

information that was learned and not learned at the individual question level.  

 

Figure 5. Time-lagged cross-correlation between brain-to-brain synchrony and delayed 

retention. (A) Correlation between student-to-student brain synchrony and delayed retention as a 

function of temporal lag between students’ brain activity; (B) Correlation between student-to-

teacher brain synchrony as a function of temporal lag between the student’s and teacher’s brain 

activity. For both (A) and (B), cross-correlation was computed for each electrode pair and then 
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averaged across pairs (total of 1024 pairs). (C) Spatial distribution of the temporal lag that 

produced the highest correlation between student-to-teacher brain synchrony and delayed 

retention. For this analysis, synchrony was computed only between matched electrodes (e.g. O1-

O1). Electrodes are color coded by temporal lag: student precedes (yellow) to teacher precedes 

(blue). 
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