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Abstract: Host-cell chromatin changes are thought to play an important role in the pathogenesis 
of infectious diseases. Here, we describe the first histone acetylome-wide association study 
(HAWAS) of an infectious disease, based on genome-wide H3K27 acetylation profiling of 
peripheral granulocytes and monocytes from subjects with active Mycobacterium tuberculosis 
(Mtb) infection and healthy controls. We detected >2,000 differentially acetylated loci in either 
cell type in a Chinese discovery cohort, which were validated in a subsequent multi-ethnic cohort, 
thus demonstrating that HAWAS can be independently corroborated. Acetylation changes were 
correlated with differential gene expression in a third cohort. Differential acetylation was enriched 
near potassium channel genes, including KCNJ15, which modulated Akt-mTOR signaling and 
promoted Mtb clearance in vitro. We performed histone acetylation QTL analysis on the dataset 
and identified candidate causal variants for immune phenotypes. Our study serves as proof-of-
principle for HAWAS to infer mechanisms of host response to pathogens. 
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Introduction 

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), is the world’s 

deadliest infectious disease, causing 1.5 million deaths per year1. Mtb circumvents the immune 

system by remodeling the host transcriptome, leading to inhibition of protective and induction of 

pathological immune responses2–4. In particular, gene expression studies on whole blood from 

active TB (ATB) patients suggest that alterations in pathways such as interferon signaling, 

inflammation, apoptosis and pattern recognition receptor signaling may contribute to TB 

pathogenesis4–6. It is likely that these transcriptomic changes in host immune cells during infection 

are chromatin-mediated7–10. 

 

Histone H3 acetylation at lysine 27 (H3K27ac), is a well-established chromatin signature of active 

enhancers and promoters11,12 that correlates with gene expression and transcription factor 

binding13. We previously profiled H3K27ac genome-wide in post-mortem autism spectrum 

disorder (ASD) brain vs. control and detected widespread ASD-associated chromatin perturbations 

converging upon specific pathways, thus providing a resource for subsequent mechanistic studies 

of ASD pathology14. Two other recent studies used the same methodology to detect thousands of 

histone acetylation changes in post-mortem brain samples from individuals with Alzheimer’s 

disease15,16. We hypothesize that the histone acetylome-wide association study (HAWAS) 

approach could also provide molecular insights into non-neurological conditions such as Mtb 

infection. 

 

Here, we report a HAWAS of peripheral monocytes and granulocytes from ATB patients and age-

matched healthy controls. Uniquely, we profiled histone acetylation in two distinct cohorts: 

discovery and validation. We also generated transcriptome data from a third cohort for further 

corroboration of infection-associated chromatin changes. We then analyzed the data to infer 

specific host-response mechanisms. Finally, we used the ChIP-seq data to call SNPs within 

monocyte and granulocyte regulatory elements and identify histone acetylation quantitative trait 

loci (haQTLs), some of which may contribute to inflammatory and infectious disease 

susceptibility.  
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Results 

HAWAS of active Tuberculosis  

We used ChIP-seq to profile H3K27ac in a total of 190 peripheral blood granulocytes and 

monocyte samples from ATB patients and age-matched healthy controls (HC; Fig. 1a), of which 

135 were retained after QC (Fig. 1b and Supplementary Table 1). These 135 samples were split 

into discovery and validation cohorts, and regulatory elements in each cohort were detected as 

focal peaks in the ChIP-seq signal (Methods). Our granulocyte and monocyte H3K27ac profiles 

were highly consistent with those from the International Human Epigenome Consortium17 (IHEC; 

Extended Data Fig. 1a). 

 

To identify infection-associated changes in the regulatory elements, we tested each of them for 

differential histone acetylation (differential peak height) between ATB and HC samples in each 

cohort, after controlling for confounders (Extended Data Fig. 1b-d; Methods). In total, we 

identified >1,800 DA peaks in each combination of cell type and cohort (Fig. 1b,c and 

Supplementary Table 1), indicating that ATB-associated chromatin changes were widespread in 

both granulocytes and monocytes. Moreover, the observed histone acetylation changes were 

shared across ATB individuals, rather than limited to a subset (Extended Data Fig. 2a). 

 

Next, we investigated the correspondence between histone acetylation changes and differential 

gene expression. Note that, although absolute histone acetylation and gene expression readouts are 

strongly correlated across a single genome13, we expect measures of differential acetylation and 

differential expression to show only moderate correlation, largely due to lower signal-to-noise 

ratio14. We performed RNA-seq on peripheral granulocytes and monocytes from an independent 

multi-ethnic ATB vs. HC cohort and identified 1,800 differentially expressed (DE) genes in either 

cell type (Fig. 1d,e, Extended Data Fig. 2b and Supplementary Table 1; Methods). As expected, 

DE gene fold-changes in granulocytes and monocytes were significantly correlated with fold-

changes of flanking DA peaks (Fig. 1f), and thus the two data types corroborated each other. 

However, the correlation was only moderate (granulocytes: R=0.71; monocytes: R=0.30), as was 

also observed in our previous HAWAS study of ASD14 (R=0.33-0.38;). These results further 

support our previous finding that, while differential H3K27ac ChIP-seq and transcriptome profiles 
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tend to correlate globally, they are not mutually redundant. Rather, they provide complementary 

views of the disease-associated changes under investigation. 

 

One issue not addressed in previous HAWAS studies14–16 is reproducibility of DA signals. First, 

we inspected a cluster of DA peaks detected in both granulocytes and monocytes from the 

discovery cohort near the Guanylate Binding Protein (GBP) genes, whose expression has 

previously been associated with TB susceptibility and host response10,18. Almost all of these peaks 

were also detected as DA in the validation cohort (Fig. 2a). Genome-wide, ATB vs. HC peak height 

fold-changes were highly correlated between the granulocyte discovery and validation cohorts 

(R=0.93; Fig. 2b). Moreover, fold-change direction was also highly concordant (P-value<1e-300, 

Fisher’s exact test). Peak height fold-changes were less correlated in monocytes (R=0.70; Fig. 2b), 

most likely due to the smaller number of monocyte ATB samples in the validation cohort (Fig. 

1b). Nevertheless, the concordance of fold-change direction was still highly significant (P-

value=5.2e-61, Fisher’s exact test), thus confirming the robustness of DA signals detected in the 

discovery cohort. 

 

To evaluate the generality of ATB-associated chromatin changes identified in the exclusively 

Chinese discovery cohort, we split the validation cohort into Chinese, Malay and Indian subgroups. 

The smaller size of these three would tend to decrease the accuracy of ATB vs. HC fold-change 

estimates, and thus reduce the correlation between discovery and validation. Nevertheless, for 

granulocytes, the correlation between discovery and each of the three validation subgroups 

remained high (R=0.82-0.88; Extended Data Fig. 2c). Monocytes showed a similar trend, except 

for the Chinese monocyte validation dataset, which contained only one ATB individual (Extended 

Data Fig. 2c). Thus, the global host chromatin response detected in the Chinese discovery cohort 

was also shared by Chinese, Malay and Indian subjects from the validation cohort.  

 

To evaluate overall chromatin divergence between ATB and HC, we performed principal 

component analysis (PCA) on discovery DA peaks (Fig. 2c). As expected, the first principal 

component (PC1) separated ATB and HC samples in both granulocytes (P-value=2.2e-9; one-

sided t-test) and monocytes (P-value=6.3e-6). We then used discovery DA peaks to evaluate 

chromatin divergence between ATB and HC in the validation cohorts. Notably, PC1 Again 
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separated ATB from HC (Fig. 2d; granulocytes: P-value=1.5e-6; monocytes: P-value=4.8e-4), 

further underscoring the validity of DA peaks detected in the discovery cohort. In summary, the 

above results indicate that over 1,800 histone acetylation foci are altered in circulating 

granulocytes and monocytes in response to Mtb infection. 

 

Enriched pathways and gene loci  

We used the GREAT tool19 to identify pathways and gene categories significantly altered in 

response to Mtb infection, based on DA peak enrichment at the corresponding gene loci. 

Upregulated granulocyte DA peaks were enriched for ontologies such as defense response to virus 

and innate immune response (Fig. 3a and Supplementary Table 2). These categories contained 

several type I interferon induced genes from the IFIT and IFITM families, regulators of type I 

interferon response (STAT1, STAT2) as well as interferon response factors (IRFs; Supplementary 

Table 2). Type I interferon signaling genes were also enriched, though at a lower level, near 

monocyte upregulated DA peaks.  

 

Upregulated monocyte DA peaks were most prominently enriched near chromatin assembly genes, 

indicating widespread chromatin reorganization in monocytes in response to TB (Fig. 3a and 

Supplementary Table 2). Notably, genes related to voltage gated potassium channel activity were 

also enriched (P-value=9.8e-5). Most prominently, the inwardly rectifying potassium channel 

subfamily J member 15 (KCNJ15) gene locus contained 8 upregulated peaks in monocytes, 

suggesting extensive chromatin changes upon Mtb infection (Fig. 3b). This locus also contained 5 

upregulated peaks in granulocytes.  

 

Next, we used GOrilla20 to detect functional categories enriched in DE genes (fold-change≥1.5, 

FDR Q-value≤0.05). Genes upregulated in granulocytes showed greatest enrichment for “defense 

response to other organism” (P-value=2.2e-28; Fig. 3c), including genes associated with viral 

defence and innate immune response (Supplementary Table 2). The latter two functional categories 

were also strongly enriched for DA peaks upregulated in granulocytes (Fig. 3a). These results are 

consistent with gene expression changes previously observed in whole blood from ATB patients, 

and also with the known role of type I interferon in host response to Mtb4–6,10,21. Upregulated genes 

in monocytes were enriched for “regulation of multicellular organismal process” (P-value=3.4e-
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16; Fig. 3c), which included genes associated with inflammatory response and regulation of 

response to external stimulus (Supplementary Table 2). 

 

To identify the most extensively altered chromatin loci in TB, we tested whether the peaks near 

individual genes were enriched for differential acetylation (Fig. 3d). FNDC1 and TAGAP, two 

neighboring genes involved in G-protein signalling, showed the greatest enrichment for peaks 

upregulated in granulocytes. Thus, this locus, which is known for association with non-infectious 

inflammatory diseases such as Crohn’s disease and celiac disease22, may also participate in the 

inflammatory response of granulocytes during infection. Among genes with greatest enrichment 

for downregulated peaks in granulocytes, SGK1 was the most significantly altered. This gene plays 

a role in granulocyte apoptosis, and its downregulation leads to a prolonged state of 

inflammation23. AGPAT4, the gene most significantly enriched in monocyte downregulated peaks, 

transfers acyl chains in diacylglycerol biosynthesis, thus making them available to further use. 

Intriguingly, Mtb utilizes host acyl chains when it acquires a dormancy-like state in macrophages24, 

a condition important for Mtb survival. The gene most significantly associated with monocyte 

upregulated peaks was the above-mentioned potassium channel gene KCNJ15. 

 

We then used Homer25 to scan for super-enhancers (SEs)26 in ChIP-seq profiles from the discovery 

cohort. SEs are known to strongly activate gene expression in a cell-type-specific manner. They 

are thus likely to be important for the functioning of the corresponding cell type, though it is not 

clear if they are functionally distinct from regular enhancers that drive strong gene expression27. 

We identified 757 SEs in granulocytes and 905 in monocytes (Supplementary Table 1). Notably, 

many of the DA peak clusters overlapped SEs (Fig. 3d), which further supports the significance of 

the corresponding DA loci in host response to ATB. In particular, the upregulated monocyte DA 

peak cluster near KCNJ15 was mostly contained within an SE that also showed significantly 

increased acetylation in ATB (Fig. 3b,e,f). 

 

Role of KCNJ15 in host response to TB 

We prioritized KCNJ15 for functional validation because: 1) this locus showed the greatest 

enrichment for upregulated monocyte DA peaks, 2) the DA peaks coincided with an SE, 3) its role 

in monocyte physiology, infection and inflammation has not been previously studied and 4) 
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potassium channels have not been studied in the context of mycobacterial infection. KCNJ15 

encodes the poorly characterized two-transmembrane tetrameric inward-rectifier type potassium 

(K+) channel Kir4.228–30, which potentially allows K+ to flow into cells when hyperpolarized31. 

Consistently, patch-clamp analysis in the human monocyte cell line THP-1 revealed an inwardly 

rectifying K+ current that was blocked by Ba2+ in a voltage-dependent fashion (Extended Data Fig. 

3). To corroborate the increased histone acetylation at KCNJ15 in granulocytes and monocytes 

(Fig. 3b,d,e,f), we analyzed KCNJ15 mRNA expression in five different TB cohorts 

(Supplementary Table 3). In all five cohorts, KCNJ15 mRNA levels in granulocytes, monocytes 

or whole blood were significantly higher in ATB than in HC, with monocytes showing the greatest 

change (Fig. 4a and Extended Data Fig. 4a,b). In the UK dataset, KCNJ15 expression in whole 

blood was attenuated after two months of treatment and reached levels comparable to those of 

healthy individuals within 12 months (Extended Data Fig. 4b). KCNJ15 expression was also found 

to be significantly upregulated in whole blood from Thai ATB patients32. Despite the consistent 

evidence from transcriptomics studies, KCNJ15 has not previously been prioritized for 

mechanistic analysis of host response to TB, perhaps because other genes showed even greater 

differential expression. In terms of histone acetylation response, however, this locus is a clear 

outlier and thus a strong candidate for functional studies. 

 

To investigate the causal relationship between mycobacterial infection and KCNJ15 expression, 

we infected primary monocytes and THP-1 cells with Mtb and BCG, respectively, and observed 

increased mRNA and protein expression upon infection (Extended Data Fig. 4c-e). Interestingly, 

in THP-1 cells Kir4.2 was localized to the cell membrane and BCG-containing lysosomes (Fig. 

4b,c, and Supplementary Video 1). Lysosomal localization of Kir4.2 may be attributable to its 

three lysosomal-targeting dileucine motifs (44DGIYLL49, 244ESPFLI249 and 364ELRTLL369). In 

uninfected cells, Kir4.2 showed low expression and low APG-4 fluorescence (indicator of 

intracellular potassium concentration [K+]i; Fig. 4c). In contrast, BCG-infected cells showed 

higher Kir4.2 expression and intense and concentrated APG-4 fluorescence in phagosomes. These 

results suggest that K+ increases in phagosomes upon BCG infection, potentially due to Kir4.2 

upregulation and localization to the organelle.  
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To assess the impact of KCNJ15/Kir4.2 on Mtb growth we performed gain and loss of function 

experiments. Lentivirally-mediated overexpression of Kir4.2 in primary monocytes (KCNJ15++; 

Extended Data Fig. 5a,b) resulted in Mtb growth inhibition (Fig. 4d). Notably, KCNJ15++ 

monocytes also showed increased expression of microtubule-associated protein 1A/1B-light chain 

3 (LC3) (Fig. 4e). LC3 mediates, and has been used as a marker for, autophagy, an innate cellular 

mechanism for controlling intracellular Mtb growth33. Consistently, monocytes in which KCNJ15 

was knocked down (KCNJ15KD; Extended Data Fig. 5c,d) were less efficient at controlling Mtb 

growth (Fig. 4f) and impaired in LC3 expression (Fig. 4g). Furthermore, mycobacterial growth 

was restricted in a THP-1 cell line stably overexpressing KCNJ15 (KCNJ15OE, Extended Data Fig. 

5e). These results suggest a role for Kir4.2 in autophagy and control of intracellular Mtb growth. 

 

To determine whether an increase in the intracellular K+ concentration ([K+]i) inhibited Mtb growth 

in THP-1, we increased the concentration of extracellular K+ from the normal level to that observed 

in necrotic lesions34, which are commonly observed in human TB (Extended Data Fig. 5f,g).  

[K+]i rose from 131mM to 165mM as a result (Extended Data Fig. 5h). This increase in [K+]i was 

similar to that observed in T cells treated in a similar manner34. Increased [K+]i coincided with 

reduced Mtb growth in monocytes (Fig. 4h), increased levels of LC3 and occurrence of autophagic 

flux, indicating enhanced autophagy (Fig. 4i,j, and Extended Data Fig. S6a). K+-mediated 

mycobacterial growth restriction was also observed in PMA-differentiated THP-1 macrophages 

(Extended Data Fig. 5i). Importantly, BCG-infected KCNJ15KD cells showed reduced APG4 

staining when exposed to a high extracellular K+ concentration, indicating a role for Kir4.2 in 

potassium influx (Fig. 4k).  

 

Autophagy is induced upon dephosphorylation of mTOR, which inhibits mTOR’s activity35. In 

our experiments, elevated extracellular K+ caused hypophosphorylation of Akt, mTOR and pS6 

(an mTOR substrate), indicating decreased Akt-mTOR signaling (Fig. 4l and Extended Data Fig. 

6b-d). Furthermore, suppression of autophagy by 3-methyladenine (3-MA) attenuated potassium-

mediated inhibition of mycobacterial growth (Fig. 4m). These results indicate that increased 

[K+]i restricts Mtb growth by inhibiting Akt-mTOR signaling, leading to increased autophagy. 

Similar suppression of Akt-mTOR signaling by increased [K+]i has been described in T 
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lymphocytes36. Overall, our results indicate that Kir4.2 is a conduit in the cell membrane for K+ to 

enter monocytes, and its upregulation is a protective host response to Mtb infection. 

 

Identification of haQTLs and association with eQTLs and GWAS  

In addition to identifying disease-associated chromatin changes, HAWAS data can be used in 

conjunction with the G-SCI test37 to sensitively detect SNPs associated with population variation 

in histone acetylation, i.e. haQTLs14. These haQTLs could then be used to identify candidate causal 

variants in GWAS loci14,17,37–41. We identified 3,066 haQTLs in granulocytes and 3,377 in 

monocytes (FDR Q-value≤0.05; Fig. 5a,b, and Supplementary Table 4). Note that disease status 

was regressed out prior to QTL analysis (Methods), and thus the resulting haQTLs are not specific 

to TB. The haQTLs from our Chinese cohort were strongly enriched for high linkage 

disequilibrium (LD) with haQTLs previously detected in granulocytes and monocytes from a 

European cohort17. Nevertheless, >75% of our haQTLs were novel (Fig. 5c,d). Our haQTLs 

colocalized with eQTLs previously detected in granulocytes and monocytes17,42,43, indicating they 

are likely to contribute to gene expression variation (Extended Data Fig. 7 and Supplementary 

Table 5). 

 

To identify haQTLs that may contribute to human phenotypes, we tested them for LD with non-

coding GWAS variants (P-value≤5e-8) for infectious diseases, inflammation and autoimmune 

disorders44 (Methods; Supplementary Table 6). None of the 13 TB-associated SNPs from the 

GWAS catalog were in LD with our haQTLs, perhaps because 10/13 were detected in non-Asian 

populations45 (Supplementary Table 6). We then examined the 30 Asian GWAS SNPs associated 

with leprosy, which is caused by Mycobacterium leprae. These 30 SNPs were enriched for LD 

with granulocyte haQTLs (P-value=1.9e-4; Fig. 5e and Supplementary Table 6), suggesting that 

some of the granulocyte haQTLs may contribute to mycobacterial infection by altering gene 

regulation in host cells4. We also tested the haQTL sets for association with GWAS SNPs for 

inflammation and autoimmune disorders (Supplementary Table 6). Most prominently, monocyte 

haQTLs were enriched for LD with autoimmune GWAS SNPs (P-value=1.1e-5; Fig. 5f). 

Granulocyte haQTLs showed a similar, though lower, enrichment. In addition, granulocyte 

haQTLs were significantly enriched in GWAS loci related to inflammation (P-value=1.1e-3). 
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Thus, the haQTL sets likely contain multiple genetic variants contributing to inflammation and 

autoimmune disorders. 

 

Discussion 

Our study broadens the scope of the approach by demonstrating its applicability to an immune 

phenotype. Since previous HAWAS analyses were based on a single cohort, the reproducibility of 

the detected DA peaks could not be established. Our comparison of discovery and validation 

cohorts demonstrates that DA peaks are indeed reproducible, despite potential confounders such 

as age, sex, ethnic diversity and technical variation. Importantly, this result was obtained with a 

relatively small cohort size, of the order of 20 disease vs. 20 control samples. The recently 

concluded HAWAS on Alzheimer’s disease16 was also based on a similarly small cohort. Thus, 

HAWAS is an inexpensive and robust technique, which could potentially offer mechanistic 

insights into diverse diseases. 

 

In addition to identifying disease-associated chromatin traits (DA peaks), HAWAS provides a rich 

resource of haQTLs, some of which are likely to represent the underlying causal variants within 

GWAS loci. GWAS results can be population-specific, most commonly because of differences in 

allele frequency and linkage between population groups46. These two factors may also contribute 

to population differences in haQTLs. For example only 22% of Chinese granulocyte and monocyte 

haQTLs were present in the corresponding European haQTL sets17  (Fig. 5C). Moreover, the causal 

candidates inferred through LD with GWAS variants were also largely unique (Supplementary 

Table 6). Overall, our results suggest that haQTL analysis in novel populations could substantially 

expand the set of known regulatory variants and thus aid in the prioritization of causal candidates 

in GWAS loci. 

 

The >2,000 differentially acetylated loci identified in this HAWAS provide a large set of 

candidates for locus-specific mechanistic investigations into Mtb–induced host response. The 

enrichment of DA peaks near voltage-gated potassium channels is particularly intriguing. 

Although this gene category has not previously been examined in the context of innate immune 

response to mycobacterial infection, the connection to TB is plausible because potassium channels 

are thought to stimulate autophagy47,48, a known mechanism of TB control by monocytes and 
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macrophages33. Indeed, we found that upregulation of KCNJ15/Kir4.2 induced autophagy and 

restricted microbial growth in monocytes, and extracellular K+ supplementation had similar 

effects. Since potassium channels are druggable, these results open up a new avenue for research 

into host-directed therapies for TB49. 

 

Methods 

 

Human subjects. HIV-negative ATB patients (based on clinical diagnosis with mycobacterial and 

radiographic evidence) and HC individuals (negative for IFN-γ release assay (IGRA); 

QuantiFERON TB gold test) were recruited at Tan Tock Seng Hospital’s Tuberculosis Control 

Unit (TTSH, TBCU). Additional HC individuals were recruited locally at SIgN. Patients were 

sampled within 7 days of anti-TB treatment initiation and excluded if they had previously received 

anti-TB therapy. This study has complied with all ethical regulations and was approved by the 

Domain Specific Review Board (DSRB) of the National Healthcare Group (#2010/00566; for 

collection of blood samples from TB patients and healthy individuals), Institutional Review Board 

of the National University of Singapore (#09-256; for collection of blood samples from healthy 

individuals), and SingHealth Centralised Institutional Review Board (#2017/2806; for collection 

of blood samples from healthy individuals). IRB #2017/2806 is the continuation of IRB #09-256. 

All subjects provided consent to be included in the study.  

 

Reagents. The following chemicals were used: KCl (Sigma-Aldrich, #P954), Bafilomycin A1 

(Sigma-Aldrich, #B1793), Phorbol Myristate Acetate (PMA) (Sigma, #P1585), 3-Methyl-Adenine 

(3MA) (Sigma, #M9281), Paraformaldehyde (Electron Microscopy Sciences, #15710). The 

following antibodies were used: anti-KCNJ15 (Sigma-Aldrich, #HPA016702), anti-LC3B (Cell 

Signaling Technology, #3868; Novus, #NB100-2220), anti–glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (14C10) (Cell Signaling Technology, #2118), anti-rabbit 

immunoglobulin G (IgG) horseradish peroxidase (HRP)-linked antibody (Cell Signaling 

Technology, #7074), Alexa Fluor 647 mouse anti-mTOR (pS2448) (BD Biosciences, #564242), 

V450 mouse anti-Akt (pS473) (BD Biosciences, #560858), V450 mouse anti-S6 (pS235/pS236) 

(BD Biosciences, #561457), mouse IgG1 kappa isotype control eFluor 450 (eBioscience, #48-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644112doi: bioRxiv preprint 

https://doi.org/10.1101/644112


 
 

 

 12 

4714-82) and Live/dead fixable aqua dead cell stain kit (Thermo Fisher Scientific, #L34965). ON-

TARGET plus SMARTpool Human-KCNJ15 (3772) small interfering RNAs (siRNAs) 

(#L006245000005) and control siRNAs (#1299001) were from Dharmacon and Integrated DNA 

Technologies, respectively. 

 

THP-1 cell line. Human monocyte THP-1 cells from ATTC were maintained in Roswell Park 

Memorial Institute (RPMI-1640) medium (Gibco), supplemented with 10% heat-inactivated fetal 

bovine serum (FBS), 1% sodium pyruvate, 1% L-glutamine, 1% non-essential amino acids (Life 

technologies), and 1% kanamycin (Sigma-Aldrich), at 37°C in a 5% CO2 humidified atmosphere. 

In infection experiments, no antibiotic was used. Macrophage differentiation of THP-1 cells was 

effected by treating with 100 ng/mL phorbol myristate acetate (PMA) for 24hr. Cells were then 

washed and rested for 24hr prior to infection. 

 

Primary Monocytes and Granulocytes. Primary cells were purified from the blood of subjects 

recruited in this study (see below).  

 

Cell separation and isolation from human peripheral blood. Peripheral blood mononuclear 

cells (PBMCs) and granulocytes were separated using a Ficoll gradient and RBCs were lysed. 

From PBMCs, monocytes were isolated using CD14+ immunomagnetic separation beads (MACS, 

Miltenyi). Isolated cells were immediately fixed with 1.6% paraformaldehyde and stored at -80oC 

before processing for Chip-seq. Flow cytometric analysis was performed on purified cell 

populations using monoclonal antibodies against CD3, CD14 and CD15. Both cell populations 

showed purity >95% (Extended Data Fig. 8). 

 

ChIP-seq of isolated granulocytes and monocytes. For each ChIP-seq experiment, 

approximately 10 million fixed granulocytes or 3 million monocytes were thawed on ice. Cells 

were lysed (10mM Tris-HCl [pH 8], 0.25% Triton X-100, 10mM EDTA, 100mM NaCl, Roche 

1X Complete Protease Inhibitor) and nuclei were collected and re-suspended in 300µl SDS lysis 

buffer (1% SDS, 1% Triton X-100, 2mM EDTA, 50mM Hepes-KOH [pH 7.5], 0.1% sodium 

deoxycholate, Roche 1X Complete Protease Inhibitor). Nuclei were lysed for 15 minutes, followed 

by sonication to fragment chromatin to an average size of 200–500bp (Bioruptor NGS, 
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Diagenode). Protein-DNA complexes were immuno-precipitated using 3µg of H3K27ac antibody 

from the same lot for all ChIP experiments (Catalogue #39133; Active Motif) coupled to 50µl 

Protein G Dynabeads (Thermo Fisher) overnight. Beads were washed and protein-DNA complexes 

were eluted using 150µl of elution buffer (1% SDS, 10mM EDTA, 50mM Tris-HCl [pH 8]), 

followed by protease treatment and de-crosslinking overnight at 65°C. After phenol/chloroform 

extraction, DNA was purified by ethanol precipitation. Library preparation was performed as in 14 

After 15 cycles of PCR using indexing primers, libraries were size selected for 300-500bp on low-

melting agarose gel and 4 libraries were pooled for sequencing at 2x100bp in each lane of an 

Illumina HiSeq 2000 flow cell using Version 3 reagents. In total, we generated 190 H3K27ac 

ChIP-seq datasets from 90 granulocyte and 100 monocyte samples. 

 

Read alignment, peak calling and peak height normalization. Reads were mapped to the human 

genome (GRCh37) using BWA-0.7.5a50 at default parameter settings as described previously14,37. 

Reads not annotated by BWA as properly paired were discarded, as were reads with mapping 

quality<10. Duplicate reads (read-pairs mapping to the same genomic location) were collapsed. 

For each sample, ChIP-seq peaks were detected relative to input control using DFilter13 at a P-

value threshold of 1e-6. For either cell type, the initial peak set was defined as the union of peaks 

from the entire set of discovery and validation samples from Batches 1 and 2, which included the 

vast majority of samples (Supplementary Table 1). Peaks wider than 8Kb were then discarded. We 

performed multi-sample correction for GC bias13,37 separately on each processing batch. We then 

discarded samples with low complexity as measured by the number of unique read-pairs (<15 

million for Batches 1 and 2; <30 million for Batch 3). We also discarded samples with high GC 

bias (>4,500 peaks showing greater than two-fold GC bias in either direction). 

 

Of the 135 retained high-quality samples (74 granulocyte, 61 monocyte), we designated those from 

age-matched Chinese donors in Batches 1 and 2 as belonging to the discovery cohort (Fig. 1b). 

The remaining samples, which were multi-ethnic (Chinese, Malay, Indian) and included a third 

processing batch, constituted the validation cohort. For each combination of cell type and cohort, 

the final consensus peak set was then defined as the set of peaks detected in at least 5 of the retained 

high-quality samples (Supplementary Table 2). These consensus peaks presumably indicate the 

locations of active enhancers and promoters in the corresponding samples. Note that only 
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autosomal chromosomes were considered in our analyses. Peak heights within each peak set were 

quantile normalized to match the distribution of mean peak height. 

 

Differential Peak Calling. The following 7 biological and technical confounders were considered 

in our analysis of peak height variation across samples in the discovery cohort: age, sex, number 

of reads, median insert size, number of peaks, percent unique reads, and sequencing batch. We 

used an iterative strategy where the confounder that explained the greatest amount of variance was 

regressed out at each iteration (Extended Data Fig. 1b). Note that confounding factors were 

regressed out from the logarithm of the peak height matrix, following the multiplicative-effects 

model used previously14. The procedure was terminated when the first 5 principal components of 

the residual peak height matrix were uncorrelated with any of the 7 potential confounders 

(Spearman correlation coefficient≤0.4; Extended Data Fig. 1c). This regression strategy accounts 

for the non-independence of confounding variables. By this procedure, we regressed out four 

covariates from the monocyte dataset (batch, no. of peaks, percent unique reads and sex) and four 

from the granulocyte dataset (batch, no. of reads, no. of peaks, and sex). Data from the multi-ethnic 

validation cohort were controlled for two additional covariates: age and ethnicity (Extended Data 

Fig. 1c). For each cohort, differentially acetylated peaks were determined using a 2-step 

approach14. First, using all individuals in the cohort, a differential acetylation P-value was 

calculated for each peak using the 2-sample one-sided Wilcoxon test (FDR Q-value≤0.05; fold-

change≥1.2). We then followed a procedure designed to restrict the DA peak analysis to the core 

set of consistent samples, i.e. samples that displayed a global histone acetylation signature 

consistent with their categorization as ATB or HC14. Briefly, we defined the pairwise distance 

between two samples to be the Pearson correlation coefficient of their peak height vectors (DA 

peaks only). For each sample, we then calculated its median distance from HC samples and its 

median distance from ATB samples within the same cohort. If an HC sample was closer to ATB 

samples, it was discarded from the core set. Similarly, ATB samples that were closer to HC were 

also discarded from the core set. The final core set used for DA peak calling comprised 47 ATB 

and 71 HC samples (Fig. 1b). The final set of DA peaks was then defined based on samples from 

the core set (FDR Q-value≤0.05; fold-change≥1.2; Supplementary Table 1). Discovery-cohort DA 

peaks defined in this manner were independently corroborated using the validation cohort (Fig. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644112doi: bioRxiv preprint 

https://doi.org/10.1101/644112


 
 

 

 15 

2b). Peak height heatmaps and MA plots for samples from the core set are shown in Extended Data 

Figs. 2a and 1d. 

 

Functional Enrichment Analysis of DA Peaks. We used the GREAT tool19 to separately 

determine the enrichment of gene categories in up- and down-regulated peaks. Genes were 

associated with regulatory regions using the basal+extension association rule defined by GREAT. 

The statistical significance of DA-peak enrichment near genes from any particular category 

(relative to all peaks) was calculated using Fisher’s exact test (FDR Q-value≤0.05; fold-

change≥1.5). Enriched functional categories containing fewer than 6 genes flanking DA peaks 

were then discarded. Finally, for display in Fig. 3a, we discarded any enriched gene category if it 

was redundant with a higher-ranked (more significant) category. Redundancy between two 

functional categories was defined as overlap of ≥40% in the number of genes flanking DA peaks. 

The complete list of GREAT results, including redundant hits, is shown in Supplementary Table 

2. Enrichment analysis of DA peaks near individual genes (Fig. 3d) was performed using the same 

statistical method, except that in this case each peak was assigned to its two closest genes. 

 

Comparison with IHEC data. We downloaded bigwig and peak files corresponding to 184 

granulocyte and 173 monocyte H3K27ac ChIP-seq datasets from the IHEC Data Portal51. We 

obtained the intersection of IHEC peaks with peaks in our data (26,429 granulocyte and 33,720 

monocyte peaks common to both) and used the bigWigAveToBed tool to calculate peak heights 

in the IHEC dataset 52. For comparison to IHEC, we converted BAM files from this study to bigwig 

format and then ran bigWigAveToBed on the same peak regions. For each peak region, we 

correlated mean peak height (across samples) in the IHEC dataset to mean peak height in our own. 

 

Detection of SEs. For each monocyte and granulocyte sample from the discovery cohort, SEs were 

ascertained using Homer25. SE annotations for each cell type were merged by constructing the 

union set of SEs from individual samples. Elements of the union set that  overlapped SEs in fewer 

than 5 individuals were discarded, resulting in a final set of 757 consensus SEs in granulocytes 

and 905 in monocytes. SE peak height in each sample was defined as the number of ChIP-seq 

reads mapped to the corresponding genomic region.  The SE coordinates and read counts for each 

sample as calculated by Homer are given in Supplementary Table 1. 
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RNA-seq of isolated granulocytes and monocytes. RNA-seq was performed on 39 granulocyte and 39 

monocyte samples from ATB and HC individuals (Fig. 1d and Supplementary Table 1). Total RNA was 

extracted using the Ambion mirVana™ miRNA Isolation Kit (Ambion® Thermo Fisher Scientific, 

#AM1561) according to the manufacturer's protocol. All human RNAs were analyzed on an Agilent 

Bioanalyzer for quality assessment. RNA QC: RNA Integrity Number (RIN) ranged from 7.1 to 10, with a 

median value of 9.5. cDNA libraries were prepared using 300 ng of total RNA and 2ul of a 3:1000 dilution 

of ERCC RNA Spike-In Controls (Ambion® Thermo Fisher Scientific, #4456739). The fragmented mRNA 

samples were subjected to cDNA synthesis using Illumina TruSeq® RNA sample preparation kit version 2 

(Illumina, #RS-122-2001 and #RS-122-2002) according to the manufacturer's protocol, except for the 

following modifications: 1. use of 12 PCR cycles, 2. two additional round of Agencourt Ampure XP SPRI 

beads (Beckman Courter, #A63881) to remove >600bp double-stranded cDNA. The length distribution of 

the cDNA libraries was monitored using DNA 1000 kits on the Agilent bioanalyzer (Agilent, Santa Clara, 

CA, USA). All samples were subjected to an indexed PE sequencing run of 2x51 cycles on an Illumina 

HiSeq 2000 (Illumina, San Diego, CA, USA) (3-4 samples/ lane). FASTQ files were mapped using STAR 

to the human genome build hg19. The mapped reads were then counted using featureCounts based on 

GENCODE V19 annotations to generate gene counts. 

 

RNA-seq data analysis.  Gene-specific read counts were normalized to RPKM values and a consensus set 

of expressed genes was defined as those that were expressed (log2(RPKM)≥-0.5) in at least 5 individuals. 

This yielded 12,465 expressed genes for granulocytes and 13,309 for monocytes.  One granulocyte sample 

was discarded due to poor library quality (percent reads mapped=45.3% and percent uniquely mapped 

reads=43.1%). Age, sex, ethnicity, and four technical covariates (number of reads, fraction of reads in 

exonic regions, percent of reads mapped to the human genome, percent uniquely mapped reads) were 

regressed out from the log2(RPKM) values (Extended Data Fig. 2b).  Differentially expressed (DE) genes 

were subsequently ascertained by the same two-step procedure as was used on ChIP-seq data 

(Supplementary Table 1). As before, we used the two-sample one-sided Wilcoxon test to quantify statistical 

significance (FDR Q-value≤0.05; fold-change≥1.5). Differential expression was correlated to differential 

acetylation by associating DE genes to all DA peaks within 10Kb of their transcription start site (Fig. 1f).  

Gene ontology analysis was performed using GOrilla20 provided with a foreground (DE genes) and 

background list (all expressed genes).  The statistical significance was computed using Fisher’s exact test 
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(FDR Q-value≤0.05; fold-change≥1.5) and redundant terms were defined as above (overlap of ≥40% in the 

number of genes).  The complete list of GOrilla results including redundant terms is shown in 

Supplementary Table 2. 

 

Transcriptomic data. KCNJ15 gene expression profiles were analyzed in the 77 RNA-seq 

samples (Fig. 1c) and four publicly available clinical datasets of whole blood gene expression 

profiles from ATB patients (n=92) and healthy individuals (n=61), patients with TB undergoing 

therapy at various time points (n=7) (Supplementary Table 3). The following primers were used 

to measure KCNJ15 expression by quantitative RT-PCR in in vitro experiments:  

F - CCCGGTGAGCCCATTTCAAATC and R- GACCAACTGAGCAACCAACAGG.  

 

Quantification of intracellular potassium ([K+]i) by flow cytometry. THP-1 cells were loaded 

with potassium sensing dye Asante Potassium Green (APG-4) (TEFLabs) using PowerLoad 

(Invitrogen) according to the manufacturer’s protocols. To calibrate [K+]i, APG-4 loaded cells 

were treated with 50 µM amphotericin-B (to increase membrane permeability to monovalent ions) 

in increasing doses of extracellular K+: 5, 40, 80, 120, 140, 160 and 180mM, to provide a known 

[K+]i. [K+]i in various extracellular K+ conditions were then quantified based on intra-experimental 

calibration curve. All experiments were carried out on a BD LSRII Fortessa flow cytometer (BD 

Biosciences) and data was analysed with FlowJo (Three Star).  

 

Confocal and 3D-SIM super-resolution microscopy. Following infection with BCG, THP-1 

cells were seeded onto coverslips. mcherry-BCG infected cells were loaded with 5µM APG-4 

(TEFLabs) with PowerLoad (Invitrogen) while GFP-BCG infected cells were stained with 

LysoTracker Red DND-99 (Molecular Probes), according to manufacturers’ instructions 

respectively. Cells were then fixed in 4% (v/v) formaldehyde, permeabilized with 0.3% (v/v) 

Triton-X 100 in PBS and blocked with 5% (w/v) BSA in PBS. Cells were stained for Kir4.2 

(Sigma) followed by secondary antibody conjugated with Alexa Fluor 647 (Molecular Probes) and 

Hoechst 33258 (Sigma). Stained cells were mounted with Vectashield H-1000 (Vector 

Laboratories). Confocal imaging was performed using a laser scanning microscope LSM 800 with 

Airyscan (Carl Zeiss). A Plan-Apochromat 63X/1.40 Oil DIC M27 objective lens and excitation 

wavelengths of 405, 488, 561 and 640 nm were used. The confocal pinhole was set to 1 Airy unit 
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for the green channel and other channels adjusted to the same optical slice thickness. Airyscan 

processing was performed with ZEN software platform (Carl Zeiss). 3D-SIM images were 

acquired on a DeltaVision OMX v4 Blaze microscope (GE Healthcare) equipped with 405, 488, 

561 and 647 nm lasers and a solid-state illuminator (WF) for excitation, and a BGR filter drawer 

(emission wavelengths 436/31 for DAPI, 528/48 for Alexa Fluor 488, 609/37 for Alexa Fluor 568, 

and 683/40 for Alexa Fluor 642). An Olympus Plan Apochromat × 100/1.4 Point Spread Function 

(PSF) oil immersion objective lens was used with liquid-cooled Photometrics Evolve EM-CCD 

cameras (Photometrics, Tucson, AZ) for each channel. Fifteen images per section per channel were 

acquired (made up of three rotations and five phase movements of the diffraction grating) at a z-

spacing of 0.125µm. Structured illumination deconvolution followed by alignment was carried out 

with SoftWorX (Applied Precision). Three-dimensional image reconstruction, figure and movie 

preparations were done with Imaris software (Andor-Bitplane, Zurich). 

 

Patch-clamp studies. THP-1 cells were centrifuged at 100 g for 3 min at room temperature. The 

supernatant was removed and cells were suspended in 1 mL of CHO serum-free medium and 

transferred into Qfuge tubes. Cells were washed two additional times with extracellular solution 

used for QPatch experiments, and then suspended in 150-350µL extracellular solution to keep cell 

density at 2-5x106/ml. Whole-cell patch-clamp experiments were carried out on a QPatch-48 

automated electrophysiology platform (Sophion Biosciences) using disposable 48-channel planar 

patch chip plates. Cell positioning and sealing parameters were set as follows: positioning pressure 

−70 mbar, minimum seal resistance 0.1 GΩ, holding potential −80 mV, holding pressure −20 mbar, 

the minimum seal resistance for whole-cell requirement 0.001 GΩ. Access was obtained with the 

following sequence: (1) suction pulses in 29 mbar increments from −250 mbar to −453 mbar; (2) 

a suction ramp of amplitude of −450 mbar; (3) −400 mV voltage zaps of 1 ms duration (10×). 

Following establishment of the whole-cell configuration, cells were held at −20 mV for 20 ms, a 

voltage step protocol (-150 mV ~ +90 mV) with 10 mV increment (I-V study) or a ramp protocol 

(ramped from −110 to +40 mV in 200 ms). The first trace was recorded 3 min later after changing 

the external solution, and 10 set of traces (I-V protocol) or 10 traces (ramp protocol) were recorded. 

For high extracellular K+ or high extracellular Ba2+ study, the concentration was changed from low 

to high without washing in between. The external solution was Na+-Ringer's and contained 

(inmM): 160 NaCl, 10 HEPES, 4.5 KCl, 1 MgCl2, 2 CaCl2 (pH 7.2, 310 mOsm). The internal 
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solution contained (in mM): 120 KCl, 10 HEPES, 1.75 MgCl2, 1 Na2ATP, 10 EGTA and 8.6 

CaCl2. 

 

Generation of VSV.G pseudotyped lentiviral and transduction of human primary 

monocytes. HIV-1 based lentiviral vector encoding the enhanced green fluorescent protein 

(EGFP) driven by CMV or the constitutive EF1a promoter for the expression of gene of interest 

in a SIN configuration was used. Custom synthesized (IDT biotech) human KCNJ15 cDNA was 

sub-cloned into the PE1A plasmid (Invitrogen, #A10462), followed by gateway transfer of 

KCNJ15 into the lentiviral vector. In brief, HEK293 cells were transfected using Xfect (TakaRa, 

#631318) with the viral packaging construct [pMDLg/pRRE (Addgene, #12251), pRSV/REV 

(Addgene, #12253), pMD2.G/V-SVG (Addgene, #8454)]. Lentiviral particles were collected from 

the supernatant 48 to 72hr after transfection, concentrated by LentiX concentrator (Clontech, 

#631232), and titrated by qPCR (determination of number of transducing or infectious units per 

ml) on HeLa cells. Titres for control and KCNJ15 lentivirus were 6×107 TU/ml. Blood-derived 

CD14+ monocytes were adjusted to a concentration of 1×106 cells/ml, for gene transduction, 

duplicate wells of a 12-well plate were seeded with 1 ml/well of the cell suspension (1×106 

cells/ml) and virus was added in the presence of 6 µg/ml polybrene (Sigma-Aldrich, #107689) 

(multiplicity of infection of 25). Cells were then incubated overnight with the virus and residual 

vector virus and non-adherent cells were removed by washing the wells with growth medium and 

the plate was further incubated at 37°C. Two days after the initial addition of vector virus, 

transduction efficiency was determined by flow cytometry. 

 

Transfection of siRNAs. THP-1 cells were transfected with siRNAs using the Lipofectamine2000 

Kit (Invitrogen, #11668-019) according to the manufacturer’s protocol. Knockdown was 

confirmed by qRT-PCR and Western blotting.  

 

Western blot. Protein lysates from cells were obtained by lysis in radioimmunoprecipitation assay 

buffer (Merck Millipore, #R0278) with protease and phosphatase inhibitors (Roche, 

#04906837001). A Micro BCA Protein kit (Thermo Scientific, #23235) was used to measure 

protein levels, and equal amounts of proteins were resolved by electrophoresis on 12% Tris-HCl 

gels (Mini-PROTEAN TGX gels; Bio-Rad, #4561043) and transferred onto polyvinylidene 
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difluoride membranes (Trans-Blot Turbo Transfer Pack; Bio-Rad, #1704156). Membranes were 

developed using the indicated primary antibody at a 1:1000 dilution and secondary antibodies at a 

1:3000 dilution in blocking solution. This was followed by incubation with Chemiluminescent 

HRP detection reagent (Merck Millipore, #WBKLS0500) for 1 min before image acquisition.  

 

Analysis of phosphorylated proteins using flow cytometry. Single-cell suspensions were 

resuspended in PBS and stained for 30min with live/dead fixable aqua dead cell stain kit (Thermo 

Fisher Scientific, #L34965). Cells were washed with FACS buffer containing PBS with 3% FBS, 

1mM EDTA and 0.1% sodium azide) and incubated with Human TruStain FcX™ (BioLegend, 

#422302) for 20min. Following this, cells were washed with FACS buffer, fixed and permeabilized 

using the PerFix EXPOSE kit (Beckman Coulter, #B26976) according to manufacturer’s 

instructions. Permeabilized cells were incubated for 30 min in the dark with fluorophore-

conjugated antibodies specific for phosphorylated marker or isotype control antibodies. Cells were 

analysed using the LSRII flow cytometer (BD) and data was analysed with FlowJo software. 

 

SNP Calling. All discovery samples indicated in Fig. 1b were used for SNP calling as described 

previously14,37. Following GATK best practices, the BAM file for each ChIP-seq sample was 

realigned at given indel sites and base qualities were then recalibrated53. For each sample, GATK’s 

Haplotype Caller was ran in GVCF mode, and subsequently multi-sample SNP calling was 

performed on all samples (granulocytes plus monocytes) using GATK’s GenotypeGVCFs tool. 

The raw SNP call set was filtered using our custom pipeline for SNP calling from ChIP-seq data37. 

Based on criteria defined in37, we filtered out SNPs that matched any of the following: QD<4.185, 

Inbreeding Coefficient<-0.398, within a SNP cluster of more than 19 SNPs in a 100bp window, 

Homopolymer run≥18, and Hardy-Weinberg equilibrium binomial test P-value≤1e-3. We 

additionally imposed the criterion that a SNP should be supported by at least 5 non-reference reads 

across all datasets, and at least one of the datasets should have 3 or more non-reference reads. We 

also discarded SNPs contained within UCSC Genome Browser self-chains blocks with a 

normalized score>90. Based on this pipeline, we discovered 362,021 SNPs in ChIP-seq peaks, of 

which 247,411 were polymorphic in the granulocyte dataset and 273,753 in the monocyte dataset. 
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Genotyping. All samples were genotyped using the Illumina OmniExpress v1.1 Beadarray, which 

assesses >700,000 representative genetic markers in a genome-wide manner. A subset of SNPs 

were further validated using the Sequenom MassArray primer extension platform. Both methods 

have been used extensively by others and us and have been found to result in >99.99% 

concordance54. Genotypes inferred were compared against genotype calls from ChIP-seq reads to 

identify and correct sample swaps in the ChIP-seq pipeline.  

 

Histone Acetylation QTLs. We used the G-SCI test to call haQTLs in granulocytes and 

monocytes37. Only high-quality samples from the ethnically homogeneous discovery cohort were 

used in this analysis (46 granulocyte samples, 32 monocyte samples). The G-SCI test does not 

require prior knowledge of genotypes. Rather, it infers genotype likelihoods from ChIP-seq read 

counts and then integrates over all possible genotypes to calculate the statistical significance of an 

haQTL. This test combines information from peak height vs. genotype correlation across samples 

and allelic imbalance in read count within heterozygous individuals. These two signatures of an 

haQTL are combined into a single P-value. To infer haQTLs independently of disease state, 

disease status was regressed out from the peak-height matrix used for DA peak calling, and the 

residual was used for G-SCI analysis14. In this study, the G-SCI test procedure was refined in two 

ways. Firstly, for each SNP k, we replaced the uniform allele frequency prior used in the original 

study with a SNP-specific allele frequency fk. Thus, for each SNP, we estimated four parameters 

by maximum-likelihood (fk, a, b, and s) instead of three. Secondly, we modified the method for 

permutation testing to convert raw P-values to final P-values. The original permutation approach37 

randomized the data by permuting peak heights across samples for the same SNP. In addition, 

reference and non-reference base calls were randomly flipped with probability 0.5 at heterozygous 

sites. In the current study, this procedure was generalized and accelerated by randomly swapping 

data between ChIP-seq units. A unit was defined as the peak height and allelic counts for a SNP 

in a single individual. Thus the total number of units would equal the number of SNPs times the 

number of individuals. Units were then binned in three dimensions according to their peak height, 

number of reads covering the SNP and fraction of non-reference reads. Units within the same 

three-dimensional bin were randomly permuted, and the haQTL P-value was then calculated for 

each SNP. As before, the permutation-test P-value was then calculated based on the rank of the 

raw P-value relative to the P-values of permuted data. Again, as before, SNPs with an adjusted P-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644112doi: bioRxiv preprint 

https://doi.org/10.1101/644112


 
 

 

 22 

value of 0 after 1 million permutations were assigned an adjusted P-value of 5e-7. FDR correction 

and filtering for QTL effect size was performed as before37. 

 

Overlap between haQTLs and eQTLs. We downloaded the granulocyte eQTLs43 and obtained 

the subset that was in tight linkage with SNPs we called within granulocyte ChIP-seq peaks. The 

genotypes from the European population of 1000 Genomes were used in the LD calculation, with 

a threshold of R2≥0.8 and maximum distance of 500 Kb. As before, we corrected for LD within 

the eQTL set by constructing the LD network of the eQTL set and replaced each connected 

component in the network by the SNP with the best eQTL P-value37. This resulted in 1,257 

Naranbhai eQTLs used for analysis. We downloaded the naïve monocyte eQTLs42 and used the 

same procedure to obtain a final set of 2,216 eQTLs for further analysis. We also downloaded 

neutrophil and monocyte eQTLs17 and retained those with an FDR Q-value≤0.05. If a gene had 

more than one eQTL, the one with the best P-value was kept and the others were discarded. Chen 

et al. eQTLs were further filtered based on LD as described above, resulting in 3,069 neutrophil 

and 3,460 monocyte eQTLs for further analysis. Note that the vast majority of granulocytes in 

peripheral blood are neutrophils. For each SNP from the four eQTL sets, the LD with haQTLs 

from the corresponding cell type was calculated using the same 1000 Genome population and LD 

thresholds as above. To calculate the statistical significance of the LD, we randomly chose 1.5 

million SNPs as a control set, and used a method as before wherein the likelihood of linkage of 

the control set and eQTL set with haQTLs was calculated while adjusting for allele frequencies, 

genomic location biases (distance from nearest TSS of a gene), biases in LD block sizes between 

the eQTL SNP and control SNP, and correcting for LD within each of the four eQTL sets37.  

 

Overlap with published haQTL datasets. We downloaded neutrophil and monocyte H3K27 

haQTLs17 and processed them in a similar manner to eQTLs. First, we filtered for FDR Q-

value≤0.05 and retained only the most significant haQTL for each ChIP-seq peak. We then 

discarded haQTLs that were not in LD with any SNP within our ChIP-seq peaks (LD was defined 

as R2≥0.8, distance≤500kb). As above, these were further filtered to retain only one haQTL per 

LD cluster, resulting in 3,625 neutrophil H3K27ac QTLs and 4,357 monocyte H3K27ac QTLs. 

We then calculated the statistical significance of the linkage of these haQTLs with our own 

haQTLs using the method described above for eQTLs. 
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Statistical significance of LD between haQTLs and GWAS SNPs. We downloaded phenotype-

associated SNPs from the NHGRI-EBI GWAS catalog44 (downloaded May 2018; Supplementary 

Table 6). Only SNPs with genome-wide significance (P-value<5e-8) were retained and duplicates 

were removed. GWAS SNPs annotated with GRCh38 coordinates were lifted over to GRCh37. To 

create the set of TB-associated SNPs, GWAS results from two TB association studies not 

represented in the catalog were added to the list55,56. Since LD with haQTLs was calculated using 

genotypes from 1000 Genomes data, we obtained the subset of SNPs genotyped in 1000 Genomes, 

resulting in 3 TB-associated SNPs in the Asian population (out of 3), 10 in the European population 

(out of 17) and 0 in the African population (out of 5). LD between these 13 GWAS SNPs and 

haQTLs was calculated using 1,000 Genomes data from the population in which the GWAS study 

was performed (R2≥0.8, distance≤500kb). We next downloaded 30 SNPs associated with leprosy 

from NHGRI-EBI GWAS catalog44 all of which were in East Asian populations and also 

genotyped in 1000 Genomes. We obtained inflammation-associated SNPs from the GWAS 

catalogue44, and found that 80 of the 81 EUR SNPs were genotyped in 1000 Genomes. We also 

used a set of 627 EUR autoimmune GWAS SNPs37 with P-value≤5e-8 (Supplementary Table 6). 

To calculate the statistical significance of linkage between GWAS SNP sets and haQTLs (leprosy, 

autoimmune and inflammation; Fig. 5e,f), we used a method that corrects for allele frequency, 

distance to the nearest transcription start site and biases in LD block size between haQTL and 

control SNPs37. 
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Fig. 1. Histone acetylome-wide association study of TB.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644112doi: bioRxiv preprint 

https://doi.org/10.1101/644112


 
 

 

 30 

(a) Overview of data generation and analysis. (b) Number of high-quality granulocyte and 

monocyte ChIP-seq datasets from discovery and validation cohorts remaining after QC. Sizes of 

corresponding final core sets are indicated in parentheses. Number of consensus ChIP-seq peaks 

in high-quality datasets. Number of differential acetylated (DA) peaks in core set. (c) Volcano 

plots showing log2 fold-change and P-value for consensus ChIP-seq peaks (black dots: DA peaks). 

(d) Statistics of RNA-seq dataset, similar to (b). (e) Volcano plots showing log2 fold-change and 

P-value for expressed genes (black dots: DE genes). (f) Pearson correlation of log-fold-change 

between DE genes and their associated DA peaks. Correlations were calculated for DE and DA 

sets defined using the default FDR threshold (FDR≤0.05), and also a more stringent threshold 

(FDR≤0.01). The number of DE genes with at least one associated with DA peak and the total 

number of points used in the correlation are shown in parentheses. P-values indicate concordance 

of the fold-change direction, calculated using the hypergeometric test. 
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Fig. 2. Differentially acetylated (DA) peaks between ATB and HC.  

(a) Histone acetylation profiles showing consistent differences between ATB (red) and HC (blue) 

in the GBP locus. (b) Scatterplot of ATB-vs-HC fold-change in discovery and validation cohorts. 

R indicates Pearson correlation coefficient for peaks that are DA in both discovery and validation. 

P-value of concordance in fold-change direction for shared DA peaks was calculated using 

Fisher’s exact test. (c) Discovery cohort (exclusively Chinese): principal component analysis 

(PCA) of granulocyte and monocyte peak heights. (d) Validation cohort (multi-ethnic): PCA of 

granulocyte and monocyte peak heights. In both (c) and (d), PCA was based on the discovery DA 

peak set. Squares: Indian; circles: Chinese; triangles: Malay.  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/644112doi: bioRxiv preprint 

https://doi.org/10.1101/644112


 
 

 

 32 

 
Fig. 3. Functional enrichment analysis of DA peaks, KCNJ15 UCSC browser view and SE 

peak heights  
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(a) Discovery cohort: gene ontology enrichment analysis of granulocyte and monocyte DA peaks, 

relative to all peaks. Top three non-redundant gene ontologies (by P-value) are shown. (b) The red 

are monocyte DA peaks that were up regulated peaks in response to infection. The blue box 

indicates the monocyte super enhancer region in the KCNJ15 locus.  Similarly, green regions and 

the orange box indicate granulocyte DA peaks and granulocyte super enhancer region. For 

reference, DNaseI hypersensitivity data from CD14 primary cells (Roadmap Epigenomics), 

H3K27ac ChIP-seq data from CD14 primary cells (Roadmap Epigenomics) and layered H3K27ac 

from 7 cell types (ENCODE) are displayed. (c) Gene ontology enrichment analysis of DE genes, 

similar to (a). (d) Enrichment of DA peaks (relative to all peaks) near individual genes. Most 

significantly enriched genes are shown for each DA peak set. The last column in each table 

indicates whether the DA peak cluster overlaps an SE by at least one peak. (e) Super enhancer 

(SE) peak-heights of monocyte discovery samples at the KCNJ15 locus. The peak heights were 

calculated from reads that mapped into the monocyte SE region displayed in (a), and covariates 

were regressed using the same method used for the RNA-seq data (Methods). The box plot shows 

that the super enhancer is activated in response to TB infection (Wilcoxson-test P-value=4.5e-4, 

fold-change=1.5; center line, median; box limits, upper and lower quartiles; whiskers, 1.5x inter 

quartile range; points, outliers). (f) Similar to (e), granulocyte samples (Wilcoxson-test P-

value=1.7e-3, fold-change=1.3). 
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Fig. 4. Functional characterization of KCNJ15/Kir4.2.  
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(a) KCNJ15 mRNA expression in ATB and HC individuals from multiple cohorts. Singapore: 

RNA-seq, this study; UK 2010, Gambia 2011: microarray. Red line: median. P-value: Mann-

Whitney U test. (b) mcherry-BCG infected THP-1 monocytes stained for lysosomes and 

KCNJ15/Kir4.2, 24hr post-infection. (c) Uninfected and mcherry-BCG infected THP-1 monocytes 

stained for intracellular K+ (APG-4) and Kir4.2, 24hr post-infection. (d) Mtb growth in control and 

KCNJ15-overexpressing (KCNJ15++) primary monocytes; n=5 donors, 24hr post-infection. CFU: 

colony-forming units. (e) Western blot, LC3 (autophagy marker) and GAPDH in KCNJ15++ and 

control primary monocytes, n=2 donors. Densitometric quantification of LC3/GAPDH ratio is 

shown below. (f) Mtb growth after 24hr in scrambled control (-) and KCNJ15KD (+) THP-1 

monocytes; n=3 independent experiments, each in triplicate. (g) Similar to (e), KCNJ15KD and WT 

THP-1 cells 3hr and 24hr post-infection. (h) Effect of extracellular K+ on Mtb CFU in primary 

monocytes; n=4 donors. P-value: one-way ANOVA. (i) Similar to (e), primary monocytes 

incubated with 60mM K+ for 4hr. (j) Similar to (i), n=4 donors. (k) mcherry-BCG infected control 

and KCNJ15KD THP-1 monocytes stained for K+, 24hr post-infection. (l) Flow cytometry: 

phosphorylated AKTS473 (pAKTS473) and pmTORS2448 in primary monocytes stimulated as in (i); 

n=5 donors. (m) Effect of 60mM extracellular K+ and 3-methyl adenine (3-MA; autophagy 

inhibitor) in primary monocytes; n=5 donors. P-values: one-way ANOVA. 

Scale-bars: 2µm. All P-values were calculated using unpaired t-test, unless otherwise specified. *: 

P-value≤0.05; **: P-value≤0.01; ***: P-value≤0.001; ****: P-value ≤0.0001. Error bars: standard 

error.  
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Fig. 5. Landscape of haQTLs in granulocytes and monocytes.  

(a) and (b) Manhattan plots of haQTL distribution in granulocytes and monocytes. Gene names 

are indicated next to haQTLs that are in LD with eQTLs in the same cell type. Granulocyte eQTLs 

were obtained from Naranbhai et al. and monocyte eQTLs from Fairfax et al. (c) and (d) Pie charts 

of granulocyte and monocyte haQTLs from a previous study that are in LD with our haQTLs. (e) 
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and (f) Number of non-redundant granulocyte and monocyte haQTLs in LD with genome-wide 

significant GWAS SNPs. Orange bars: expected number of haQTLs, adjusted for minor allelic 

frequency distribution and distance to the nearest transcription start site; blue bars: observed; Enr: 

fold-enrichment; P-value: Z-score test; EUR: European; EAS: East Asian.  
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