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Abstract 9 

Haruspex is a fully convolutional neural network that automatically annotates both protein 10 

secondary structure and nucleotides in experimentally derived Cryo-EM maps. The network was 11 

trained on a carefully curated dataset of EMDB (Electron Microscopy Data Bank) entries. Haruspex 12 

enables users to identify folds and can be used to guide model building as well as validate 13 

structures.  14 

 15 

In recent years, three-dimensional density maps reconstructed from single particle images obtained 16 

by electron cryo-microscopy (Cryo-EM) have reached unprecedented resolution. However, 17 

modelling an atomic structure to these maps remains difficult as researchers mostly rely on 18 

algorithms developed for crystallographic electron density maps, which are different in both their 19 

nature and error distribution. The first step in modelling a reconstruction map - assigning a fold to 20 

map regions - can be a major challenge. Parallel to the advances in Cryo-EM in the last decade, deep 21 

neural networks achieved remarkable image segmentation capabilities [1], making them the most 22 

powerful machine learning approach available. Convolutional neural networks (CNN) combine 23 

traditional image analysis with machine learning by cascading layers of trainable convolution filters. 24 

CNNs are thus exceptionally well suited for volume annotation and have been successfully applied to 25 

biological problems such as breast cancer mitosis recognition [2] and, in conjunction with encoder-26 

decoder architectures, to volumetric data segmentation [3;4] . 27 

In this work, we demonstrate that deep neural networks are capable of assigning macromolecular 28 

type, i.e. protein or nucleotides, and protein secondary structure elements to experimentally 29 

derived Cryo-EM maps. This can be utilized to drastically facilitate model building, to validate 30 

existing models and support the placement of known domain folds.  31 

In low-resolution Cryo-EM maps, -helices can often be discerned as long cylindrical elements. This 32 

has been exploited by the program helixhunter [5], which searches for prototype helices in 33 

reconstruction maps using a cross-correlation strategy. β-Strands are more difficult to identify as 34 

they are more variable in shape and therefore require morphological analysis [6]. A combination of 35 

these approaches led to the development of SSEHunter [7], which uses a density skeleton to detect 36 
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secondary structures. Deep learning poses an alternative approach and here we demonstrate that at 37 

resolutions of 4 Å or better, experimental data allow training a well-performing network for a 38 

multitude of specimens. Fully convolutional networks [8;3] allow swift segmentation map generation 39 

for objects of variable size and we employed a state of the art U-Net-style architecture [3]. The 40 

network processed 403 voxel segments with a voxel size of 1.0-1.2 Å3 (covering a secondary structure 41 

element and its immediate surroundings) to annotate 203 voxel cubes (corresponding to the center 42 

of the input volume) with four channels containing the probabilities that the voxel is part of an 43 

helical or β-strand protein secondary structure element, RNA/DNA nucleotide, or other. 44 

For network training, we pre-selected EMDB (Electron Microscopy Data Bank [9]) reconstruction 45 

maps with resolutions of 4 Å or better. From 576 entries (as of 15/2/2018), we picked 293 46 

EMDB/PDB (Protein Data Bank [10]) pairs by three criteria: (1) Good fit between map and model; (2) 47 

presence of at least one annotated helix or -sheet; (3) preference of higher resolution maps in 48 

case the same authors deposited several instances of the same macromolecular complex. Maps with 49 

severe misfits, misalignments, or models without corresponding reconstruction density (and vice 50 

versa) were omitted. 51 

To generate ground truth data for network training, a python script was implemented to 52 

automatically annotate the reconstruction map according to the deposited structural model as 53 

helical, β-strand, nucleotide or other. The script combined the original annotations from PDBML 54 

files with secondary structure identified by DSSP [11] and STRIDE-like extension [12;13] (see 55 

Methods). If a secondary structure was identified, all voxels within 3 Å of backbone atoms were 56 

annotated accordingly. All voxels with density 1.0 σ (standard deviation of the map density 57 

distribution) but not within 5 Å of model atoms with density 1.0 σ were masked and did not 58 

contribute to the training. The voxel size of the reconstruction map was re-scaled to 1.1 Å, if outside 59 

[1.0; 1.2] Å. The maps were sliced into a total of 2183 segments á 703 Å3 voxels, of which 110 60 

segments (5%) were set aside for evaluation during network training. Each segment had to contain 61 

at least 100 atoms 1.0 σ, a backbone mean density of 3.0 σ, and at least 5% of the total segment 62 

volume annotated. The training data were augmented through on-GPU 90° rotations (24 63 

possibilities), and by selecting a 403 voxel sub-segment at a random position. The network was 64 

trained for 40,000 steps with 100 segments employed per step.  65 

After training, the network was tested on an independent set of 167 EMDB maps (selected by the 66 

same criteria as training data and deposited after February 2018). Virus and ribosome structures 67 

were omitted from the test set: viruses’ symmetry definition can disagree between map and model 68 

and symmetry-averaged maps exhibit particular features; ribosomes are very common and may 69 

hence bias the network. For evaluation, we investigated residues with mean backbone densities 1.0 70 

σ and compared the predicted secondary structure on a per-residue basis with the one derived from 71 

the deposited PDB model. Using this criterion, the network achieved similar performance on 72 

training, evaluation and test data. Over all test maps, there were 74.1% true positives rp (correctly 73 

predicted residues), 18.9% false positives fp and 4.4% false negatives fn, resulting in a median recall 74 

rate rp(rp + fn)-1 of 94.2% and precision rp(rp + fp)-1 of 79.2%. As a typical example the human 75 

ribonuclease P holoenzyme (EMDB entry 9627) illustrates the power of our approach (Fig. 1), which 76 
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is not only able to accurately predict the RNA vs. protein distribution in this complex but also 77 

correctly assigns secondary structure elements in the protein areas with few exceptions. While the 78 

high number of false positives was worrying at first, inspection of the test cases revealed that false 79 

positives were often elements closely resembling helices, sheets or nucleotides (see Fig. 2). In 80 

particular, semi-helical structures, β-hairpin turns and residues belonging to polyproline type II (PII) 81 

helices [14] were misclassified as -helical and loosely parallel structures were frequently 82 

misclassified as β-strands. 83 

Haruspex was trained for resolutions as low as 4 Å, and with the current rate of resolution increase 84 

in published maps, by 2021, the average resolution may well be 3.5 Å. Irrespective of this, we will 85 

extend our approach to lower resolution data in the future; low resolution experimental maps with a 86 

well-matching model, however, are difficult to obtain. This obstacle has previously been faced by Si 87 

et al. [15] (SSELearner) and Li et al. who developed machine learning approaches for protein 88 

secondary structure prediction in Cryo-EM maps (but not nucleotides) [16], and consequently 89 

resorted partly to simulated maps generated with pdb2mrc [17]. Simulated maps may lack the error 90 

structure and processing artefacts found in experimentally derived reconstruction densities. Si et al. 91 

tested their support vector machine on 10 simulated maps of relatively small structures (<40 kDa) 92 

and, as available data were still very limited in 2012, only 13 experimental maps paired with 93 

individually selected training maps. Haslam et al. [18] used a 3D U-Net, which was trained on 25 94 

simulated and 42 experimental maps between 3-9 Å resolution to predict helices and sheets 95 

obtaining an F1 score 2(recall-1 + precision-1)-1 between 0.79 and 0.88. However, the network was 96 

only tested on six simulated maps and one experimentally derived map. We used a total of 293 97 

experimentally derived maps in a semi-automated process to provide a more realistic training 98 

environment. The amount of newly released high resolution structures in conjunction with our 99 

processing infrastructure allowed us to test our network performance on a representative set of 167 100 

unique depositions. In addition, we identify nucleotides, which to our knowledge has not been 101 

attempted before. Ribosomes, spliceosomes and polymerases all contain substantial amounts of 102 

DNA/RNA nucleotides and are among the most common specimens studied by single-particle Cryo-103 

EM. In addition, β-turns, poly-proline and membrane detergent regions might be desirable additions 104 

in future versions of the network. 105 

We show that a neural network can be used to automatically distinguish between nucleotides and 106 

protein and to assign the two main protein secondary structure elements in experimentally derived 107 

Cryo-EM maps. This technique will render the process of protein structure determination faster and 108 

easier. Haruspex was trained on a carefully curated ground truth dataset based on experimental 109 

data from EMDB. The pre-trained network can be straightforwardly applied to predict structures in 110 

newly reconstructed Cryo-EM density maps, and will be refined and adapted as new data become 111 

available. Besides guidance for model building and domain placements, the network may also be 112 

useful for model validation due to its high median recall and precision rates of 94.2% and 79.2%, 113 

respectively. The trained network and documentation are available from 114 

gitlab.com/phimos/haruspex.  115 
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Methods 121 

Training Data 122 

We queried the Electron Microscopy Data Bank (EMDB) for all single particle Cryo-EM maps with a 123 

resolution 4 Å, for which corresponding protein models were available in the Protein Data Bank in 124 

Europe (PDBe), yielding 576 map and model pairs as of February 2018. We filtered these EMDB/PDB 125 

pairs by the following three criteria: (1) Good fit between map and model; (2) presence of at least 126 

one annotated -helix or -sheet; and (3) preference of the highest resolution maps in case the 127 

same authors deposited several instances of the same macromolecular complex. Maps with severe 128 

misfits, misalignments, or models without corresponding reconstruction densities, and vice versa, 129 

were discarded. After applying these criteria, we retained 293 map/model pairs for generating the 130 

training data. 131 

To extract secondary structure information from the PDB data, we developed a custom parser for 132 

the PDBML [19] format based on xmltodict [20]. To obtain additional secondary structure 133 

information, we implemented a variant of the DSSP algorithm [11] without strand direction, and a 134 

torsion angle based secondary structure detection inspired by STRIDE [13]: annotated or DSSP-135 

detected secondary structures were extended by neighbouring amino acids if they matched the 136 

same Ramachandran profile.  137 

Annotation of reconstruction maps 138 

For every entry pair, the augmented model was then superimposed on the map and all voxels within 139 

3 Å of a C or C,N,O-backbone atom, or, in the case of nucleotides, within 3 Å of any atom, were 140 

assigned the respective class (helix, sheet or nucleotide) if their value was higher than ½ of the 141 

average backbone density of the helix, sheet or nucleotide in question. Secondary structures with a 142 

backbone standard deviation of <2  and atoms without secondary structure assignment were 143 

labelled as “empty” to exclude incorrectly modelled, misfitted, or flexible structures. For some 144 

training data pairs (e.g. virus capsids), only small or partial protein models were deposited for large 145 

Cryo-EM maps, resulting in well-defined high-density regions without model coverage. These regions 146 

will not get annotated and will result in false positives if the network tries to predict the actual 147 

structure. To mitigate this, all voxels with density 1.0 σ but not within 5 Å of a model atom with 148 

density 1.0 σ were masked as unmodeled density and hence did not contribute to training. 149 

Since our network generated a single class label as output, the reconstruction density of the 150 

secondary structures must be converted to a strict assignment to one of the three classes in order to 151 

be used as training examples. For each secondary structure, the reconstruction map density was 152 

multiplied by the backbone standard deviation and rescaled to an output density between zero and 153 

one (corresponding to 0.5 and 1.0 times the average backbone density of the local secondary 154 

structure element) for each label type. The highest channel value determined the voxel class. If 155 

multiple channels shared the same value, sheets took precedence over nucleotides, which took 156 

precedence over helices. Voxels where all channel values were below 0.01 were assigned the 157 

“empty” class. Finally, reconstruction maps were rescaled to a voxel size of 1.1 Å, if they were 158 

outside of [1.0; 1.2] Å. 159 
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Generation of training segments 160 

To generate the 703 voxel sized segments needed for training, candidate volumes were sampled 161 

from the entire map, and segments with a mean backbone density <3.0 σ, less than 5% annotated 162 

volume, or less than 100 atoms with standard deviation 1.0 σ were discarded. This resulted in 163 

altogether 2183 training segments, of which 110 segments (5%) were held back for evaluation 164 

during training. To generate additional segments for training, we applied rotations in steps of 90° 165 

around all three axes, resulting in 24 rotated versions of each segment that could all be used as 166 

separate training volumes since the convolutional network is not rotation-invariant. Segments were 167 

further augmented during training by using a randomly translated 403 sub-cube for each step. 168 

Network Architecture 169 

We use a 3D U-Net architecture with a single input channel (reconstruction density) and an input 170 

layer size of 403 voxels, shown in supplementary Fig. 1. The encoding branch consisted of two 3x3x3 171 

convolutional layers with 32 and 64 feature channels, respectively, followed by 2x2x2 max-pooling 172 

layers. Another convolutional layer with 128 feature channels followed by 2x2x2 max-pooling layer 173 

finally resulted in an 83 cube with 128 feature channels at the deepest layer of the network. This 174 

cube was passed through another convolutional layer with the same data padding in order to 175 

preserve its dimensions. A fully connected layer was considered, but not chosen due to its high 176 

memory and performance cost. The decoding branch of the U-Net was made of two blocks, each 177 

consisting of a deconvolution followed by two 3x3x3 convolutions (128 feature channels in the first, 178 

64 and 32 channels in the second block to restore symmetry) with concatenated sections of the 179 

corresponding layer in the encoding part. The output part consists of a final 1x1x1 convolution 180 

followed by a soft-max output layer. The output layer reproduced the central 203 voxel cube of the 181 

input layer in four annotation channels representing co-dependent probabilities for the four classes 182 

(helix, sheet, nucleotide, empty) summing up to one. The highest channel value determined the 183 

predicted class. Implementation was realized using Tensor Flow [21]. 184 

Network Training 185 

The network was trained for 40,000 steps on training batches of 100 random segment pairs per step, 186 

using ADAM stochastic optimization [22] with a learning rate of 0.001, 1 = 0.9, 2 = 0.999 and = 187 

0.1. Error assignment for backpropagation was performed using cross-entropy loss, where the target 188 

class was represented in one-hot encoded binary format (1 for the target class, 0 for the other three 189 

classes). To account for class imbalance, voxels were weighted according to overall class occurrence 190 

in the training data. Furthermore non-true negatives were weighted 16-fold stronger than true 191 

negatives due to an overabundance of the latter.   192 
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 237 

Figure 1. Haruspex Annotation. A. Reconstruction map for the human Ribonuclease P holoenzyme 238 

(EMDB entry 9627). Manual assignment of secondary structure features can be difficult, in particular 239 

if the composition of a macromolecular complex is unknown. The shown surface corresponds to σ = 240 

0.04 with no carving. B. Secondary structure as identified by our network in the map, projected onto 241 

the surface. Orange corresponds to nucleotides; blue to helices; red to sheets and transparent grey 242 

were not assigned any secondary structure. This was a fairly typical test case with 70.5% true 243 

positives, 18.8% false positives and 10.7% false negatives. Recall was 86.8% and precision 79.0%. 244 

Region (I) depicts a well-predicted -helical structure, (II) a -sheet and (III) RNA misinterpreted as 245 
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an -helix. C. Model (PDB 6AHU) for comparison. The regions depicted in Fig. 2C and 2D are marked 246 

# and *, respectively. 247 

 248 

Figure 2. Network performance. A. Network precision vs. recall rates, with one marker per EMDB 249 

entry (test set markers are orange, training set markers blue). Both perform similarly well. B. 250 

Frequency vs. map σ level for EMDB 9627 on a per-residue basis: True positives (green), false 251 

positives (orange) and false negatives (blue). This plot is typical: false negatives often occur in low 252 

density map regions. C. -Helical false positives (PDB 6AHU, J131 – 139): The model partly occupies 253 

the conformational space of a polyproline type II helix (PII), which is often misinterpreted as -helical 254 

and may have been modelled incorrectly (given that the model does not completely fit the density). 255 

D. False positives in a -sheet (6AHU, B215-B221). The deposited model does not maintain the 256 

hydrogen bonding that defines -sheets; to the network, however, the fold still ‘looks’ like a -sheet 257 

and a third segment (top) is also assumed to be part of it. 258 

 259 
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260 
  261 

Figure 3 (Methods). Haruspex neural network architecture. The network consists of multiple 262 

interconnected layers, shown as rectangular boxes. We employed a state-of-the-art U-Net-like 263 

encoder-decoder architecture [4], a subclass of so-called fully-connected networks where spatial 264 

information and object details are encoded, reduced by pooling layers and then recovered again 265 

with up-sampling or transpose convolutions. The term U-Net arises from the U-like shape of the data 266 

flow. The layers are connected by convolution and pooling operations (arrows). Layer height 267 

represents the level of abstraction: lower layer data, generated by pooling operations, contain more 268 

abstract representations of the map. Input data (blue) is fed into the downconvolutional arm 269 

(yellow) in order to extract valuable information, which is then combined with previously discarded 270 

information through concatenations in the upconvolutional arm (purple) to compute annotated 271 

output data (green) for a subsection (20³) of the input volume (40³). Our network consists of two 272 

encoder blocks, containing altogether three convolutional layers (3x3x3) and two pooling layers 273 

(2x2x2). This is followed by two decoder blocks, one with upconvolution followed by two 3x3x3 274 

convolutions and 128 feature channels, and one with upconvolution followed by two 3x3x3 275 

convolutions with 64 and 32 feature channels, with concatenated sections of the corresponding 276 

layer in the encoding part. The output part consists of a final 1x1x1 convolution followed by a soft-277 

max output layer. This results in 13 layers in total (12 + 1 convolution at bottom). The network is 278 

trained end-to-end by comparing the predicted class of each voxel to the annotated EMDB model 279 

using cross-entropy loss, propagating the error back through the network, and adapting the network 280 

weights to iteratively minimize the error. 281 
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